Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
1.
Eur J Neurosci ; 59(7): 1743-1752, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38238909

RESUMEN

Perirhinal cortex is a brain area that has been considered crucial for the object recognition memory (ORM). However, with the use of an ORM enhancer named RGS14414 as gain-in-function tool, we show here that frontal association cortex and not the Perirhinal cortex is essential for the ORM of objects with complex features that consisted of detailed drawing on the object surface (complex ORM). An expression of RGS14414, in rat brain frontal association cortex, induced the formation of long-term complex ORM, whereas the expression of the same memory enhancer in Perirhinal cortex failed to produce this effect. Instead, RGS14414 expression in Perirhinal cortex caused the formation of ORM of objects with simple features that consisted of the shape of object (simple ORM). Further, a selective elimination of frontal association cortex neurons by treatment with an immunotoxin Ox7-SAP completely abrogated the formation of complex ORM. Thus, our results suggest that frontal association cortex plays a key role in processing of a high-order recognition memory information in brain.


Asunto(s)
Reconocimiento en Psicología , Percepción Visual , Ratas , Animales , Reconocimiento en Psicología/fisiología , Encéfalo , Memoria a Largo Plazo
2.
Anim Cogn ; 26(4): 1131-1140, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-36877418

RESUMEN

Kleefstra syndrome in humans is characterized by a general delay in development, intellectual disability and autistic features. The mouse model of this disease (Ehmt1±) expresses anxiety, autistic-like traits, and aberrant social interactions with non-cagemates. To investigate how Ehmt1± mice behave with unfamiliar conspecifics, we allowed adult, male animals to freely interact for 10 min in a neutral, novel environment within a host-visitor setting. In trials where the Ehmt1± mice were hosts, there were defensive and offensive behaviors. Our key finding was that Ehmt1± mice displayed defensive postures, attacking and biting; in contrast, wild-type (WT) interacting with other WT did not enact such behaviors. Further, if there was a fight between an Ehmt1± and a WT mouse, the Ehmt1± animal was the most aggressive and always initiated these behaviors.


Asunto(s)
Anomalías Craneofaciales , Cardiopatías Congénitas , Discapacidad Intelectual , Humanos , Masculino , Animales , Ratones , Discapacidad Intelectual/genética , Discapacidad Intelectual/veterinaria , Anomalías Craneofaciales/genética , Anomalías Craneofaciales/veterinaria , Cardiopatías Congénitas/genética , Cardiopatías Congénitas/veterinaria , Deleción Cromosómica
3.
Cereb Cortex ; 32(9): 1894-1910, 2022 04 20.
Artículo en Inglés | MEDLINE | ID: mdl-34519346

RESUMEN

The remedy of memory deficits has been inadequate, as all potential candidates studied thus far have shown limited to no effects and a search for an effective strategy is ongoing. Here, we show that an expression of RGS14414 in rat perirhinal cortex (PRh) produced long-lasting object recognition memory (ORM) enhancement and that this effect was mediated through the upregulation of 14-3-3ζ, which caused a boost in BDNF protein levels and increase in pyramidal neuron dendritic arborization and dendritic spine number. A knockdown of the 14-3-3ζ gene in rat or the deletion of the BDNF gene in mice caused complete loss in ORM enhancement and increase in BDNF protein levels and neuronal plasticity, indicating that 14-3-3ζ-BDNF pathway-mediated structural plasticity is an essential step in RGS14414-induced memory enhancement. We further observed that RGS14414 treatment was able to prevent deficits in recognition, spatial, and temporal memory, which are types of memory that are particularly affected in patients with memory dysfunctions, in rodent models of aging and Alzheimer's disease. These results suggest that 14-3-3ζ-BDNF pathway might play an important role in the maintenance of the synaptic structures in PRh that support memory functions and that RGS14414-mediated activation of this pathway could serve as a remedy to treat memory deficits.


Asunto(s)
Corteza Perirrinal , Proteínas 14-3-3/genética , Proteínas 14-3-3/metabolismo , Proteínas 14-3-3/farmacología , Animales , Factor Neurotrófico Derivado del Encéfalo/metabolismo , Hipocampo/metabolismo , Humanos , Trastornos de la Memoria/metabolismo , Trastornos de la Memoria/prevención & control , Ratones , Plasticidad Neuronal/fisiología , Ratas , Roedores/metabolismo
4.
PLoS Biol ; 17(6): e3000322, 2019 06.
Artículo en Inglés | MEDLINE | ID: mdl-31206519

RESUMEN

Declarative memory encompasses representations of specific events as well as knowledge extracted by accumulation over multiple episodes. To investigate how these different sorts of memories are created, we developed a new behavioral task in rodents. The task consists of 3 distinct conditions (stable, overlapping, and random). Rodents are exposed to multiple sample trials, in which they explore objects in specific spatial arrangements, with object identity changing from trial to trial. In the stable condition, the locations are constant during all sample trials even though the objects themselves change; in the test trial, 1 object's location is changed. In the random condition, object locations are presented in the sample phase without a specific spatial pattern. In the overlapping condition, 1 location is shared (overlapping) between all trials, while the other location changes during sample trials. We show that in the overlapping condition, instead of only remembering the last sample trial, rodents form a cumulative memory of the sample trials. Here, we could show that both mice and rats can accumulate information across multiple trials and express a long-term abstracted memory.


Asunto(s)
Memoria a Largo Plazo/fisiología , Memoria/fisiología , Memoria Espacial/fisiología , Animales , Conducta Animal/fisiología , Masculino , Ratones , Ratones Endogámicos C57BL , Ratas , Ratas Wistar , Reconocimiento en Psicología/fisiología , Percepción Espacial/fisiología
5.
J Neurosci Res ; 99(9): 2305-2317, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-34115908

RESUMEN

The consolidation of new memories into long-lasting memories is multistage process characterized by distinct temporal dynamics. However, our understanding on the initial stage of transformation of labile memory of recent experience into stable memory remains elusive. Here, with the use of rats and mice overexpressing a memory enhancer called regulator of G protein signaling 14 of 414 amino acids (RGS14414 ) as a tool, we show that the expression of RGS14414 in male rats' perirhinal cortex (PRh), which is a brain area crucial for object recognition memory (ORM), enhanced the ORM to the extent that it caused the conversion of labile short-term ORM (ST-ORM) expected to last for 40 min into stable long-term ORM (LT-ORM) traceable after a delay of 24 hr, and that the temporal window of 40 to 60 min after object exposure not only was key for this conversion but also was the time frame when a surge in 14-3-3ζ protein was observed. A knockdown of 14-3-3ζ gene abrogated both the increase in 14-3-3ζ protein and the formation of LT-ORM. Furthermore, this 14-3-3ζ upregulation increased brain-derived growth factor (BDNF) levels in the time frame of 60 min and 24 hr and 14-3-3ζ knockdown decreased the BDNF levels, and a deletion of BDNF gene produced loss in mice ability to form LT-ORM. Thus, within 60 min of object exposure, 14-3-3ζ facilitated the conversion of labile ORM into stable ORM, whereas beyond the 60 min, it mediated the consolidation of the stable memory into long-lasting ORM by regulating BDNF signaling.


Asunto(s)
Proteínas 14-3-3/biosíntesis , Memoria a Largo Plazo/fisiología , Memoria a Corto Plazo/fisiología , Reconocimiento en Psicología/fisiología , Proteínas 14-3-3/genética , Animales , Factor Neurotrófico Derivado del Encéfalo/deficiencia , Factor Neurotrófico Derivado del Encéfalo/genética , Femenino , Humanos , Masculino , Ratones , Ratones Noqueados , Ratas , Ratas Wistar , Percepción Visual/fisiología
6.
Neurobiol Learn Mem ; 173: 107265, 2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-32531423

RESUMEN

Kleefstra syndrome is a disorder caused by a mutation in the EHMT1 gene characterized in humans by general developmental delay, mild to severe intellectual disability and autism. Here, we characterized cumulative memory in the Ehmt1+/- mouse model using the Object Space Task. We combined conventional behavioral analysis with automated analysis by deep-learning networks, a session-based computational learning model, and a trial-based classifier. Ehmt1+/- mice showed more anxiety-like features and generally explored objects less, but the difference decreased over time. Interestingly, when analyzing memory-specific exploration, Ehmt1+/- show increased expression of cumulative memory, but a deficit in a more simple, control memory condition. Using our automatic classifier to differentiate between genotypes, we found that cumulative memory features are better suited for classification than general exploration differences. Thus, detailed behavioral classification with the Object Space Task produced a more detailed behavioral phenotype of the Ehmt1+/- mouse model.


Asunto(s)
Conducta Animal/fisiología , Anomalías Craneofaciales/fisiopatología , Conducta Exploratoria/fisiología , Cardiopatías Congénitas/fisiopatología , Discapacidad Intelectual/fisiopatología , Memoria/fisiología , Animales , Deleción Cromosómica , Cromosomas Humanos Par 9/genética , Anomalías Craneofaciales/genética , Aprendizaje Profundo , Modelos Animales de Enfermedad , Cardiopatías Congénitas/genética , N-Metiltransferasa de Histona-Lisina/genética , Discapacidad Intelectual/genética , Masculino , Ratones
7.
FASEB J ; 33(11): 11804-11820, 2019 11.
Artículo en Inglés | MEDLINE | ID: mdl-31365833

RESUMEN

Memory deficits affect a large proportion of the human population and are associated with aging and many neurologic, neurodegenerative, and psychiatric diseases. Treatment of this mental disorder has been disappointing because all potential candidates studied thus far have failed to produce consistent effects across various types of memory and have shown limited to no effects on memory deficits. Here, we show that the promotion of neuronal arborization through the expression of the regulator of G-protein signaling 14 of 414 amino acids (RGS14414) not only induced robust enhancement of multiple types of memory but was also sufficient for the recovery of recognition, spatial, and temporal memory, which are kinds of episodic memory that are primarily affected in patients or individuals with memory dysfunction. We observed that a surge in neuronal arborization was mediated by up-regulation of brain-derived neurotrophic factor (BDNF) signaling and that the deletion of BDNF abrogated both neuronal arborization activation and memory enhancement. The activation of BDNF-dependent neuronal arborization generated almost 2-fold increases in synapse numbers in dendrites of pyramidal neurons and in neurites of nonpyramidal neurons. This increase in synaptic connections might have evoked reorganization within neuronal circuits and eventually supported an increase in the activity of such circuits. Thus, in addition to showing the potential of RGS14414 for rescuing memory deficits, our results suggest that a boost in circuit activity could facilitate memory enhancement and the reversal of memory deficits.-Masmudi-Martín, M., Navarro-Lobato, I., López-Aranda, M. F., Delgado, G., Martín-Montañez, E., Quiros-Ortega, M. E., Carretero-Rey, M., Narváez, L., Garcia-Garrido, M. F., Posadas, S., López-Téllez, J. F., Blanco, E., Jiménez-Recuerda, I., Granados-Durán, P., Paez-Rueda, J., López, J. C., Khan, Z. U. RGS14414 treatment induces memory enhancement and rescues episodic memory deficits.


Asunto(s)
Encéfalo/efectos de los fármacos , Trastornos de la Memoria/tratamiento farmacológico , Plasticidad Neuronal/efectos de los fármacos , Fragmentos de Péptidos/farmacología , Proteínas RGS/farmacología , Animales , Encéfalo/fisiopatología , Hipocampo/efectos de los fármacos , Hipocampo/metabolismo , Trastornos de la Memoria/metabolismo , Memoria Episódica , Ratones , Neuritas/metabolismo , Plasticidad Neuronal/fisiología , Neuronas/metabolismo , Ratas , Transducción de Señal/efectos de los fármacos , Sinapsis/efectos de los fármacos , Sinapsis/metabolismo
8.
Neurobiol Learn Mem ; 160: 3-10, 2019 04.
Artículo en Inglés | MEDLINE | ID: mdl-29544727

RESUMEN

Alternations of up and down can be seen across many different levels during sleep. Neural firing-rates, synaptic markers, molecular pathways, and gene expression all show differential up and down regulation across brain areas and sleep stages. And also the hallmarks of sleep - sleep stage specific oscillations - are characterized themselves by up and down as seen within the slow oscillation or theta cycles. In this review, we summarize the up and down of sleep covering molecules to electrophysiology and present different theories how this up and down could be regulated by the up and down of sleep oscillations. Further, we propose a tentative theory how this differential up and down could contribute to various outcomes of sleep related memory consolidation: enhancement of hippocampal representations of very novel memories and cortical consolidation of memories congruent with previous knowledge-networks.


Asunto(s)
Ondas Encefálicas/fisiología , Expresión Génica/fisiología , Consolidación de la Memoria/fisiología , Transducción de Señal/fisiología , Fases del Sueño/fisiología , Animales , Humanos
9.
Neural Regen Res ; 19(8): 1835-1841, 2024 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-38103251

RESUMEN

JOURNAL/nrgr/04.03/01300535-202408000-00038/figure1/v/2023-12-16T180322Z/r/image-tiff Memory deficit, which is often associated with aging and many psychiatric, neurological, and neurodegenerative diseases, has been a challenging issue for treatment. Up till now, all potential drug candidates have failed to produce satisfactory effects. Therefore, in the search for a solution, we found that a treatment with the gene corresponding to the RGS14414 protein in visual area V2, a brain area connected with brain circuits of the ventral stream and the medial temporal lobe, which is crucial for object recognition memory (ORM), can induce enhancement of ORM. In this study, we demonstrated that the same treatment with RGS14414 in visual area V2, which is relatively unaffected in neurodegenerative diseases such as Alzheimer's disease, produced long-lasting enhancement of ORM in young animals and prevent ORM deficits in rodent models of aging and Alzheimer's disease. Furthermore, we found that the prevention of memory deficits was mediated through the upregulation of neuronal arborization and spine density, as well as an increase in brain-derived neurotrophic factor (BDNF). A knockdown of BDNF gene in RGS14414-treated aging rats and Alzheimer's disease model mice caused complete loss in the upregulation of neuronal structural plasticity and in the prevention of ORM deficits. These findings suggest that BDNF-mediated neuronal structural plasticity in area V2 is crucial in the prevention of memory deficits in RGS14414-treated rodent models of aging and Alzheimer's disease. Therefore, our findings of RGS14414 gene-mediated activation of neuronal circuits in visual area V2 have therapeutic relevance in the treatment of memory deficits.

10.
CNS Neurosci Ther ; 30(4): e14727, 2024 04.
Artículo en Inglés | MEDLINE | ID: mdl-38644593

RESUMEN

AIMS: Ventral pathway circuits are constituted by the interconnected brain areas that are distributed throughout the brain. These brain circuits are primarily involved in processing of object related information in brain. However, their role in object recognition memory (ORM) enhancement remains unknown. Here, we have studied on the implication of these circuits in ORM enhancement and in reversal of ORM deficit in aging. METHODS: The brain areas interconnected to ventral pathway circuits in rat brain were activated by an expression of a protein called regulator of G-protein signaling 14 of 414 amino acids (RGS14414). RGS14414 is an ORM enhancer and therefore used here as a gain-in-function tool. ORM test and immunohistochemistry, lesions, neuronal arborization, and knockdown studies were performed to uncover the novel function of ventral pathway circuits. RESULTS: An activation of each of the brain areas interconnected to ventral pathway circuits individually induced enhancement in ORM; however, same treatment in brain areas not interconnected to ventral pathway circuits produced no effect. Further study in perirhinal cortex (PRh), area V2 of visual cortex and frontal cortex (FrC), which are brain areas that have been shown to be involved in ORM and are interconnected to ventral pathway circuits, revealed that ORM enhancement seen after the activation of any one of the three brain areas was unaffected by the lesions in other two brain areas either individually in each area or even concurrently in both areas. This ORM enhancement in all three brain areas was associated to increase in structural plasticity of pyramidal neurons where more than 2-fold higher dendritic spines were observed. Additionally, we found that an activation of either PRh, area V2, or FrC not only was adequate but also was sufficient for the reversal of ORM deficit in aging rats, and the blockade of RGS14414 activity led to loss in increase in dendritic spine density and failure in reversal of ORM deficit. CONCLUSIONS: These results suggest that brain areas interconnected to ventral pathway circuits facilitate ORM enhancement by an increase in synaptic connectivity between the local brain area circuits and the passing by ventral pathway circuits and an upregulation in activity of ventral pathway circuits. In addition, the finding of the reversal of ORM deficit through activation of an interconnected brain area might serve as a platform for developing not only therapy against memory deficits but also strategies for other brain diseases in which neuronal circuits are compromised.


Asunto(s)
Encéfalo , Trastornos de la Memoria , Proteínas RGS , Reconocimiento en Psicología , Animales , Reconocimiento en Psicología/fisiología , Masculino , Ratas , Proteínas RGS/metabolismo , Proteínas RGS/genética , Vías Nerviosas , Envejecimiento/fisiología
11.
iScience ; 26(11): 108327, 2023 Nov 17.
Artículo en Inglés | MEDLINE | ID: mdl-38026151

RESUMEN

Cannabidiol (CBD) is on the rise as over-the-counter medication to treat sleep disturbances, anxiety, pain, and epilepsy due to its action on the excitatory/inhibitory balance in the brain. However, it remains unclear if CBD also leads to adverse effects on memory via changes of sleep macro- and microarchitecture. To investigate the effect of CBD on sleep and memory consolidation, we performed two experiments using the object space task testing for both simple and cumulative memory in rats. We show that oral CBD administration extended the sleep period but changed the properties of rest and non-REM sleep oscillations (delta, spindle, ripples). Specifically, CBD also led to less long (>100 ms) ripples and, consequently, worse cumulative memory consolidation. In contrast, simple memories were not affected. In sum, we can confirm the beneficial effect of CBD on sleep; however, this comes with changes in oscillations that negatively impact memory consolidation.

12.
Elife ; 122023 05 30.
Artículo en Inglés | MEDLINE | ID: mdl-37252780

RESUMEN

Our brain is continuously challenged by daily experiences. Thus, how to avoid systematic erasing of previously encoded memories? While it has been proposed that a dual-learning system with 'slow' learning in the cortex and 'fast' learning in the hippocampus could protect previous knowledge from interference, this has never been observed in the living organism. Here, we report that increasing plasticity via the viral-induced overexpression of RGS14414 in the prelimbic cortex leads to better one-trial memory, but that this comes at the price of increased interference in semantic-like memory. Indeed, electrophysiological recordings showed that this manipulation also resulted in shorter NonREM-sleep bouts, smaller delta-waves and decreased neuronal firing rates. In contrast, hippocampal-cortical interactions in form of theta coherence during wake and REM-sleep as well as oscillatory coupling during NonREM-sleep were enhanced. Thus, we provide the first experimental evidence for the long-standing and unproven fundamental idea that high thresholds for plasticity in the cortex protect preexisting memories and modulating these thresholds affects both memory encoding and consolidation mechanisms.


Asunto(s)
Hipocampo , Memoria , Corteza Cerebral/fisiología , Hipocampo/fisiología , Memoria/fisiología , Sueño/fisiología , Sueño REM , Humanos
13.
J Neurosci ; 30(8): 3067-71, 2010 Feb 24.
Artículo en Inglés | MEDLINE | ID: mdl-20181603

RESUMEN

Working memory (WM) is a process of actively maintaining information in the mind for a relatively short period of time, and prefrontal cortex (PFC) has been thought to play a central role in its function. However, our understanding of underlying molecular events that translate into WM behavior remains elusive. To shed light on this issue, we have used three distinct nonhuman primate models of WM where each model represents three WM conditions: normal control, WM-deficient, and recuperated to normal from WM deficiency. Based on the hypothesis that there is a common molecular substrate for the coding of WM behavior, we have studied the relationship of these animals' performance on a WM task with their PFC levels of molecular components associated with Gq-phospholipase C and cAMP pathways, with the idea of identifying the footprints of such biomolecules. We observed that in all of the primate models WM deficiency was strongly related to the reduced concentration of IP(3) in PFC, whereas recuperation of WM-deficient animals to normal condition was associated with the normalization in IP(3) level. However, this correlation was absent or weak for cAMP, active protein kinase A, dopamine D(1) receptor, and Gq protein. In addition, WM deficiency related not only to pharmacological conditions but also to aging. Thus, it is suggested that optimal IP(3) activity is essential for normal WM function and the maintenance of intracellular IP(3)-mediated Ca(2+) level in PFC may serve as biochemical substrate for the expression of WM behavior.


Asunto(s)
Inositol 1,4,5-Trifosfato/metabolismo , Trastornos de la Memoria/metabolismo , Trastornos de la Memoria/fisiopatología , Memoria a Corto Plazo/fisiología , Corteza Prefrontal/metabolismo , Anfetamina/toxicidad , Animales , Antipsicóticos/toxicidad , Calcio/metabolismo , Señalización del Calcio/efectos de los fármacos , Señalización del Calcio/fisiología , Estimulantes del Sistema Nervioso Central/toxicidad , AMP Cíclico/metabolismo , Proteínas Quinasas Dependientes de AMP Cíclico/metabolismo , Modelos Animales de Enfermedad , Subunidades alfa de la Proteína de Unión al GTP Gq-G11/metabolismo , Haloperidol/toxicidad , Macaca mulatta , Trastornos de la Memoria/inducido químicamente , Memoria a Corto Plazo/efectos de los fármacos , Fosfolipasas/metabolismo , Corteza Prefrontal/anatomía & histología , Corteza Prefrontal/efectos de los fármacos , Receptores de Dopamina D1/metabolismo , Recuperación de la Función/efectos de los fármacos , Recuperación de la Función/fisiología
14.
eNeuro ; 8(4)2021.
Artículo en Inglés | MEDLINE | ID: mdl-34135006

RESUMEN

New information is rarely learned in isolation; instead, most of what we experience can be incorporated into or uses previous knowledge networks in some form. Previous knowledge in form of a cognitive map can facilitate knowledge acquisition and will influence how we learn new spatial information. Here, we developed a new spatial navigation task where food locations are learned in a large, gangway maze to test how mice learn a large spatial map over a longer time period-the HexMaze. Analyzing performance across sessions as well as on specific trials, we can show simple memory effects as well as multiple effects of previous knowledge of the map accelerating both online learning and performance increases over offline periods when incorporating new information. We could identify the following three main phases: (1) learning the initial goal location; (2) faster learning after 2 weeks when learning a new goal location; and then (3) the ability to express one-session learning, leading to long-term memory effect after 12 weeks. Importantly, we are the first to show that buildup of a spatial map is dependent on how much time passes, not how often the animal is trained.


Asunto(s)
Navegación Espacial , Animales , Aprendizaje por Laberinto , Ratones
15.
Trends Neurosci ; 43(7): 451-453, 2020 07.
Artículo en Inglés | MEDLINE | ID: mdl-32409016

RESUMEN

Memories are consolidated from hippocampus to cortex, and recent evidence points to an anterior-posterior/ventral-dorsal gradient (in humans/rodents, respectively) across the brain that may be specialized for different types of memories. In a recent article, Cowan et al. provided evidence for this functional difference and gradient, which is also associated with sleep spindles.


Asunto(s)
Memoria , Corteza Prefrontal , Encéfalo , Hipocampo , Humanos , Sueño
16.
Neuroscience ; 448: 287-298, 2020 11 10.
Artículo en Inglés | MEDLINE | ID: mdl-32905841

RESUMEN

The integrity of the perirhinal cortex (PRh) is essential for object recognition memory (ORM) function, and damage to this brain area in animals and humans induces irreversible ORM deficits. Here, we show that activation of area V2, a brain area interconnected with brain circuits of ventral stream and medial temporal lobe that sustain ORM, by expression of regulator of G-protein signaling 14 of 414 amino acids (RGS14414) restored ORM in memory-deficient PRh-lesioned rats and nonhuman primates. Furthermore, this treatment was sufficient for full recovery of ORM in rodent models of aging and Alzheimer's disease, conditions thought to affect multiple brain areas. Thus, RGS14414-mediated activation of area V2 has therapeutic relevance in the recovery of recognition memory, a type of memory that is primarily affected in patients or individuals with symptoms of memory dysfunction. These findings suggest that area V2 modulates the processing of memory-related information through activation of interconnected brain circuits formed by the participation of distinct brain areas.


Asunto(s)
Enfermedad de Alzheimer , Corteza Perirrinal , Proteínas RGS , Envejecimiento , Animales , Humanos , Trastornos de la Memoria , Primates , Ratas , Roedores
17.
Int J Dev Neurosci ; 26(6): 611-24, 2008 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-18472243

RESUMEN

The function of sGalphai2 protein in central nervous system is not well understood. Therefore to explore the possible role of this protein in postnatal brain development, we have analyzed the protein expression pattern of brain obtained from rats of postnatal day 0 (P0) to P90 by dot-blots and immunocytochemistry techniques. In dot-blots, both nuclear and membrane fractions showed a gradual decrease from P0 to P60. Highest protein level was observed at the age of P0. There was also a trend of decline in the sGalphai2 protein from P0 to P90 in brain sections stained by immunocytochemistry method. At P0, the protein labeling was highest in cerebral cortex, hippocampus, cerebellum and mitral cell layer. In cerebral cortex, a drop in the immunolabeling of sGalphai2 protein was observed at P3, which was significantly increased at the age of P5. However, in striatum and olfactory tubercle, it was maintained through P0-P10 and P0-P5, respectively. Thalamus was one of the areas where labeling was not as strong as cortex, hippocampus or striatum. In contrary to other areas, immunostaining of sGalphai2 in corpus-callosum and lacunosum-molecular was not seen at P0 and appeared in advanced postnatal ages. A detectable level of sGalphai2 protein was observed at P5 in carpus-callosum and at P20 in lacunosum-molecular. A high level of sGalphai2 protein in the period when cellular layer organization and synaptic innervations, synaptic connections and maturation take place, suggests for a potential role of this protein in the early postnatal brain development.


Asunto(s)
Encéfalo/crecimiento & desarrollo , Encéfalo/metabolismo , Subunidad alfa de la Proteína de Unión al GTP Gi2/metabolismo , Regulación del Desarrollo de la Expresión Génica/fisiología , Factores de Edad , Animales , Animales Recién Nacidos , Encéfalo/anatomía & histología , Femenino , Masculino , Neuronas/citología , Neuronas/metabolismo , Embarazo , Ratas , Ratas Wistar
18.
Neurosci Lett ; 439(1): 37-41, 2008 Jul 04.
Artículo en Inglés | MEDLINE | ID: mdl-18502580

RESUMEN

Treatment with dopamine and other dopamine D2 receptor agonists has been shown to induce cell death through activation of caspase-3 pathway. However, initial step that leads to the activation of caspase-3 in D2 receptor-mediated apoptotic pathway remains unclear. Recently, it was shown that a spliced variant of Galphai2 protein (sGalphai2) forms intracellular complex with D2 receptors by protein-protein interaction and that D2 drugs treatment causes the liberation of sGalphai2 protein from complex. Now, we show that the unbound form of sGalphai2 protein is able to activate caspase-3 pathway in baby hamster kidney (BHK) cells. Expression of sGalphai2 protein in BHK cells led to the production of active form of caspase-3 and activation of p38 mitogen-activated protein kinase (p38 MAPK) and extracellular regulated kinase 1/2 (ERK1/2). Co-expression of sGalphai2 with either D2 short (D2S) or D2 long (D2L) isoforms of dopamine D2 receptors blocked the activation of caspase-3 pathway. Thus, our results demonstrate that high level of unbound sGalphai2 protein can affect the cell survival and engagement of this protein with D2 receptors can block this process. It is suggested that this process may be a crucial step in the initiation of D2 receptor-mediated cellular apoptosis through this pathway.


Asunto(s)
Caspasa 3/metabolismo , Subunidad alfa de la Proteína de Unión al GTP Gi2/metabolismo , Regulación de la Expresión Génica/fisiología , Expresión Génica/fisiología , Transducción de Señal/fisiología , Análisis de Varianza , Animales , Apoptosis/efectos de los fármacos , Línea Celular Transformada , Supervivencia Celular/efectos de los fármacos , Cricetinae , Dopamina/farmacología , Activación Enzimática/efectos de los fármacos , Subunidad alfa de la Proteína de Unión al GTP Gi2/genética , Receptores de Dopamina D2/metabolismo , Transducción de Señal/genética , Transfección
20.
Prog Mol Biol Transl Sci ; 122: 1-29, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24484696

RESUMEN

Memory is central to our ability to perform daily life activities and correctly function in society. Improvements in public health and medical treatment for a variety of diseases have resulted in longer life spans; however, age-related memory impairments have been significant sources of morbidity. Loss in memory function is not only associated with aging population but is also a feature of neurodegenerative diseases such as Alzheimer's disease and other psychiatric and neurological disorders. Here, we focus on current understanding of the impact of normal aging on memory and what is known about its mechanisms, and further review pathological mechanisms behind the cause of dementia in Alzheimer's disease. Finally, we discuss schizophrenia and look into abnormalities in circuit function and neurotransmitter systems that contribute to memory impairment in this illness.


Asunto(s)
Envejecimiento/fisiología , Trastornos de la Memoria/fisiopatología , Enfermedades del Sistema Nervioso/etiología , Enfermedades del Sistema Nervioso/patología , Animales , Humanos , Trastornos de la Memoria/complicaciones
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA