Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
ACS Omega ; 7(49): 44532-44541, 2022 Dec 13.
Artículo en Inglés | MEDLINE | ID: mdl-36530225

RESUMEN

For several years, ceramic biomaterials have been extensively utilized to rebuild and substitute for body tissues. Calcium silicates have been proven to exhibit excellent bioactivity due to apatite formation and cell proliferation stimulation, in addition to degradability at levels adequate for hard tissue formation. These ceramics' excellent biological characteristics have attracted researchers. Baghdadite is a calcium silicate incorporating zirconium ions that enhances human osteoblast multiplication and development, increasing mineralization, and ossification. It has currently received much interest in academic institutions and has been extensively explored in the form of permeable frameworks, varnishes, bone adhesive and gap fillings, microparticles, and nanospheres, particularly in a wide range of biomedical applications. This review article aims to summarize and analyze the most recent research on baghdadite's mechanical characteristics, apatite-forming capability, dissolution pattern, and physiochemical qualities as a scaffold for dentofacial tissuè regeneration purposes.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA