Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 55
Filtrar
Más filtros

Bases de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Nat Immunol ; 25(3): 471-482, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38429458

RESUMEN

Persistent symptoms following SARS-CoV-2 infection are increasingly reported, although the drivers of post-acute sequelae (PASC) of COVID-19 are unclear. Here we assessed 214 individuals infected with SARS-CoV-2, with varying disease severity, for one year from COVID-19 symptom onset to determine the early correlates of PASC. A multivariate signature detected beyond two weeks of disease, encompassing unresolving inflammation, anemia, low serum iron, altered iron-homeostasis gene expression and emerging stress erythropoiesis; differentiated those who reported PASC months later, irrespective of COVID-19 severity. A whole-blood heme-metabolism signature, enriched in hospitalized patients at month 1-3 post onset, coincided with pronounced iron-deficient reticulocytosis. Lymphopenia and low numbers of dendritic cells persisted in those with PASC, and single-cell analysis reported iron maldistribution, suggesting monocyte iron loading and increased iron demand in proliferating lymphocytes. Thus, defects in iron homeostasis, dysregulated erythropoiesis and immune dysfunction due to COVID-19 possibly contribute to inefficient oxygen transport, inflammatory disequilibrium and persisting symptomatology, and may be therapeutically tractable.


Asunto(s)
COVID-19 , Hierro , Humanos , Eritropoyesis , SARS-CoV-2 , Investigadores , Progresión de la Enfermedad
2.
EMBO J ; 43(17): 3677-3709, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39009674

RESUMEN

The ubiquitination and proteasome-mediated degradation of Hypoxia Inducible Factors (HIFs) is central to metazoan oxygen-sensing, but the involvement of deubiquitinating enzymes (DUBs) in HIF signalling is less clear. Here, using a bespoke DUBs sgRNA library we conduct CRISPR/Cas9 mutagenesis screens to determine how DUBs are involved in HIF signalling. Alongside defining DUBs involved in HIF activation or suppression, we identify USP43 as a DUB required for efficient activation of a HIF response. USP43 is hypoxia regulated and selectively associates with the HIF-1α isoform, and while USP43 does not alter HIF-1α stability, it facilitates HIF-1 nuclear accumulation and binding to its target genes. Mechanistically, USP43 associates with 14-3-3 proteins in a hypoxia and phosphorylation dependent manner to increase the nuclear pool of HIF-1. Together, our results highlight the multifunctionality of DUBs, illustrating that they can provide important signalling functions alongside their catalytic roles.


Asunto(s)
Enzimas Desubicuitinizantes , Subunidad alfa del Factor 1 Inducible por Hipoxia , Humanos , Subunidad alfa del Factor 1 Inducible por Hipoxia/metabolismo , Subunidad alfa del Factor 1 Inducible por Hipoxia/genética , Enzimas Desubicuitinizantes/metabolismo , Enzimas Desubicuitinizantes/genética , Mutagénesis , Sistemas CRISPR-Cas , Células HEK293 , Transducción de Señal , Ubiquitinación
3.
EMBO J ; 43(11): 2127-2165, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38580776

RESUMEN

The in vitro oxygen microenvironment profoundly affects the capacity of cell cultures to model physiological and pathophysiological states. Cell culture is often considered to be hyperoxic, but pericellular oxygen levels, which are affected by oxygen diffusivity and consumption, are rarely reported. Here, we provide evidence that several cell types in culture actually experience local hypoxia, with important implications for cell metabolism and function. We focused initially on adipocytes, as adipose tissue hypoxia is frequently observed in obesity and precedes diminished adipocyte function. Under standard conditions, cultured adipocytes are highly glycolytic and exhibit a transcriptional profile indicative of physiological hypoxia. Increasing pericellular oxygen diverted glucose flux toward mitochondria, lowered HIF1α activity, and resulted in widespread transcriptional rewiring. Functionally, adipocytes increased adipokine secretion and sensitivity to insulin and lipolytic stimuli, recapitulating a healthier adipocyte model. The functional benefits of increasing pericellular oxygen were also observed in macrophages, hPSC-derived hepatocytes and cardiac organoids. Our findings demonstrate that oxygen is limiting in many terminally-differentiated cell types, and that considering pericellular oxygen improves the quality, reproducibility and translatability of culture models.


Asunto(s)
Adipocitos , Diferenciación Celular , Oxígeno , Oxígeno/metabolismo , Adipocitos/metabolismo , Adipocitos/citología , Humanos , Técnicas de Cultivo de Célula/métodos , Animales , Glucólisis , Hepatocitos/metabolismo , Hipoxia de la Célula , Mitocondrias/metabolismo , Ratones , Subunidad alfa del Factor 1 Inducible por Hipoxia/metabolismo , Subunidad alfa del Factor 1 Inducible por Hipoxia/genética , Células Cultivadas , Glucosa/metabolismo , Macrófagos/metabolismo
4.
Cell ; 152(5): 1184-94, 2013 Feb 28.
Artículo en Inglés | MEDLINE | ID: mdl-23452861

RESUMEN

Immunoproteasomes are alternative forms of proteasomes that have an enhanced ability to generate antigenic peptides. Recently, Seifert and colleagues reported surprising observations concerning the functions of immunoproteasomes and cellular responses to interferon-γ: (1) that immunoproteasomes degrade ubiquitinated proteins faster than the constitutive proteasomes, (2) that polyubiquitin conjugates accumulate after interferon-γ treatment but then are preferentially degraded by immunoproteasomes, and (3) that immunoproteasome deficiency causes the formation of inclusions and more severe experimental autoimmune encephalomyelitis (EAE). In contrast, we find that polyubiquitin conjugates do not transiently accumulate following IFNγ-treatment and that immunoproteasomes do not prevent the formation of intracellular inclusions or protect against EAE. Furthermore, purified 26S constitutive and immunoproteasomes bind ubiquitin conjugates similarly and degrade them at similar rates. We conclude that, although immunoproteasomes can increase the generation of peptides appropriate for MHC class I presentation, they do not degrade ubiquitinated proteins more efficiently than constitutive particles.


Asunto(s)
Complejo de la Endopetidasa Proteasomal/metabolismo , Proteínas/metabolismo , Proteolisis , Bazo/citología , Animales , Antígenos , Encefalomielitis Autoinmune Experimental/inmunología , Encefalomielitis Autoinmune Experimental/patología , Fibroblastos/citología , Células HeLa , Humanos , Interferón gamma/metabolismo , Ratones , Ratones Endogámicos C57BL , Poliubiquitina/metabolismo , Complejo de la Endopetidasa Proteasomal/genética , Procesamiento Proteico-Postraduccional , Ubiquitinación
5.
PLoS Biol ; 21(2): e3001959, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36735681

RESUMEN

The interactions between Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) and human host factors enable the virus to propagate infections that lead to Coronavirus Disease 2019 (COVID-19). The spike protein is the largest structural component of the virus and mediates interactions essential for infection, including with the primary angiotensin-converting enzyme 2 (ACE2) receptor. We performed two independent cell-based systematic screens to determine whether there are additional proteins by which the spike protein of SARS-CoV-2 can interact with human cells. We discovered that in addition to ACE2, expression of LRRC15 also causes spike protein binding. This interaction is distinct from other known spike attachment mechanisms such as heparan sulfates or lectin receptors. Measurements of orthologous coronavirus spike proteins implied the interaction was functionally restricted to SARS-CoV-2 by accessibility. We localized the interaction to the C-terminus of the S1 domain and showed that LRRC15 shares recognition of the ACE2 receptor binding domain. From analyzing proteomics and single-cell transcriptomics, we identify LRRC15 expression as being common in human lung vasculature cells and fibroblasts. Levels of LRRC15 were greatly elevated by inflammatory signals in the lungs of COVID-19 patients. Although infection assays demonstrated that LRRC15 alone is not sufficient to permit viral entry, we present evidence that it can modulate infection of human cells. This unexpected interaction merits further investigation to determine how SARS-CoV-2 exploits host LRRC15 and whether it could account for any of the distinctive features of COVID-19.


Asunto(s)
COVID-19 , Humanos , SARS-CoV-2/metabolismo , Glicoproteína de la Espiga del Coronavirus/metabolismo , Enzima Convertidora de Angiotensina 2/metabolismo , Unión Proteica , Proteínas de la Membrana/metabolismo
8.
EMBO Rep ; 19(5)2018 05.
Artículo en Inglés | MEDLINE | ID: mdl-29519897

RESUMEN

Misfolded or damaged proteins are typically targeted for destruction by proteasome-mediated degradation, but the mammalian ubiquitin machinery involved is incompletely understood. Here, using forward genetic screens in human cells, we find that the proteasome-mediated degradation of the soluble misfolded reporter, mCherry-CL1, involves two ER-resident E3 ligases, MARCH6 and TRC8. mCherry-CL1 degradation is routed via the ER membrane and dependent on the hydrophobicity of the substrate, with complete stabilisation only observed in double knockout MARCH6/TRC8 cells. To identify a more physiological correlate, we used quantitative mass spectrometry and found that TRC8 and MARCH6 depletion altered the turnover of the tail-anchored protein heme oxygenase-1 (HO-1). These E3 ligases associate with the intramembrane cleaving signal peptide peptidase (SPP) and facilitate the degradation of HO-1 following intramembrane proteolysis. Our results highlight how ER-resident ligases may target the same substrates, but work independently of each other, to optimise the protein quality control of selected soluble and tail-anchored proteins.


Asunto(s)
Hemo-Oxigenasa 1/metabolismo , Proteínas de la Membrana/metabolismo , Receptores de Superficie Celular/metabolismo , Ubiquitina-Proteína Ligasas/metabolismo , Ubiquitinación , Retículo Endoplásmico/enzimología , Técnicas de Inactivación de Genes , Células HeLa , Hemo-Oxigenasa 1/genética , Humanos , Espectrometría de Masas , Proteínas de la Membrana/genética , Proteolisis , Receptores de Superficie Celular/genética , Ubiquitina-Proteína Ligasas/genética
9.
PLoS Biol ; 14(1): e1002347, 2016 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-26752685

RESUMEN

The asparagine hydroxylase, factor inhibiting HIF (FIH), confers oxygen-dependence upon the hypoxia-inducible factor (HIF), a master regulator of the cellular adaptive response to hypoxia. Studies investigating whether asparagine hydroxylation is a general regulatory oxygen-dependent modification have identified multiple non-HIF targets for FIH. However, the functional consequences of this outside of the HIF pathway remain unclear. Here, we demonstrate that the deubiquitinase ovarian tumor domain containing ubiquitin aldehyde binding protein 1 (OTUB1) is a substrate for hydroxylation by FIH on N22. Mutation of N22 leads to a profound change in the interaction of OTUB1 with proteins important in cellular metabolism. Furthermore, in cultured cells, overexpression of N22A mutant OTUB1 impairs cellular metabolic processes when compared to wild type. Based on these data, we hypothesize that OTUB1 is a target for functional hydroxylation by FIH. Additionally, we propose that our results provide new insight into the regulation of cellular energy metabolism during hypoxic stress and the potential for targeting hydroxylases for therapeutic benefit.


Asunto(s)
Cisteína Endopeptidasas/metabolismo , Oxigenasas de Función Mixta/metabolismo , Proteínas Represoras/metabolismo , Proteínas Quinasas Activadas por AMP/metabolismo , Cisteína Endopeptidasas/genética , Enzimas Desubicuitinizantes , Metabolismo Energético , Células HEK293 , Humanos , Hidroxilación , Mutagénesis Sitio-Dirigida , Estabilidad Proteica
11.
EMBO J ; 32(4): 552-65, 2013 Feb 20.
Artículo en Inglés | MEDLINE | ID: mdl-23314748

RESUMEN

Although cellular proteins conjugated to K48-linked Ub chains are targeted to proteasomes, proteins conjugated to K63-ubiquitin chains are directed to lysosomes. However, pure 26S proteasomes bind and degrade K48- and K63-ubiquitinated substrates similarly. Therefore, we investigated why K63-ubiquitinated proteins are not degraded by proteasomes. We show that mammalian cells contain soluble factors that selectively bind to K63 chains and inhibit or prevent their association with proteasomes. Using ubiquitinated proteins as affinity ligands, we found that the main cellular proteins that associate selectively with K63 chains and block their binding to proteasomes are ESCRT0 (Endosomal Sorting Complex Required for Transport) and its components, STAM and Hrs. In vivo, knockdown of ESCRT0 confirmed that it is required to block binding of K63-ubiquitinated molecules to the proteasome. In addition, the Rad23 proteins, especially hHR23B, were found to bind specifically to K48-ubiquitinated proteins and to stimulate proteasome binding. The specificities of these proteins for K48- or K63-ubiquitin chains determine whether a ubiquitinated protein is targeted for proteasomal degradation or delivered instead to the endosomal-lysosomal pathway.


Asunto(s)
Endosomas/metabolismo , Lisosomas/metabolismo , Poliubiquitina/metabolismo , Complejo de la Endopetidasa Proteasomal/metabolismo , Proteínas Ubiquitinadas/metabolismo , Animales , Complejos de Clasificación Endosomal Requeridos para el Transporte/genética , Complejos de Clasificación Endosomal Requeridos para el Transporte/metabolismo , Endosomas/genética , Lisosomas/genética , Poliubiquitina/genética , Complejo de la Endopetidasa Proteasomal/genética , Conejos , Ratas , Proteínas Ubiquitinadas/genética
12.
Cell Mol Life Sci ; 73(18): 3497-506, 2016 09.
Artículo en Inglés | MEDLINE | ID: mdl-27137187

RESUMEN

The ability of ubiquitin to form up to eight different polyubiquitin chain linkages generates complexity within the ubiquitin proteasome system, and accounts for the diverse roles of ubiquitination within the cell. Understanding how each type of ubiquitin linkage is correctly interpreted by ubiquitin binding proteins provides important insights into the link between chain recognition and cellular fate. A major function of ubiquitination is to signal degradation of intracellular proteins by the 26S proteasome. Lysine-48 (K48) linked polyubiquitin chains are well established as the canonical signal for proteasomal degradation, but recent studies show a role for other ubiquitin linked chains in facilitating degradation by the 26S proteasome. Here, we review how different types of polyubiquitin linkage bind to ubiquitin receptors on the 26S proteasome, how they signal degradation and discuss the implications of ubiquitin chain linkage in regulating protein breakdown by the proteasome.


Asunto(s)
Complejo de la Endopetidasa Proteasomal/metabolismo , Proteínas Ubiquitinadas/metabolismo , Humanos , Poliubiquitina/metabolismo , Complejo de la Endopetidasa Proteasomal/química , Unión Proteica , Ubiquitina/metabolismo , Proteínas Ubiquitinadas/química
13.
Proc Natl Acad Sci U S A ; 111(31): 11425-30, 2014 Aug 05.
Artículo en Inglés | MEDLINE | ID: mdl-25030448

RESUMEN

The US11 gene product of human cytomegalovirus promotes viral immune evasion by hijacking the endoplasmic reticulum (ER)-associated degradation (ERAD) pathway. US11 initiates dislocation of newly translocated MHC I from the ER to the cytosol for proteasome-mediated degradation. Despite the critical role for ubiquitin in this degradation pathway, the responsible E3 ligase is unknown. In a forward genetic screen for host ERAD components hijacked by US11 in near-haploid KBM7 cells, we identified TMEM129, an uncharacterized polytopic membrane protein. TMEM129 is essential and rate-limiting for US11-mediated MHC-I degradation and acts as a novel ER resident E3 ubiquitin ligase. TMEM129 contains an unusual cysteine-only RING with intrinsic E3 ligase activity and is recruited to US11 via Derlin-1. Together with its E2 conjugase Ube2J2, TMEM129 is responsible for the ubiquitination, dislocation, and subsequent degradation of US11-associated MHC-I. US11 engages two degradation pathways: a Derlin-1/TMEM129-dependent pathway required for MHC-I degradation and a SEL1L/HRD1-dependent pathway required for "free" US11 degradation. Our data show that TMEM129 is a novel ERAD E3 ligase and the central component of a novel mammalian ERAD complex.


Asunto(s)
Degradación Asociada con el Retículo Endoplásmico , Herpesvirus Humano 1/fisiología , Antígenos de Histocompatibilidad Clase I/metabolismo , Proteínas de la Membrana/metabolismo , Proteolisis , Ubiquitina-Proteína Ligasas/metabolismo , Secuencia de Aminoácidos , Biocatálisis , Citosol/metabolismo , Regulación hacia Abajo , Retículo Endoplásmico/enzimología , Genes Virales , Pruebas Genéticas , Haploidia , Herpesvirus Humano 1/genética , Humanos , Datos de Secuencia Molecular , Unión Proteica , Estabilidad Proteica , Proteínas/metabolismo , Proteínas de Unión al ARN/genética , Proteínas de Unión al ARN/metabolismo , Enzimas Ubiquitina-Conjugadoras/metabolismo , Ubiquitina-Proteína Ligasas/química , Ubiquitinación , Proteínas Virales/genética , Proteínas Virales/metabolismo
15.
EMBO J ; 30(15): 3065-77, 2011 Jul 08.
Artículo en Inglés | MEDLINE | ID: mdl-21743439

RESUMEN

Prion diseases are associated with the conversion of cellular prion protein (PrP(C)) to toxic ß-sheet isoforms (PrP(Sc)), which are reported to inhibit the ubiquitin-proteasome system (UPS). Accordingly, UPS substrates accumulate in prion-infected mouse brains, suggesting impairment of the 26S proteasome. A direct interaction between its 20S core particle and PrP isoforms was demonstrated by immunoprecipitation. ß-PrP aggregates associated with the 20S particle, but did not impede binding of the PA26 complex, suggesting that the aggregates do not bind to its ends. Aggregated ß-PrP reduced the 20S proteasome's basal peptidase activity, and the enhanced activity induced by C-terminal peptides from the 19S ATPases or by the 19S regulator itself, including when stimulated by polyubiquitin conjugates. However, the 20S proteasome was not inhibited when the gate in the α-ring was open due to a truncation mutation or by association with PA26/PA28. These PrP aggregates inhibit by stabilising the closed conformation of the substrate entry channel. A similar inhibition of substrate entry into the proteasome may occur in other neurodegenerative diseases where misfolded ß-sheet-rich proteins accumulate.


Asunto(s)
Proteínas PrPSc/metabolismo , Inhibidores de Proteasoma , Mapeo de Interacción de Proteínas , Animales , Humanos , Inmunoprecipitación , Ratones , Ratones Transgénicos , Modelos Moleculares , Unión Proteica
16.
J Biol Chem ; 288(40): 29215-22, 2013 Oct 04.
Artículo en Inglés | MEDLINE | ID: mdl-23965995

RESUMEN

The degradation of ubiquitinated proteins by 26 S proteasomes requires ATP hydrolysis. To investigate if the six proteasomal ATPases function independently or in a cyclic manner, as proposed recently, we used yeast mutants that prevent ATP binding to Rpt3, Rpt5, or Rpt6. Although proteasomes contain six ATPase subunits, each of these single mutations caused a 66% reduction in basal ATP hydrolysis, and each blocked completely the 2-3-fold stimulation of ATPase activity induced by ubiquitinated substrates. Therefore, the ATPase subunits must function in a ordered manner, in which each is required for the stimulation of ATPase activity by substrates. Although ATP is essential for multiple steps in proteasome function, when the rate of ATP hydrolysis was reduced incrementally, the degradation of Ub5-DHFR (where Ub is ubiquitin and DHFR is dihydrofolate reductase) decreased exactly in parallel. This direct proportionality implies that a specific number of ATPs is consumed in degrading a ubiquitinated protein. When the ubiquitinated DHFR was more tightly folded (upon addition of the ligand folate), the rate of ATP hydrolysis was unchanged, but the time to degrade a Ub5-DHFR molecule (∼13 s) and the energy expenditure (50-80 ATPs/Ub5-DHFR) both increased by 2-fold. With a mutation in the ATPase C terminus that reduced gate opening into the 20 S proteasome, the energy costs and time required for conjugate degradation also increased. Thus, different ubiquitin conjugates activate similarly the ATPase subunit cycle that drives proteolysis, but polypeptide structure determines the time required for degradation and thus the energy cost.


Asunto(s)
Adenosina Trifosfato/metabolismo , Complejo de la Endopetidasa Proteasomal/metabolismo , Proteolisis , Proteínas Ubiquitinadas/metabolismo , Adenosina Trifosfatasas/metabolismo , Animales , Hidrólisis , Cinética , Ratones , Mutación/genética , Complejo de la Endopetidasa Proteasomal/genética , Unión Proteica , Pliegue de Proteína , Subunidades de Proteína/genética , Saccharomyces cerevisiae/metabolismo , Especificidad por Sustrato , Termodinámica , Factores de Tiempo
17.
Cell Rep ; 43(7): 114471, 2024 Jul 23.
Artículo en Inglés | MEDLINE | ID: mdl-38996069

RESUMEN

Low-oxygen conditions (hypoxia) have been associated primarily with cell-cycle arrest in dividing cells. Macrophages are typically quiescent in G0 but can proliferate in response to tissue signals. Here we show that hypoxia (1% oxygen tension) results in reversible entry into the cell cycle in macrophages. Cell cycle progression is largely limited to G0-G1/S phase transition with little progression to G2/M. This cell cycle transitioning is triggered by an HIF2α-directed transcriptional program. The response is accompanied by increased expression of cell-cycle-associated proteins, including CDK1, which is known to phosphorylate SAMHD1 at T592 and thereby regulate antiviral activity. Prolyl hydroxylase (PHD) inhibitors are able to recapitulate HIF2α-dependent cell cycle entry in macrophages. Finally, tumor-associated macrophages (TAMs) in lung cancers exhibit transcriptomic profiles representing responses to low oxygen and cell cycle progression at the single-cell level. These findings have implications for inflammation and tumor progression/metastasis where low-oxygen environments are common.


Asunto(s)
Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico , Ciclo Celular , Hipoxia de la Célula , Macrófagos , Macrófagos/metabolismo , Animales , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Humanos , Ratones , Ratones Endogámicos C57BL , Macrófagos Asociados a Tumores/metabolismo
18.
Cancer Metab ; 12(1): 13, 2024 May 03.
Artículo en Inglés | MEDLINE | ID: mdl-38702787

RESUMEN

BACKGROUND: Hypoxia is a common feature of many solid tumors and causes radiotherapy and immunotherapy resistance. Pharmacological inhibition of oxidative phosphorylation (OXPHOS) has emerged as a therapeutic strategy to reduce hypoxia. However, the OXPHOS inhibitors tested in clinical trials caused only moderate responses in hypoxia alleviation or trials were terminated due to dose-limiting toxicities. To improve the therapeutic benefit, FDA approved OXPHOS inhibitors (e.g. atovaquone) were conjugated to triphenylphosphonium (TPP+) to preferentially target cancer cell's mitochondria. In this study, we evaluated the hypoxia reducing effects of several mitochondria-targeted OXPHOS inhibitors and compared them to non-mitochondria-targeted OXPHOS inhibitors using newly developed spheroid models for diffusion-limited hypoxia. METHODS: B16OVA murine melanoma cells and MC38 murine colon cancer cells expressing a HIF-Responsive Element (HRE)-induced Green Fluorescent Protein (GFP) with an oxygen-dependent degradation domain (HRE-eGFP-ODD) were generated to assess diffusion-limited hypoxia dynamics in spheroids. Spheroids were treated with IACS-010759, atovaquone, metformin, tamoxifen or with mitochondria-targeted atovaquone (Mito-ATO), PEGylated mitochondria-targeted atovaquone (Mito-PEG-ATO) or mitochondria-targeted tamoxifen (MitoTam). Hypoxia dynamics were followed and quantified over time using the IncuCyte Zoom Live Cell-Imaging system. RESULTS: Hypoxic cores developed in B16OVA.HRE and MC38.HRE spheroids within 24 h hours after seeding. Treatment with IACS-010759, metformin, atovaquone, Mito-PEG-ATO and MitoTam showed a dose-dependent reduction of hypoxia in both B16OVA.HRE and MC38.HRE spheroids. Mito-ATO only alleviated hypoxia in MC38.HRE spheroids while tamoxifen was not able to reduce hypoxia in any of the spheroid models. The mitochondria-targeted OXPHOS inhibitors demonstrated stronger anti-hypoxic effects compared to the non-mito-targeted OXPHOS inhibitors. CONCLUSIONS: We successfully developed a high-throughput spheroid model in which hypoxia dynamics can be quantified over time. Using this model, we showed that the mitochondria-targeted OXPHOS inhibitors Mito-ATO, Mito-PEG-ATO and MitoTam reduce hypoxia in tumor cells in a dose-dependent manner, potentially sensitizing hypoxic tumor cells for radiotherapy.

19.
bioRxiv ; 2024 Sep 06.
Artículo en Inglés | MEDLINE | ID: mdl-39282259

RESUMEN

Clear cell renal cell carcinoma (ccRCC) represents the most common form of kidney cancer and is typified by biallelic inactivation of the von Hippel-Lindau (VHL) tumour suppressor gene. Here, we undertake genome-wide CRISPR/Cas9 screening to reveal synthetic lethal interactors of VHL, and uncover that loss of Core Binding Factor ß (CBF-ß) causes cell death in VHL-null ccRCC cell lines and impairs tumour establishment and growth in vivo. This synthetic relationship is independent of the elevated activity of hypoxia inducible factors (HIFs) in VHL-null cells, but does involve the RUNX transcription factors that are known binding partners of CBF-ß. Mechanistically, CBF-ß loss leads to upregulation of type I interferon signalling, and we uncover a direct inhibitory role for CBF-ß at the STING locus controlling Interferon Stimulated Gene expression. Targeting CBF-ß in kidney cancer both selectively induces tumour cell lethality and promotes activation of type I interferon signalling.

20.
Heliyon ; 9(3): e14383, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36938474

RESUMEN

Cigarette smoking has many serious negative health consequences. The relationship between smoking and SARS-CoV-2 infection is controversial, specifically whether smokers are at increased risk of infection. We investigated the impact of cigarette smoke on ACE2 isoform expression and SARS-CoV-2 infection in differentiated primary human bronchial epithelial cells at the air-liquid-interface (ALI). We assessed the expression of ACE2 in response to CSE and therapeutics reported to modulate ACE2. We exposed ALI cultures to cigarette smoke extract (CSE) and then infected them with SARS-CoV-2. We measured cellular infection using flow cytometry and whole-transwell immunofluorescence. We found that CSE increased expression of full-length ACE2 (flACE2) but did not alter the expression of a Type I-interferon sensitive truncated isoform (dACE2) that lacks the capacity to bind SARS-CoV-2. CSE did not have a significant impact on key mediators of the innate immune response. Importantly, we show that, despite the increase in flACE2, CSE did not alter airway cell infection after CSE exposure. We found that nicotine does not significantly alter flACE2 expression but that NRF2 agonists do lead to an increase in flACE2 expression. This increase was not associated with an increase in SARS-CoV-2 infection. Our results are consistent with the epidemiological data suggesting that current smokers do not have an excess of SARS-CoV-2 infection. but that those with chronic respiratory or cardiovascular disease are more vulnerable to severe COVID-19. They suggest that, in differentiated conducting airway cells, flACE2 expression levels may not limit airway SARS-CoV-2 infection.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA