RESUMEN
A highly protective malaria vaccine would greatly facilitate the prevention and elimination of malaria and containment of drug-resistant parasites. A high level (more than 90%) of protection against malaria in humans has previously been achieved only by immunization with radiation-attenuated Plasmodium falciparum (Pf) sporozoites (PfSPZ) inoculated by mosquitoes; by intravenous injection of aseptic, purified, radiation-attenuated, cryopreserved PfSPZ ('PfSPZ Vaccine'); or by infectious PfSPZ inoculated by mosquitoes to volunteers taking chloroquine or mefloquine (chemoprophylaxis with sporozoites). We assessed immunization by direct venous inoculation of aseptic, purified, cryopreserved, non-irradiated PfSPZ ('PfSPZ Challenge') to malaria-naive, healthy adult volunteers taking chloroquine for antimalarial chemoprophylaxis (vaccine approach denoted as PfSPZ-CVac). Three doses of 5.12 × 104 PfSPZ of PfSPZ Challenge at 28-day intervals were well tolerated and safe, and prevented infection in 9 out of 9 (100%) volunteers who underwent controlled human malaria infection ten weeks after the last dose (group III). Protective efficacy was dependent on dose and regimen. Immunization with 3.2 × 103 (group I) or 1.28 × 104 (group II) PfSPZ protected 3 out of 9 (33%) or 6 out of 9 (67%) volunteers, respectively. Three doses of 5.12 × 104 PfSPZ at five-day intervals protected 5 out of 8 (63%) volunteers. The frequency of Pf-specific polyfunctional CD4 memory T cells was associated with protection. On a 7,455 peptide Pf proteome array, immune sera from at least 5 out of 9 group III vaccinees recognized each of 22 proteins. PfSPZ-CVac is a highly efficacious vaccine candidate; when we are able to optimize the immunization regimen (dose, interval between doses, and drug partner), this vaccine could be used for combination mass drug administration and a mass vaccination program approach to eliminate malaria from geographically defined areas.
Asunto(s)
Vacunas contra la Malaria/inmunología , Malaria Falciparum/inmunología , Malaria Falciparum/prevención & control , Plasmodium falciparum/inmunología , Vacunas Atenuadas/inmunología , Adolescente , Adulto , Anticuerpos Antiprotozoarios/sangre , Anticuerpos Antiprotozoarios/inmunología , Cloroquina/uso terapéutico , Método Doble Ciego , Voluntarios Sanos , Humanos , Memoria Inmunológica/inmunología , Vacunas contra la Malaria/administración & dosificación , Malaria Falciparum/sangre , Malaria Falciparum/parasitología , Persona de Mediana Edad , Plasmodium falciparum/clasificación , Esporozoítos/inmunología , Linfocitos T/inmunología , Factores de Tiempo , Vacunas Atenuadas/administración & dosificación , Adulto JovenRESUMEN
Plasmodium falciparum sporozoites (PfSPZ) Vaccine is composed of radiation-attenuated, aseptic, purified cryopreserved PfSPZ. Multiple clinical trials empirically assessing two to six doses have shown multi-dose priming (-two to four doses the first week) to be optimal for protection in both 4- and 16-week regimens. In this randomized, double-blind, normal saline (NS), placebo-controlled trial, four groups (G) of 18- to 32-year-old Equatoguineans received multi-dose priming regimens with or without a delayed final dose at 4 or 16 weeks (9 × 105 PfSPZ/dose). The regimens were G1: days 1, 3, 5, 7, and 113; G2: days 1, 3, 5, and 7; G3: days 1, 3, 5, 7, and 29; and G4: days 1, 8, and 29). All doses were 9 × 105 PfSPZ. Tolerability, safety, immunogenicity, and vaccine efficacy (VE) against homologous-controlled human malaria infection (CHMI) 6-7 weeks after vaccination were assessed to down-select the best regimen. All four regimens were safe and well tolerated, with no significant differences in adverse events (AEs) between vaccinees (N = 84) and NS controls (N = 20) or between regimens. Out of 19 controls, 13 developed Pf parasitemia by quantitative polymerase chain reaction (qPCR) after CHMI. Only the vaccine regimen administered on study days 1, 8, and 29 gave significant protection (7/21 vaccinees versus 13/19 controls infected, VE 51.3%, P = 0.03, Barnard's test, two-tailed). There were no significant differences in antibodies against Pf circumporozoite protein (PfCSP), a major SPZ antigen, between protected and nonprotected vaccinees or controls pre-CHMI. The six controls not developing Pf parasitemia had significantly higher antibodies to blood stage antigens Pf exported protein 1 (PfEXP1) and Pf merozoite surface protein 1 (PfMSP1) than the controls who developed parasitemia, suggesting naturally acquired immunity against Pf-limited infections in controls. This study identified a safe, protective, 4-week, multi-dose prime vaccination regimen for assessment in future trials of PfSPZ Vaccine.
RESUMEN
Immunization with attenuated Plasmodium sporozoites can induce protection against malaria infection, as shown by Plasmodium falciparum (Pf) sporozoites attenuated by radiation in multiple clinical trials. As alternative attenuation strategy with a more homogeneous population of Pf sporozoites (PfSPZ), genetically engineered Plasmodium berghei sporozoites (SPZ) lacking the genes b9 and slarp induced sterile protection against malaria in mice. Consequently, PfSPZ-GA1 Vaccine, a Pf identical double knockout (Pf∆b9∆slarp), was generated as a genetically attenuated malaria parasite vaccine and tested for safety, immunogenicity, and preliminary efficacy in malaria-naïve Dutch volunteers. Dose-escalation immunizations up to 9.0 × 105 PfSPZ of PfSPZ-GA1 Vaccine were well tolerated without breakthrough blood-stage infection. Subsequently, groups of volunteers were immunized three times by direct venous inoculation with cryopreserved PfSPZ-GA1 Vaccine (9.0 × 105 or 4.5 × 105 PfSPZ, N = 13 each), PfSPZ Vaccine (radiation-attenuated PfSPZ, 4.5 × 105 PfSPZ, N = 13), or normal saline placebo at 8-week intervals, followed by exposure to mosquito bite controlled human malaria infection (CHMI). After CHMI, 3 of 25 volunteers from both PfSPZ-GA1 groups were sterilely protected, and the remaining 17 of 22 showed a patency ≥9 days (median patency in controls, 7 days; range, 7 to 9). All volunteers in the PfSPZ Vaccine control group developed parasitemia (median patency, 9 days; range, 7 to 12). Immunized groups exhibited a significant, dose-related increase in anti-Pf circumsporozoite protein (CSP) antibodies and Pf-specific interferon-γ (IFN-γ)-producing T cells. Although no definite conclusion can be drawn on the potential strength of protective efficacy of PfSPZ-GA1 Vaccine, the favorable safety profile and induced immune responses by PfSPZ-GA1 Vaccine warrant further clinical evaluation.