Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 35
Filtrar
Más filtros

Bases de datos
Tipo del documento
Intervalo de año de publicación
1.
Neuroimage ; 275: 120187, 2023 07 15.
Artículo en Inglés | MEDLINE | ID: mdl-37230205

RESUMEN

Transcranial alternating current stimulation (tACS) can influence perception and behavior, with recent evidence also highlighting its potential impact in clinical settings, but its underlying mechanisms are poorly understood. Behavioral and indirect physiological evidence indicates that phase-dependent constructive and destructive interference between the applied electric field and brain oscillations at the stimulation frequency may play an important role, but in vivo validation during stimulation was unfeasible because stimulation artifacts impede single-trial assessment of brain oscillations during tACS. Here, we attenuated stimulation artifacts to provide evidence for phase-dependent enhancement and suppression of visually evoked steady state responses (SSR) during amplitude-modulated tACS (AM-tACS). We found that AM-tACS enhanced and suppressed SSR by 5.77 ± 2.95%, while it enhanced and suppressed corresponding visual perception by 7.99 ± 5.15%. While not designed to investigate the underlying mechanisms of this effect, our study suggests feasibility and superiority of phase-locked (closed-loop) AM-tACS over conventional (open-loop) AM-tACS to purposefully enhance or suppress brain oscillations at specific frequencies.


Asunto(s)
Estimulación Transcraneal de Corriente Directa , Humanos , Encéfalo/fisiología , Percepción Visual/fisiología , Artefactos
2.
Neuroimage ; 228: 117571, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-33412281

RESUMEN

Brain oscillations, e.g. measured by electro- or magnetoencephalography (EEG/MEG), are causally linked to brain functions that are fundamental for perception, cognition and learning. Recent advances in neurotechnology provide means to non-invasively target these oscillations using frequency-tuned amplitude-modulated transcranial alternating current stimulation (AM-tACS). However, online adaptation of stimulation parameters to ongoing brain oscillations remains an unsolved problem due to stimulation artifacts that impede such adaptation, particularly at the target frequency. Here, we introduce a real-time compatible artifact rejection algorithm (Stimulation Artifact Source Separation, SASS) that overcomes this limitation. SASS is a spatial filter (linear projection) removing EEG signal components that are maximally different in the presence versus absence of stimulation. This enables the reliable removal of stimulation-specific signal components, while leaving physiological signal components unaffected. For validation of SASS, we evoked brain activity with known phase and amplitude using 10 Hz visual flickers across 7 healthy human volunteers. 64-channel EEG was recorded during and in absence of 10 Hz AM-tACS targeting the visual cortex. Phase differences between AM-tACS and the visual stimuli were randomized, so that steady-state visually evoked potentials (SSVEPs) were phase-locked to the visual stimuli but not to the AM-tACS signal. For validation, distributions of single-trial amplitude and phase of EEG signals recorded during and in absence of AM-tACS were compared for each participant. When no artifact rejection method was applied, AM-tACS stimulation artifacts impeded assessment of single-trial SSVEP amplitude and phase. Using SASS, amplitude and phase of single trials recorded during and in absence of AM-tACS were comparable. These results indicate that SASS can be used to establish adaptive (closed-loop) AM-tACS, a potentially powerful tool to target various brain functions, and to investigate how AM-tACS interacts with electric brain oscillations.


Asunto(s)
Algoritmos , Artefactos , Encéfalo/fisiología , Procesamiento de Señales Asistido por Computador , Estimulación Transcraneal de Corriente Directa/métodos , Adulto , Potenciales Evocados Visuales/fisiología , Femenino , Humanos , Masculino , Adulto Joven
3.
Eur Radiol ; 31(10): 8060-8067, 2021 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-33856524

RESUMEN

OBJECTIVES: To develop a dual-energy CT method for differentiating and quantifying high-Z contrast elements and to evaluate the limitations based on element concentration and atomic number by using an anthropomorphic phantom study. METHODS: Mass spectrometry standards for iodine, barium, gadolinium, ytterbium, tantalum, gold, and bismuth were diluted from 10.0 to 0.3 mg/mL, placed inside 7-mL vials, and scanned with dual-energy CT using an abdominal phantom and cylindrical water-filled insert. This procedure was repeated with all seven high-Z elements at six isoattenuating values from 250 to 8 HU. Quantification accuracy was measured using a linear regression model and residual error analysis with 90% limits of agreement. The limit of detection for each element was evaluated using the limit of blank of water. Pairwise differentiation of isoattenuating vials was evaluated using AUC values and the difference in fit angles between the two elements. RESULTS: Each high-Z element had a unique concentration vector in a two-dimensional plot of Compton scattering versus photoelectric effect attenuations. Mean quantification values were within ± 0.1 mg/mL of the true values for each element with no proportional bias. Limits of detection ranged from 0.35 to 0.56 mg/mL. Pairwise differentiations were proportional to the isoattenuating HU and the angle between the linear fits with mean AUC values increasing from 0.61 to 0.98 at 8 to 250 HU, respectively. CONCLUSION: Dual-energy CT can differentiate and quantify isoattenuating high-Z elements. The high-attenuation characteristics and unique concentration vectors of ytterbium, tantalum, gold, and bismuth are well suited for new dual-energy CT contrast agents especially when simultaneously imaged with iodine, barium, or gadolinium. KEY POINTS: • Dual-energy CT can accurately quantify high-Z contrast elements and readily differentiate iodine, barium, and gadolinium from ytterbium, tantalum, gold, and bismuth. • The differentiation and quantification capabilities for high-Z contrast elements are largely unaffected by phantom size and transaxial location within the phantom. • Potential benefits of new CT contrast agents based on these high-Z elements include alternatives for patients with iodine sensitivity, high conspicuity at both 120 and 140 kVp, simultaneous imaging of two contrast agents, and reduced injection volume.


Asunto(s)
Medios de Contraste , Yodo , Gadolinio , Humanos , Fantasmas de Imagen , Tomografía Computarizada por Rayos X
4.
J Neurosci ; 38(13): 3287-3302, 2018 03 28.
Artículo en Inglés | MEDLINE | ID: mdl-29487125

RESUMEN

To support navigation, the firing of head direction (HD) neurons must be tightly anchored to the external space. Indeed, inputs from external landmarks can rapidly reset the preferred direction of HD cells. Landmark stimuli have often been simulated as excitatory inputs from "visual cells" (encoding landmark information) to the HD attractor network; when excitatory visual inputs are sufficiently strong, preferred directions switch abruptly to the landmark location. In the present work, we tested whether mimicking such inputs via juxtacellular stimulation would be sufficient for shifting the tuning of individual presubicular HD cells recorded in passively rotated male rats. We recorded 81 HD cells in a cue-rich environment, and evoked spikes trains outside of their preferred direction (distance range, 11-178°). We found that HD tuning was remarkably resistant to activity manipulations. Even strong stimulations, which induced seconds-long spike trains, failed to induce a detectable shift in directional tuning. HD tuning curves before and after stimulation remained highly correlated, indicating that postsynaptic activation alone is insufficient for modifying HD output. Our data are thus consistent with the predicted stability of an HD attractor network when anchored to external landmarks. A small spiking bias at the stimulus direction could only be observed in a visually deprived environment in which both average firing rates and directional tuning were markedly reduced. Based on this evidence, we speculate that, when attractor dynamics become unstable (e.g., under disorientation), the output of HD neurons could be more efficiently controlled by strong biasing stimuli.SIGNIFICANCE STATEMENT The activity of head direction (HD) cells is thought to provide the mammalian brain with an internal sense of direction. To support navigation, the firing of HD neurons must be anchored to external landmarks, a process thought to be supported by associative plasticity within the HD system. Here, we investigated these plasticity mechanisms by juxtacellular stimulation of single HD neurons in vivo in awake rats. We found that HD coding is strongly resistant to external manipulations of spiking activity. Only in a visually deprived environment was juxtacellular stimulation able to induce a small activity bias in single presubicular neurons. We propose that juxtacellular stimulation can bias HD tuning only when competing anchoring inputs are reduced or not available.


Asunto(s)
Movimientos de la Cabeza , Neuronas/fisiología , Giro Parahipocampal/fisiología , Animales , Potenciales Evocados , Masculino , Giro Parahipocampal/citología , Ratas , Ratas Wistar , Navegación Espacial
5.
J Neurophysiol ; 120(2): 564-575, 2018 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-29718804

RESUMEN

Head-direction (HD) neurons are thought to provide the mammalian brain with an internal sense of direction. These cells, which selectively increase their firing when the animal's head points in a specific direction, use the spike rate to encode HD with a high signal-to-noise ratio. In the present work, we analyzed spike train features of presubicular HD cells recorded juxtacellularly in passively rotated rats. We found that HD neurons could be classified into two groups on the basis of their propensity to fire spikes at short interspike intervals. "Bursty" neurons displayed distinct spike waveforms and were weakly but significantly more modulated by HD compared with "nonbursty" cells. In a subset of HD neurons, we observed the occurrence of spikelets, small-amplitude "spike-like" events, whose HD tuning was highly correlated to that of the co-recorded juxtacellular spikes. Bursty and nonbursty HD cells, as well as spikelets, were also observed in freely moving animals during natural behavior. We speculate that spike bursts and spikelets might contribute to presubicular HD coding by enhancing its accuracy and transmission reliability to downstream targets. NEW & NOTEWORTHY We provide evidence that presubicular head-direction (HD) cells can be classified into two classes (bursty and nonbursty) on the basis of their propensity to fire spikes at short interspike intervals. Bursty cells displayed distinct electrophysiological properties and stronger directional tuning compared with nonbursty neurons. We also provide evidence for the occurrence of spikelets in a subset of HD cells. These electrophysiological features (spike bursts and spikelets) might contribute to the precision and robustness of the presubicular HD code.


Asunto(s)
Potenciales de Acción/fisiología , Movimientos de la Cabeza , Neuronas/fisiología , Giro Parahipocampal/fisiología , Animales , Masculino , Neuronas/citología , Giro Parahipocampal/citología , Ratas Wistar
6.
J Am Chem Soc ; 137(44): 14173-9, 2015 Nov 11.
Artículo en Inglés | MEDLINE | ID: mdl-26462412

RESUMEN

Given the known water exchange rate limitations of a previously reported Zn(II)-sensitive MRI contrast agent, GdDOTA-diBPEN, new structural targets were rationally designed to increase the rate of water exchange to improve MRI detection sensitivity. These new sensors exhibit fine-tuned water exchange properties and, depending on the individual structure, demonstrate significantly improved longitudinal relaxivities (r1). Two sensors in particular demonstrate optimized parameters and, therefore, show exceptionally high longitudinal relaxivities of about 50 mM(-1) s(-1) upon binding to Zn(II) and human serum albumin (HSA). This value demonstrates a 3-fold increase in r1 compared to that displayed by the original sensor, GdDOTA-diBPEN. In addition, this study provides important insights into the interplay between structural modifications, water exchange rate, and kinetic stability properties of the sensors. The new high relaxivity agents were used to successfully image Zn(II) release from the mouse pancreas in vivo during glucose stimulated insulin secretion.


Asunto(s)
Medios de Contraste/química , Complejos de Coordinación/química , Compuestos Heterocíclicos con 1 Anillo/química , Imagen por Resonancia Magnética , Agua/química , Zinc/química , Animales , Medios de Contraste/síntesis química , Medios de Contraste/metabolismo , Complejos de Coordinación/síntesis química , Complejos de Coordinación/metabolismo , Glucosa/química , Glucosa/metabolismo , Compuestos Heterocíclicos con 1 Anillo/síntesis química , Compuestos Heterocíclicos con 1 Anillo/metabolismo , Humanos , Insulina/química , Insulina/metabolismo , Cinética , Ratones , Ratones Endogámicos C57BL , Estructura Molecular , Páncreas/química , Páncreas/citología , Páncreas/metabolismo , Albúmina Sérica/química , Albúmina Sérica/metabolismo , Termodinámica , Agua/metabolismo , Zinc/metabolismo
7.
Ann Otol Rhinol Laryngol ; 133(2): 229-238, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37553806

RESUMEN

PURPOSE: We aimed to identify the role of bacterial biofilms in the chronicity of otitis media with effusion and its resistance to antibiotics. We illustrated this role by reviewing, analyzing, and correlating the findings with the results of the included studies to reach clear evidence. METHODS: A comprehensive search of electronic databases (Scopus, PubMed, Web of Science, Cochrane, and GHL databases) was performed for all studies using the following strategy till April 2021 with the search terms: Biofilm and Middle ear effusion. We found 935 references, 421 were duplicates, and 514 were needed for further screening, and it was as follows: PubMed 215, Scopus 18, Cochrane 130, Web of Science 136, and GHL 15. RESULTS: The pooled prevalence of culture-positive effusions was estimated to be 40% (95% CI [28%, 53%]) of the total OME population. Overall, the prevalence of PCR-positive effusions was estimated to be 97% (95% CI [95%, 99%]) of the total OME population. The pooled prevalence of EM-positive effusions was estimated to be 82% (95% CI [69%, 95%]) of the total OME population. CONCLUSION: The data presented in this study coincide with the significant role of bacterial biofilms in the pathogenesis of chronic otitis media with effusion. The involvement of bacterial biofilm as a component of the OME pathogenic process can help us to explain why antimicrobial therapy is not always effective in the eradication of the disease process and, also explain the recurrence of middle ear effusion after treatment with tympanostomy tubes either with or without adenoidectomy.


Asunto(s)
Biopelículas , Otitis Media con Derrame , Otitis Media , Humanos , Adenoidectomía , Ventilación del Oído Medio , Otitis Media/epidemiología , Otitis Media/microbiología , Otitis Media con Derrame/epidemiología , Otitis Media con Derrame/microbiología , Prevalencia
8.
Anal Chem ; 85(7): 3508-14, 2013 Apr 02.
Artículo en Inglés | MEDLINE | ID: mdl-23461528

RESUMEN

The discovery of small molecule ligands targeted to the surface of live pathogenic bacteria would enable an entirely new class of antibiotics. We report the development and validation of a microarray-based high-throughput screening platform for bacteria that exploits 300 µm diameter chemical spots in a 1 in. × 3 in. nanolayered glass slide format. Using 24 model compounds and 4 different bacterial strains, we optimized the screening technology, including fluorophore-based optical deconvolution for automated scoring of affinity and cyan-magenta-yellow-key (CMYK) color-coding for scoring of both affinity and specificity. The latter provides a lossless, one-dimensional view of multidimensional data. By linking in silico analysis with cell binding affinity and specificity, we could also begin to identify the physicochemical factors that affect ligand performance. The technology we describe could form the foundation for developing new classes of antibiotics.


Asunto(s)
Antibacterianos/química , Antibacterianos/farmacología , Bacterias/efectos de los fármacos , Evaluación Preclínica de Medicamentos/métodos , Ensayos Analíticos de Alto Rendimiento/métodos , Bibliotecas de Moléculas Pequeñas/química , Bibliotecas de Moléculas Pequeñas/farmacología , Bacterias/citología , Infecciones Bacterianas/tratamiento farmacológico , Simulación por Computador , Humanos , Ligandos , Modelos Moleculares
9.
Artículo en Inglés | MEDLINE | ID: mdl-36460059

RESUMEN

BACKGROUND: This study aimed to analyze the behavior of acute invasive fungal rhinosinusitis (AIFRS) associated with COVID-19 infection as there has been an increase in the rate of AIFRS cases in the last two years, and many reports connected this rising with the COVID-19 infection. We studied most factors that may impact the prognosis as a trial to find the most affecting factors to improve the outcomes. METHODS: It was a retrospective observational study that included cases from four tertiary referral institutions between November 2020 to February 2022. We included sixty-six patients who suffered from AIFRS associated with confirmed COVID-19. We observed the prognosis of all included patients with a six-month follow-up. We correlated the prognosis with many factors, such as demographic data, medical conditions, blood investigations, the features of fungal infections, and management. RESULTS: Forty-two patients (64%) survived after the AIFRS associated with COVID-19, and twenty-two patients (36%) died. High doses of corticosteroids with prolonged use were the main factors that affected the behavior of the AIFRS associated with COVID-19. HbA1c was a good predictor of the prognosis; a level less than 9.35% may indicate survival with 87.5% sensitivity. CONCLUSIONS: According to this multi-center study, the mortality of the AIFRS associated with COVID-19 was high. The behavior was affected by glycemic control, the type of fungal species, and the type of antifungal therapy. Early surgical debridement, a combination of Amphotericin B with Voriconazole, and anticoagulants helped improve the prognosis.

10.
Adv Funct Mater ; 22(4): 872-878, 2012 Feb 22.
Artículo en Inglés | MEDLINE | ID: mdl-23467787

RESUMEN

We describe a rapid and facile method for surface functionalization and ligand patterning of glass slides based on microwave-assisted synthesis and a microarraying robot. Our optimized reaction enables surface modification 42-times faster than conventional techniques and includes a carboxylated self-assembled monolayer, polyethylene glycol linkers of varying length, and stable amide bonds to small molecule, peptide, or protein ligands to be screened for binding to living cells. We also describe customized slide racks that permit functionalization of 100 slides at a time to produce a cost-efficient, highly reproducible batch process. Ligand spots can be positioned on the glass slides precisely using a microarraying robot, and spot size adjusted for any desired application. Using this system, we demonstrate live cell binding to a variety of ligands and optimize PEG linker length. Taken together, the technology we describe should enable high-throughput screening of disease-specific ligands that bind to living cells.

11.
Prog Neurobiol ; 216: 102311, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35750290

RESUMEN

The human brain is arguably one of the most complex systems in nature. To understand how it operates, it is essential to understand the link between neural activity and behavior. Experimental investigation of that link requires tools to interact with neural activity during behavior. Human neuroscience, however, has been severely bottlenecked by the limitations of these tools. While invasive methods can support highly specific interaction with brain activity during behavior, their applicability in human neuroscience is limited. Despite extensive development in the last decades, noninvasive alternatives have lacked spatial specificity and yielded results that are commonly fraught with variability and replicability issues, along with relatively limited understanding of the neural mechanisms involved. Here we provide a comprehensive review of the state-of-the-art in interacting with human brain activity and highlight current limitations and recent efforts to overcome these limitations. Beyond crucial technical and scientific advancements in electromagnetic brain stimulation, new frontiers in interacting with human brain activity such as task-irrelevant sensory stimulation and focal ultrasound stimulation are introduced. Finally, we argue that, along with technological improvements and breakthroughs in noninvasive methods, a paradigm shift towards adaptive closed-loop stimulation will be a critical step for advancing human neuroscience.


Asunto(s)
Neurociencias , Estimulación Magnética Transcraneal , Encéfalo/fisiología , Mapeo Encefálico/métodos , Humanos , Estimulación Magnética Transcraneal/métodos
12.
Mol Imaging Biol ; 24(6): 940-949, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-35655109

RESUMEN

PURPOSE: The treatment of complex neurological diseases often requires the administration of large therapeutic drugs, such as antisense oligonucleotide (ASO), by lumbar puncture into the intrathecal space in order to bypass the blood-brain barrier. Despite the growing number of ASOs in clinical development, there are still uncertainties regarding their dosing, primarily around their distribution and kinetics in the brain following intrathecal injection. The challenge of taking measurements within the delicate structures of the central nervous system (CNS) necessitates the use of non-invasive nuclear imaging, such as positron emission tomography (PET). Herein, an emergent strategy known as "pretargeted imaging" is applied to image the distribution of an ASO in the brain by developing a novel PET tracer, [18F]F-537-Tz. This tracer is able to undergo an in vivo "click" reaction, covalently binding to a trans-cyclooctene conjugated ASO. PROCEDURES: A novel small molecule tracer for pretargeted PET imaging of ASOs in the CNS is developed and tested in a series of in vitro and in vivo experiments, including biodistribution in rats and non-human primates. RESULTS: In vitro data and extensive in vivo rat data demonstrated delivery of the tracer to the CNS, and its successful ligation to its ASO target in the brain. In an NHP study, the slow tracer kinetics did not allow for specific binding to be determined by PET. CONCLUSION: A CNS-penetrant radioligand for pretargeted imaging was successfully demonstrated in a proof-of-concept study in rats, laying the groundwork for further optimization.


Asunto(s)
Química Clic , Radiofármacos , Animales , Ratas , Química Clic/métodos , Radiofármacos/química , Distribución Tisular , Oligonucleótidos Antisentido/metabolismo , Tomografía de Emisión de Positrones/métodos , Encéfalo/diagnóstico por imagen , Encéfalo/metabolismo
13.
Mol Imaging ; 10(2): 91-101, 2011 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-21439254

RESUMEN

Nerve damage is the major morbidity of many surgeries, resulting in chronic pain, loss of function, or both. The sparing of nerves during surgical procedures is a vexing problem because surrounding tissue often obscures them. To date, systemically administered nerve-highlighting contrast agents that can be used for nerve-sparing image-guided surgery have not been reported. In the current study, physicochemical and optical properties of 4,4'-[(2-methoxy-1,4-phenylene)di-(1E)-2,1-ethenediyl]bis-benzenamine (BMB) and a newly synthesized, red-shifted derivative 4-[(1E)-2-[4-[(1E)-2-[4-aminophenyl]ethenyl]-3-methoxyphenyl]ethenyl]-benzonitrile (GE3082) were characterized in vitro and in vivo. Both agents crossed the blood-nerve barrier and blood-brain barrier and rendered myelinated nerves fluorescent after a single systemic injection. Although both BMB and GE3082 also exhibited significant uptake in white adipose tissue, GE3082 underwent a hypsochromic shift in adipose tissue that provided a means to eliminate the unwanted signal using hyperspectral deconvolution. Dose and kinetic studies were performed in mice to determine the optimal dose and drug-imaging interval. The results were confirmed in rat and pig, with the latter used to demonstrate, for the first time, simultaneous fluorescence imaging of blood vessels and nerves during surgery using the FLARE™ (Fluorescence-Assisted Resection and Exploration) imaging system. These results lay the foundation for the development of ideal nerve-highlighting fluorophores for image-guided surgery.


Asunto(s)
Compuestos de Anilina , Medios de Contraste , Colorantes Fluorescentes , Tejido Nervioso/patología , Estilbenos , Cirugía Asistida por Computador/métodos , Compuestos de Anilina/química , Animales , Vasos Sanguíneos/patología , Colorantes Fluorescentes/química , Verde de Indocianina/metabolismo , Cinética , Ratones , Fenómenos Ópticos , Especificidad de Órganos , Ratas , Ratas Sprague-Dawley , Espectrometría de Fluorescencia , Estilbenos/química , Sus scrofa/cirugía
14.
Anal Chem ; 83(13): 5283-9, 2011 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-21651231

RESUMEN

Encoderless combinatorial chemistry requires high-throughput product identification without the use of chemical or other tags. We developed a novel nanolayered substrate plate and combined it with a microarraying robot, matrix-assisted laser desorption/ionization (MALDI) mass spectrometry, and custom software to produce a high-throughput small molecule identification system. To optimize system performance, we spotted 5 different chemical entities, spanning a m/z range of 195 to 1338, in 20,304 spots for a total of 101,520 molecules. The initial spot identification rate was 99.85% (20,273 spots), and after a proofreading algorithm was added, 100% of 20,304 spots and 101,520 molecules were identified. An internal recalibration algorithm also significantly improved mass accuracy to as low as 45 ppm. Using this optimized system, 47 different chemical entities, spanning a m/z range of 138 to 1,592, were spotted over 5,076 spots and could be identified with 100% accuracy. Our study lays the foundation for improved encoderless combinatorial chemistry.


Asunto(s)
Nanoestructuras , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción/métodos , Cristalización
15.
iScience ; 24(11): 103301, 2021 Nov 19.
Artículo en Inglés | MEDLINE | ID: mdl-34765921

RESUMEN

Conceiving "nothing" as a numerical value zero is considered a sophisticated numerical capability that humans share with cognitively advanced animals. We demonstrate that representation of zero spontaneously emerges in a deep learning neural network without any number training. As a signature of numerical quantity representation, and similar to real neurons from animals, numerosity zero network units show maximum activity to empty sets and a gradual decrease in activity with increasing countable numerosities. This indicates that the network spontaneously ordered numerosity zero as the smallest numerical value along the number line. Removal of empty-set network units caused specific deficits in the network's judgment of numerosity zero, thus reflecting these units' functional relevance. These findings suggest that processing visual information is sufficient for a visual number sense that includes zero to emerge and explains why cognitively advanced animals with whom we share a nonverbal number system exhibit rudiments of numerosity zero.

16.
Patterns (N Y) ; 2(7): 100304, 2021 Jul 09.
Artículo en Inglés | MEDLINE | ID: mdl-34286308

RESUMEN

Implementation of effective brain or neural stimulation protocols for restoration of complex sensory perception, e.g., in the visual domain, is an unresolved challenge. By leveraging the capacity of deep learning to model the brain's visual system, optic nerve stimulation patterns could be derived that are predictive of neural responses of higher-level cortical visual areas in silico. This novel approach could be generalized to optimize different types of neuroprosthetics or bidirectional brain-computer interfaces (BCIs).

17.
Data Brief ; 36: 107011, 2021 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-33948453

RESUMEN

Transcranial alternating current stimulation (tACS) can affect perception, learning and cognition, but the underlying mechanisms are not well understood. A promising strategy to elucidate these mechanisms aims at applying tACS while electric or magnetic brain oscillations targeted by stimulation are recorded. However, reconstructing brain oscillations targeted by tACS remains a challenging problem due to stimulation artifacts. Besides lack of an established strategy to effectively supress such stimulation artifacts, there are also no resources available that allow for the development and testing of new and effective tACS artefact suppression algorithms, such as adaptive spatial filtering using beamforming or signal-space projection. Here, we provide a full dataset comprising encephalographic (EEG) recordings across six healthy human volunteers who underwent 10-Hz amplitude-modulated tACS (AM-tACS) during a 10-Hz steady-state visually evoked potential (SSVEP) paradigm. Moreover, data and scripts are provided related to the validation of a novel stimulation artefact suppression strategy, Stimulation Artifact Source Separation (SASS), removing EEG signal components that are maximally different in the presence versus absence of stimulation. Besides including EEG single-trial data and comparisons of 10-Hz brain oscillatory phase and amplitude recorded across three conditions (condition 1: no stimulation, condition 2: stimulation with SASS, condition 3: stimulation without SASS), also power spectra and topographies of SSVEP amplitudes across all three conditions are presented. Moreover, data is provided for assessing nonlinear modulations of the stimulation artifact in both time and frequency domains due to heartbeats. Finally, the dataset includes eigenvalue spectra and spatial patterns of signal components that were identified and removed by SASS for stimulation artefact suppression at the target frequency. Besides providing a valuable resource to assess properties of AM-tACS artifacts in the EEG, this dataset allows for testing different artifact rejection methods and offers in-depth insights into the workings of SASS.

18.
Mol Imaging ; 9(3): 128-40, 2010 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-20487679

RESUMEN

Low back pain is a prevalent medical condition that is difficult to diagnose and treat. Current imaging methods are unable to correlate pain reliably with spinal structures, and surgical removal of painful damaged or degenerating disks is technically challenging. A contrast agent specific for the intervertebral disk could assist in the detection, diagnosis, and surgical treatment of low back pain. The styryl pyridinium (FM) fluorophores were characterized and structure-activity relationships between chemical structure and in vivo uptake were established. Two novel FM fluorophores with improved optical properties for imaging the intervertebral disks were synthesized and evaluated in mice, rats, and pigs. After a single systemic injection, eight of eight FM fluorophores provided high-contrast imaging of the trigeminal ganglia, whereas six of eight provided high-contrast imaging of the dorsal root ganglia. Unexpectedly, three of eight FM fluorophores provided high-contrast imaging of annulus fibrosus tissue of the intervertebral disks, confirmed histologically. We present the first known contrast agent specific for the intervertebral disks and identify the chemical structural motif that mediates uptake. FM fluorophores could be used for image-guided surgery to assist in the removal of intervertebral disk and lay the foundation for derivatives for magnetic resonance imaging and positron emission tomography.


Asunto(s)
Medios de Contraste/química , Colorantes Fluorescentes/química , Disco Intervertebral/anatomía & histología , Disco Intervertebral/patología , Dolor de la Región Lumbar , Imagen Molecular/métodos , Animales , Medios de Contraste/metabolismo , Femenino , Colorantes Fluorescentes/metabolismo , Humanos , Disco Intervertebral/metabolismo , Dolor de la Región Lumbar/diagnóstico , Dolor de la Región Lumbar/etiología , Dolor de la Región Lumbar/patología , Vértebras Lumbares/anatomía & histología , Vértebras Lumbares/patología , Ratones , Estructura Molecular , Ratas , Ratas Sprague-Dawley , Porcinos
19.
J Am Chem Soc ; 131(36): 13107-16, 2009 Sep 16.
Artículo en Inglés | MEDLINE | ID: mdl-19702302

RESUMEN

Assigned from data sets measured in water at 2, 25, and 60 degrees C containing (13)C=O NMR chemical shifts and [theta](222) ellipticities, helical propensities are reported for the 20 genetically coded amino acids, as well as for norvaline and norleucine. These have been introduced by chemical synthesis at central sites within length-optimized, spaced, solubilized Ala(19) hosts. The resulting polyalanine-derived, quantitative propensity sets express for each residue its temperature-dependent but context-independent tendency to forego a coil state and join a preexisting helical conformation. At 2 degrees C their rank ordering is: P << G < H < C, T, N < S < Y, F, W < V, D < K < Q < I < R, M < L < E < A; at 60 degrees C the rank becomes: H, P < G < C < R, K < T, Y, F < N, V < S < Q < W, D < I, M < E < A < L. The DeltaDeltaG values, kcal/mol, relative to alanine, for the cluster T, N, S, Y, F, W, V, D, Q, imply that at 2 degrees C all are strong breakers: DeltaDeltaG(mean) = +0.63 +/- 0.11, but at 60 degrees C their breaking tendencies are dramatically attenuated and converge toward the mean: DeltaDeltaG(mean) = +0.25 +/- 0.07. Accurate modeling of helix-rich proteins found in thermophiles, mesophiles, and organisms that flourish near 0 degrees C thus requires appropriately matched propensity sets. Comparisons are offered between the temperature-dependent propensity assignments of this study and those previously assigned by the Scheraga group; the special problems that attend propensity assignments for charged residues are illustrated by lysine guest data; and comparisons of errors in helicity assignments from shifts and ellipticity data show that the former provide superior precision and accuracy.


Asunto(s)
Aminoácidos/química , Péptidos/química , Secuencia de Aminoácidos , Modelos Moleculares , Resonancia Magnética Nuclear Biomolecular , Estructura Secundaria de Proteína , Temperatura
20.
Sci Adv ; 5(5): eaav7903, 2019 05.
Artículo en Inglés | MEDLINE | ID: mdl-31086820

RESUMEN

Humans and animals have a "number sense," an innate capability to intuitively assess the number of visual items in a set, its numerosity. This capability implies that mechanisms to extract numerosity indwell the brain's visual system, which is primarily concerned with visual object recognition. Here, we show that network units tuned to abstract numerosity, and therefore reminiscent of real number neurons, spontaneously emerge in a biologically inspired deep neural network that was merely trained on visual object recognition. These numerosity-tuned units underlay the network's number discrimination performance that showed all the characteristics of human and animal number discriminations as predicted by the Weber-Fechner law. These findings explain the spontaneous emergence of the number sense based on mechanisms inherent to the visual system.


Asunto(s)
Redes Neurales de la Computación , Animales , Humanos , Modelos Biológicos , Neuronas/fisiología , Percepción Visual
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA