Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 269
Filtrar
Más filtros

Bases de datos
Tipo del documento
Intervalo de año de publicación
1.
Phytopathology ; 114(3): 558-567, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-37811832

RESUMEN

Canopy management practices can be effective as part of the integrated management of grapevine diseases. This study aimed to determine whether training systems and plastic covers can contribute to prevent Asian grapevine leaf rust (AGLR) development. Additionally, the influence of crop season and inoculum availability on AGLR development was investigated. Six-season experiments were carried out to characterize 16 epidemics that developed from natural inoculum (NI) or artificial inoculum (AI) sources (NI + AI), conducted in different training systems and with or without the plastic cover. The Richards model was fitted to each AGLR disease progress curve to estimate and compare the onsets and intensities of epidemics using eight curve elements. Principal components analysis (PCA) identified the incidence progress rate, the area under the severity progress curve, final disease severity, time to disease onset, and time to reach the inflection point as the main descriptors for AGLR epidemics. The results showed that AGLR epidemic development was related mainly to differences in inoculum availability and climatic conditions throughout the seasons and to a lower extent to the training system and plastic cover. The earliest disease onset was observed in epidemics when the NI was supplemented with an AI source. Differences in AGRL intensity were correlated to accumulated precipitation, being less severe in autumn-winter than in the spring-summer season. The present findings provided a better understanding of the structure and the seasonal variation of AGLR in cultivar 'Niagara Rosada'. The strategies for reducing and/or delaying inoculum buildup among seasons are discussed.


Asunto(s)
Basidiomycota , Enfermedades de las Plantas , Estaciones del Año , Enfermedades de las Plantas/prevención & control
2.
Phytopathology ; 114(5): 869-884, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38557216

RESUMEN

An unprecedented plant health emergency in olives has been registered over the last decade in Italy, arguably more severe than what occurred repeatedly in grapes in the United States in the last 140 years. These emergencies are epidemics caused by a stealthy pathogen, the xylem-limited, insect-transmitted bacterium Xylella fastidiosa. Although these epidemics spurred research that answered many questions about the biology and management of this pathogen, many gaps in knowledge remain. For this review, we set out to represent both the U.S. and European perspectives on the most pressing challenges that need to be addressed. These are presented in 10 sections that we hope will stimulate discussion and interdisciplinary research. We reviewed intrinsic problems that arise from the fastidious growth of X. fastidiosa, the lack of specificity for insect transmission, and the economic and social importance of perennial mature woody plant hosts. Epidemiological models and predictions of pathogen establishment and disease expansion, vital for preparedness, are based on very limited data. Most of the current knowledge has been gathered from a few pathosystems, whereas several hundred remain to be studied, probably including those that will become the center of the next epidemic. Unfortunately, aspects of a particular pathosystem are not always transferable to others. We recommend diversification of research topics of both fundamental and applied nature addressing multiple pathosystems. Increasing preparedness through knowledge acquisition is the best strategy to anticipate and manage diseases caused by this pathogen, described as "the most dangerous plant bacterium known worldwide."


Asunto(s)
Insectos Vectores , Enfermedades de las Plantas , Xylella , Xilema , Xylella/fisiología , Xylella/patogenicidad , Enfermedades de las Plantas/microbiología , Enfermedades de las Plantas/prevención & control , Xilema/microbiología , Animales , Insectos Vectores/microbiología , Olea/microbiología , Insectos/microbiología , Estados Unidos , Vitis/microbiología
3.
Plant Dis ; 2024 Jul 07.
Artículo en Inglés | MEDLINE | ID: mdl-38973078

RESUMEN

Strains of the bacterial pathogen Xylella fastidiosa subspecies multiplex (Xfm) and pauca (Xfp) isolated from symptomatic almond and olive plants in Spain and Italy were used in this study. Due to the risk of host jump and considering the importance of southern highbush blueberry production in Spain, we tested a small set of these strains for their potential to infect and cause disease symptoms in blueberries under greenhouse experiments. Xfm IVIA5901 (isolated from almonds in Alicante, Spain) caused symptoms similar to those caused by Xfm AlmaEM3 (isolated from blueberries in Georgia, USA, and used as a reference strain capable of inducing severe symptoms in blueberry). Nevertheless, bacterial populations of Xfm IVIA5901 in planta were significantly lower than those of Xfm AlmaEm3. Xfm ESVL (isolated from almonds, Alicante, Spain) and Xfp XYL1961/18 (isolated from olives, Ibiza Island, Spain) caused limited symptoms, while Xfm XYL466/19 (isolated from wild olives, Mallorca Island, Spain) and Xfm XF3348 (isolated from almonds, Mallorca Island, Spain), and Xfp De Donno (isolated from olives, Puglia, Italy and representative of the devastating olive quick decline syndrome) did not cause symptoms nor colonize blueberries. This study suggests that certain strains already found in Europe could infect blueberry if conditions conducive for a host jump in this region are met, such as proximity of blueberries to other infected hosts and presence of insect vectors that feed on these crops. Surveys on the presence of X. fastidiosa in blueberries in Spain and other European countries are needed to anticipate possible issues.

4.
Phytopathology ; 113(6): 1128-1132, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-36441872

RESUMEN

Xylella fastidiosa is a vascular plant pathogenic bacterium native to the Americas that is causing significant epidemics and economic losses in olive and almonds in Europe, where it is a quarantine pathogen. Since its first detection in 2013 in Italy, mandatory surveys across Europe revealed the presence of the bacterium also in France, Spain, and Portugal. Combining Oxford Nanopore Technologies and Illumina sequencing data, we assembled high-quality complete genomes of seven X. fastidiosa subsp. fastidiosa strains isolated from different plants in Spain, the United States, and Mexico. Comparative genomic analyses discovered differences in plasmid content among strains, including plasmids that had been overlooked previously when using the Illumina sequencing platform alone. Interestingly, in strain CFBP8073, intercepted in France from plants imported from Mexico, three plasmids were identified, including two (plasmids pXF-P1.CFBP8073 and pXF-P2.CFBP8073) not previously described in X. fastidiosa and one (pXF5823.CFBP8073) almost identical to a plasmid described in a X. fastidiosa strain from citrus. Plasmids found in the Spanish strains here were similar to those described previously in other strains from the same subspecies and ST1 isolated in the Balearic Islands and the United States. The genome resources from this work will assist in further studies on the role of plasmids in the epidemiology, ecology, and evolution of this plant pathogen.


Asunto(s)
Enfermedades de las Plantas , Xylella , Enfermedades de las Plantas/microbiología , Plásmidos/genética , Europa (Continente) , Italia , Xylella/genética
5.
Proc Natl Acad Sci U S A ; 117(17): 9250-9259, 2020 04 28.
Artículo en Inglés | MEDLINE | ID: mdl-32284411

RESUMEN

Xylella fastidiosa is the causal agent of plant diseases that cause massive economic damage. In 2013, a strain of the bacterium was, for the first time, detected in the European territory (Italy), causing the Olive Quick Decline Syndrome. We simulate future spread of the disease based on climatic-suitability modeling and radial expansion of the invaded territory. An economic model is developed to compute impact based on discounted foregone profits and losses in investment. The model projects impact for Italy, Greece, and Spain, as these countries account for around 95% of the European olive oil production. Climatic suitability modeling indicates that, depending on the suitability threshold, 95.5 to 98.9%, 99.2 to 99.8%, and 84.6 to 99.1% of the national areas of production fall into suitable territory in Italy, Greece, and Spain, respectively. For Italy, across the considered rates of radial range expansion the potential economic impact over 50 y ranges from 1.9 billion to 5.2 billion Euros for the economic worst-case scenario, in which production ceases after orchards die off. If replanting with resistant varieties is feasible, the impact ranges from 0.6 billion to 1.6 billion Euros. Depending on whether replanting is feasible, between 0.5 billion and 1.3 billion Euros can be saved over the course of 50 y if disease spread is reduced from 5.18 to 1.1 km per year. The analysis stresses the necessity to strengthen the ongoing research on cultivar resistance traits and application of phytosanitary measures, including vector control and inoculum suppression, by removing host plants.


Asunto(s)
Olea/microbiología , Enfermedades de las Plantas/microbiología , Xylella/metabolismo , Grecia , Italia , Modelos Económicos , Modelos Teóricos , Olea/metabolismo , España , Xylella/patogenicidad
6.
Appl Environ Microbiol ; 86(3)2020 01 21.
Artículo en Inglés | MEDLINE | ID: mdl-31704683

RESUMEN

Pathogen introductions have led to numerous disease outbreaks in naive regions of the globe. The plant pathogen Xylella fastidiosa has been associated with various recent epidemics in Europe affecting agricultural crops, such as almond, grapevine, and olive, but also endemic species occurring in natural forest landscapes and ornamental plants. We compared whole-genome sequences of X. fastidiosa subspecies multiplex from America and strains associated with recent outbreaks in southern Europe to infer their likely origins and paths of introduction within and between the two continents. Phylogenetic analyses indicated multiple introductions of X. fastidiosa subspecies multiplex into Italy, Spain, and France, most of which emerged from a clade with limited genetic diversity with a likely origin in California, USA. The limited genetic diversity observed in X. fastidiosa subspecies multiplex strains originating from California is likely due to the clade itself being an introduction from X. fastidiosa subspecies multiplex populations in the southeastern United States, where this subspecies is most likely endemic. Despite the genetic diversity found in some areas in Europe, there was no clear evidence of recombination occurring among introduced X. fastidiosa strains in Europe. Sequence type taxonomy, based on multilocus sequence typing (MLST), was shown, at least in one case, to not lead to monophyletic clades of this pathogen; whole-genome sequence data were more informative in resolving the history of introductions than MLST data. Although additional data are necessary to carefully tease out the paths of these recent dispersal events, our results indicate that whole-genome sequence data should be considered when developing management strategies for X. fastidiosa outbreaks.IMPORTANCEXylella fastidiosa is an economically important plant-pathogenic bacterium that has emerged as a pathogen of global importance associated with a devastating epidemic in olive trees in Italy associated with X. fastidiosa subspecies pauca and other outbreaks in Europe, such as X. fastidiosa subspecies fastidiosa and X. fastidiosa subspecies multiplex in Spain and X. fastidiosa subspecies multiplex in France. We present evidence of multiple introductions of X. fastidiosa subspecies multiplex, likely from the United States, into Spain, Italy, and France. These introductions illustrate the risks associated with the commercial trade of plant material at global scales and the need to develop effective policy to limit the likelihood of pathogen pollution into naive regions. Our study demonstrates the need to utilize whole-genome sequence data to study X. fastidiosa introductions at outbreak stages, since a limited number of genetic markers does not provide sufficient phylogenetic resolution to determine dispersal paths or relationships among strains that are of biological and quarantine relevance.


Asunto(s)
Genoma Bacteriano , Enfermedades de las Plantas/microbiología , Xylella/genética , Brasil , Europa (Continente) , Especies Introducidas , Secuenciación Completa del Genoma
7.
EFSA J ; 22(3): e8648, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38455154

RESUMEN

The European Commission requested the EFSA Panel on Plant Health to prepare and deliver risk assessments for commodities listed in Commission Implementing Regulation (EU) 2018/2019 as 'High risk plants, plant products and other objects'. This Scientific Opinion covers plant health risks posed by plants of the evergreen Ligustrum ovalifolium and the semi-evergreen Ligustrum vulgare imported from the United Kingdom (UK) as: (a) bare root plants and (b) plants in pots, taking into account the available scientific information, including the technical information provided by the UK. The category (a) 'bare root plants' includes bundles of 1- to 3-year-old bare root whips or transplants and single 1- to 7-year-old bare root plants. The category (b) 'plants in pots' includes bundles of 1- to 2-year-old cell grown plants (only L. vulgare) and 1- to 5-year-old plants in pots. All pests associated with the commodities were evaluated against specific criteria for their relevance for this opinion. Two EU quarantine pests, Bemisia tabaci and Scirtothrips dorsalis, and one pest not regulated in the EU, Diaprepes abbreviatus, fulfilled all relevant criteria and were selected for further evaluation. For the selected pests, the risk mitigation measures proposed in the technical dossier from the UK were evaluated taking into account the possible limiting factors. For these pests, an expert judgement is given on the likelihood of pest freedom considering the risk mitigation measures acting on the pest, including uncertainties associated with the assessment. In the assessment of risk, the age of the plants was considered, reasoning that older trees are more likely to be infested mainly due to longer exposure time and larger size. The degree of pest freedom varies among the pests evaluated, with B. tabaci being the pest most frequently expected on the imported plants. The Expert Knowledge Elicitation indicated with 95% certainty that between 9915 and 10,000 per 10,000 bare root plants and plants in pots will be free from B. tabaci.

8.
EFSA J ; 22(3): e8646, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38455155

RESUMEN

The European Commission requested the EFSA Panel on Plant Health to conduct a pest categorisation of Garella musculana (Erschov) (Lepidoptera: Nolidae), following a commodity risk assessment of Juglans regia plants for planting from Türkiye, in which G. musculana was identified as a pest of possible concern to the European Union (EU). Commonly known as the Asian walnut moth, this pest is native to Central Asia and develops on shoots, buds and fruits of Juglans species such as the English walnut, J. regia and the black walnut, J. nigra. Other reported host plants, such as Prunus dulcis and Populus spp., still require confirmation. The pest was first recorded in the EU (Bulgaria) in 2016 and was then reported in Romania in 2018 and Italy in 2021. This moth completes from one to four generations per year depending on environmental conditions (from valley to mountain forests and orchards up to an altitude of 2100 m). Eggs are laid in groups of 2-3 on young nuts or on buds of 1-year-old shoots. Neonate larvae usually enter the young nut through the peduncle. After fully exploiting one nut, the larva continues feeding in another one. Development takes 25-40 days. Larvae of the autumn generation do not enter the nuts, and so feed only in the pericarp. Larvae also often feed inside 1-year-old shoots or leaf axils. Larvae develop within the host but exit to pupate under loose bark or in deep cracks of bark. The pest overwinters at the larval or pupal stages. Plants for planting, cut branches and infested nuts provide pathways for entry. Climatic conditions and availability of host plants in southern and central EU MSs have allowed this species to establish and spread in Bulgaria, Romania and Italy. Adults can fly and the pest could spread naturally within the EU. Impact on Juglans spp. cultivated for fruit, timber and ornamental purposes is anticipated. Phytosanitary measures are available to reduce the likelihood of entry and further spread of G. musculana. This species meets the criteria that are within the remit of EFSA to assess for this species to be regarded as a potential Union quarantine pest.

9.
EFSA J ; 22(3): e8504, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38444826

RESUMEN

The EFSA Panel on Plant Health performed a pest categorisation of Dendrolimus punctatus (Lepidoptera: Lasiocampidae), following a commodity risk assessment of bonsai Pinus parviflora grafted onto P. thunbergii from China, in which D. punctatus was identified as a pest of possible concern to the European Union (EU). D. punctatus, also known as the Masson pine caterpillar, is present in China, Taiwan, Vietnam, India and has recently spread to Japanese islands close to Taiwan. Larval feeding on the needles of Pinus elliottii, P. luchuensis, P. massoniana, P. merkusii and P. tabulaeformis causes important damage. D. punctatus larvae can also feed on P. armandii, P. echinata, P. latteri, P. parviflora, P. sylvestris var. mongolica, P. taeda, P. taiwanensis and P. thunbergii, but full development on these hosts is uncertain. The pest has three to five generations per year; winter is spent as larvae on branch tips, on tree trunks and in the soil. The females lay egg clusters on pine needles. Pupation occurs in cocoons attached to branches or needles. D. punctatus could enter the EU either as eggs, larvae or pupae in the foliage of plants for planting or cut branches, as larvae on wood with bark or as overwintering larvae in branches, crevices in the bark or in the litter of potted plants. However, Annex VI of 2019/2072 prohibits the introduction of D. punctatus hosts (Pinus spp.) from countries and areas where the pest occurs. There are climate zones where the pest occurs in Asia that also occur in the EU, though they are limited, which constitutes an uncertainty regarding establishment. The pest's main hosts are not grown in the EU. However, the fact that it attacks the North American Pinus echinata, P. elliottii and P. taeda in its Asian native area suggests a potential capacity to shift to pine species occurring in the EU territory. D. punctatus satisfies all the criteria that are within the remit of EFSA to assess for it to be regarded as a potential Union quarantine pest. Whether the Pinus commonly found in Europe could act as hosts is unknown but is fundamental, affecting the criteria of establishment and magnitude of impact.

10.
EFSA J ; 22(3): e8665, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38544739

RESUMEN

The EFSA Panel on Plant Health performed a pest categorisation of Lepidosaphes malicola (Hemiptera: Diaspididae), the Armenian mussel scale, for the territory of the European Union, following commodity risk assessments of Prunus persica and P. dulcis plants for planting from Türkiye, in which L. malicola was identified as a pest of possible concern. L. malicola is a polyphagous insect of temperate and arid areas, feeding on more than 60 plant species belonging to 26 families. Important crops significantly affected by L. malicola in parts of Asia include stone fruits (Prunus armeniaca, P. persica), pome fruits (Malus domestica, Pyrus communis), grapes (Vitis vinifera), pomegranate (Punica granatum), walnuts (Juglans regia) and ornamental plants (Berberis spp., Cornus spp., Jasminum spp., Ligustrum spp.). L. malicola has two generations annually. The overwintered eggs hatch from late May to early June. First-instar nymphs crawl on the host plant for a short period, then settle to feed. Nymphs reach maturity in late summer or early autumn. Plants for planting, fruits and cut flowers provide potential pathways for entry into the EU. Host availability and climate suitability suggest that southern, central and some parts of northern EU countries would be suitable for the establishment of L. malicola. Despite being a pest in Armenia, Iran and Tajikistan, there is no evidence of it being a pest in Türkiye. L. malicola was detected in Bulgaria and Greece over 30 years ago, but there have been no records since, and its status is uncertain. Its ability to cause an impact in the EU is also uncertain. It is not listed in Annex II of the Commission Implementing Regulation (EU) 2019/2072. Phytosanitary measures are available to reduce the likelihood of entry. Except for the criterion of having an economic or environmental impact, for which there is great uncertainty, L. malicola satisfies all other criteria that are within the remit of EFSA to assess for it to be regarded as a potential Union quarantine pest.

11.
EFSA J ; 22(3): e8667, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38505477

RESUMEN

Following the commodity risk assessment of bonsai plants (Pinus parviflora grafted on Pinus thunbergii) from China performed by EFSA, the EFSA Plant Health Panel performed a pest categorisation of Pyrrhoderma noxium, a clearly defined plant pathogenic basidiomycete fungus of the order Hymenochaetales and the family Hymenochaetaceae. The pathogen is considered as opportunistic and has been reported on a wide range of hosts, mainly broad-leaved and coniferous woody plants, causing root rots. In addition, the fungus was reported to live saprophytically on woody substrates and was isolated as an endophyte from a few plant species. This pest categorisation focuses on the hosts that are relevant for the EU (e.g. Citrus, Ficus, Pinus, Prunus, Pyrus, Quercus and Vitis vinifera). Pyrrhoderma noxium is present in Africa, Central and South America, Asia and Oceania. It has not been reported in the EU. Pyrrhoderma noxium is not included in Commission Implementing Regulation (EU) 2019/2072. Plants for planting (excluding seeds), bark and wood of host plants as well as soil and other growing media associated with plant debris are the main pathways for the entry of the pathogen into the EU. Host availability and climate suitability factors occurring in parts of the EU are favourable for the establishment and spread of the pathogen. The introduction and spread of the pathogen into the EU are expected to have an economic and environmental impact in parts of the territory where hosts are present. Phytosanitary measures are available to prevent the introduction and spread of the pathogen into the EU. Pyrrhoderma noxium satisfies all the criteria that are within the remit of EFSA to assess for this species to be regarded as potential Union quarantine pest.

12.
EFSA J ; 22(1): e8495, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38222930

RESUMEN

The European Commission requested the EFSA Panel on Plant Health to prepare and deliver risk assessments for commodities listed in Commission Implementing Regulation (EU) 2018/2019 as 'High risk plants, plant products and other objects'. This Scientific Opinion covers plant health risks posed by plants of Corylus avellana imported from the United Kingdom (UK) as: (a) bundles of 1- to 2-year old whips or transplants, (b) bundles of 1- to 2-year old cell grown plants, (c) 1- to 7-year old bare root single plants and (d) up to 15-year old single plants in pots, taking into account the available scientific information, including the technical information provided by the UK. All pests associated with the commodity were evaluated against specific criteria for their relevance for this opinion. Two EU quarantine pests, Phytophthora ramorum (non-EU isolates) and Thaumetopoea processionea fulfilled all relevant criteria and were selected for further evaluation. For the selected pests, the risk mitigation measures implemented in the technical dossier from the UK were evaluated taking into account the possible limiting factors. For these pests an expert judgement is given on the likelihood of pest freedom taking into consideration the risk mitigation measures acting on the pest, including uncertainties associated with the assessment. In the assessment of risk, the age of the plants was considered, reasoning that older trees are more likely to be infested mainly due to longer exposure time and larger size. The degree of pest freedom varies among the pests evaluated, with P. ramorum being the pest most frequently expected on the imported plants. The expert knowledge elicitation indicated with 95% certainty that between 9939 and 10,000 of the single plants in pots up to 15-year old will be free from P. ramorum (non-EU isolates).

13.
EFSA J ; 22(4): e8740, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38650611

RESUMEN

Following the commodity risk assessments of Acer palmatum plants grafted on A. davidii from China, in which Crisicoccus matsumotoi (Hemiptera: Pseudococcidae) was identified as a pest of possible concern, the European Commission requested the EFSA Panel on Plant Health to conduct a pest categorisation of C. matsumotoi for the territory of the European Union. Recent taxonomic revision of the genus Crisisoccus concluded that C. matsumotoi is a synonym of C. seruratus; therefore, the categorisation will use the current valid name C. seruratus. It is an insect pest native to Japan, feeding on species in 13 plant families. There are reports of its presence also in China and the Republic of Korea, but there is great uncertainty about the identity of the species for these records. Therefore, there is uncertainty about the species referred to as C. matsumotoi in the commodity risk assessments of A. palmatum. C. seruratus is a multivoltine species. It has three generations per year and overwinters as a nymph. The most important crops that may be affected by C. seruratus are figs (Ficus carica), grapes (Vitis spp.), nashi pears (Pyrus pyrifolia var. culta), persimmons (Diospyros kaki) and walnuts (Juglans regia). Plants for planting and fruits provide potential pathways for entry into the EU. Host availability and climate suitability suggest that the central, northern and some areas of southern EU countries would be suitable for the establishment of C. seruratus. The introduction of this mealybug would likely have an economic impact in the EU through yield reduction and fruit downgrading because of honeydew deposition and the consequent growth of sooty moulds. This insect is not listed in Annex II of Commission Implementing Regulation (EU) 2019/2072. Phytosanitary measures are available to reduce the likelihood of entry and spread of this species into the EU. C. seruratus satisfies the criteria that are within the remit of EFSA to assess for it to be regarded as a potential Union quarantine pest.

14.
EFSA J ; 22(5): e8803, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38707495

RESUMEN

The European Commission requested the EFSA Panel on Plant Health to prepare and deliver risk assessments for commodities listed in Commission Implementing Regulation (EU) 2018/2019 as 'High risk plants, plant products and other objects'. This Scientific Opinion covers plant health risks posed by plants of Tilia cordata and T. platyphyllos imported from the United Kingdom (UK) as: (a) bundles of budwood/graftwood; (b) 1- to 2-year-old whips, seedlings or transplants; (c) bundles of 1- to 2-year-old cell grown plants; (d) 1- to 7-year-old bare root single plants; and (e) up to 25-year-old single plants in pots, taking into account the available scientific information provided by the UK. A list of pests potentially associated with the commodities was compiled. The relevance of any pest was assessed based on evidence following defined criteria. None of the pests on the list fulfilled all relevant criteria and therefore none were selected for further evaluation. As a result, risk mitigation measures proposed in the technical dossier from the UK were listed, but not further evaluated.

15.
EFSA J ; 22(7): e8890, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38984216

RESUMEN

The European Commission requested the EFSA Panel on Plant Health to conduct a pest categorisation of Coniella castaneicola (Ellis & Everh) Sutton, following commodity risk assessments of Acer campestre, A. palmatum, A. platanoides, A. pseudoplatanus, Quercus petraea and Q. robur plants from the UK, in which C. castaneicola was identified as a pest of possible concern to the EU. When first described, Coniella castaneicola was a clearly defined fungus of the family Schizoparmaceae, but due to lack of a curated type-derived DNA sequence, current identification based only on DNA sequence is uncertain and taxa previously reported to be this fungus based on molecular identification must be confirmed. The uncertainty on the reported identification of this species translates into uncertainty on all the sections of this categorisation. The fungus has been reported on several plant species associated with leaf spots, leaf blights and fruit rots, and as an endophyte in asymptomatic plants. The species is reported from North and South America, Africa, Asia, non-EU Europe and Oceania. Coniella castaneicola is not known to occur in the EU. However, there is a key uncertainty on its presence and geographical distribution worldwide and in the EU due to its endophytic nature, the lack of systematic surveys and possible misidentifications. Coniella castaneicola is not included in Commission Implementing Regulation (EU) 2019/2072 and there are no interceptions in the EU. Plants for planting, fresh fruits and soil and other growing media associated with infected plant debris are the main pathways for its entry into the EU. Host availability and climate suitability in parts of the EU are favourable for the establishment and spread of the fungus. Based on the scarce information available, the introduction and spread of C. castaneicola in the EU is not expected to cause substantial impacts, with a key uncertainty. Phytosanitary measures are available to prevent its introduction and spread in the EU. Because of lack of documented impacts, Coniella castaneicola does not satisfy all the criteria that are within the remit of EFSA to assess for this species to be regarded as potential Union quarantine pest.

16.
EFSA J ; 22(7): e8832, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38974924

RESUMEN

Following a request from the European Commission, the EFSA Panel on Plant Health performed a quantitative risk assessment for the EU of Phlyctinus callosus (Coleoptera: Curculionidae), a polyphagous pest occurring in Australia, New Zealand and South Africa. The current risk assessment focused on potential pathways for entry, the climatic conditions allowing establishment, the expected spread capacity and the impact considering a time horizon of 10 years (2023-2032). The Panel identified the import of apples, cut flowers and table grapes as the most relevant entry pathways. Over the next 10 years, an annual median estimate of approximately 49.5 (90% certainty range, CR, ranging from 4.0 to 881.2) potential P. callosus founder populations are expected. When the probability of establishment is considered and climatic indicators are used to define the areas in the EU where establishment is possible, the model estimated a median of 1 founder population every 1.3 years (90% CR: 1 every 30.8 years to 23.3 per year) in the scenario where the areas are defined by the union of all the climatic indicators and 1 founder population every 11.9 years (90% CR: 1 every 256.6 years to 2.5 per year) in the scenario where establishment is possible only in the areas defined by the climatic indicator of minimum soil temperature. The estimated number of founder populations per year is mostly driven by the probability of establishment in the rural areas, infestation rate in table grapes and the probability of transfer to a suitable host in the rural area. The risk of entry for cut flowers and apples is substantially lower than the risk from the table grapes. If such founder populations were to establish, P. callosus is estimated to spread by natural dispersal and common agricultural practices at a rate of 15.5 m/year (90% CR 5.1-46.8 m/year) after a lag phase of 4.0 years (90% CR 1.3-8.7 years). The impact, expressed as percentage loss of the production directly attributable to P. callosus in the areas where establishment is possible and assuming farmers do not apply specific control measures was estimated at 0.5% (90% CR 0.01%-2.8%) for cut flowers/foliage, 5.2% (90% CR 2.2%-11.7%) for apples and 2% (90% CR 1.3%-5.2%) for table grapes. Options for risk reduction are discussed, but their effectiveness is not quantified.

17.
EFSA J ; 22(4): e8666, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38576539

RESUMEN

The EFSA Panel on Plant Health performed a pest categorisation of Eulecanium giganteum (Hemiptera: Coccidae), the giant eulecanium scale, for the territory of the European Union, following the commodity risk assessment of Acer palmatum plants from China, in which E. giganteum came to attention as a pest of possible concern. The pest is only known to be present in Asia, where it has been reported from China, India, Iran, Japan and eastern Russia (Primorsky Krai). The pest has not been reported within the EU. It is not listed in Annex II of Commission Implementing Regulation (EU) 2019/2072. It is polyphagous, feeding on broad-leaf trees and shrubs assigned to 41 genera in 22 plant families. Host plant species commonly found in the EU include apricot (Prunus armeniaca), elm (Ulmus spp.), grapevine (Vitis vinifera), maple (Acer spp.), oak (Quercus spp.), oriental plane (Platanus orientalis), pomegranate (Punica granatum), quince (Cydonia oblonga), silkworm mulberry (Morus alba), walnut (Juglans regia), and several ornamentals. Climatic conditions and availability of host plants in southern EU countries would most probably allow this species to successfully establish and spread. However, EU native natural enemies are anticipated to provide biological control and therefore reduce potential impacts. Phytosanitary measures are available to reduce the likelihood of entry and spread. E. giganteum satisfies all the criteria that are within the remit of EFSA to assess for it to be regarded as a potential Union quarantine pest, other than the criterion on impact which is a key uncertainty.

18.
EFSA J ; 22(6): e8830, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38946916

RESUMEN

The EFSA Panel on Plant Health performed a pest categorisation of Popillia quadriguttata (Coleoptera: Scarabaeidae), following a commodity risk assessment of bonsai Pinus parviflora grafted onto P. thunbergii from China, in which P. quadriguttata was identified as a pest of possible concern for the territory of the European Union. This is a univoltine polyphagous pest that occurs in eastern Asia from Vietnam northwards through eastern China and Taiwan, South Korea and into Far East Russia. Hosts include species of fruit trees within the genera Malus and Prunus, trees of forestry and environmental importance such as Quercus and Ulmus, shrubs such as Wisteria, soft fruit such as Rubus, grasses, including amenity turf and field crops such as potatoes, maize and soybean. Adults feed on host leaves, tender stems, flower buds, flowers and fruits; larvae feed on host roots. In northern China P. quadriguttata is a major pest of soybean; in South Korea, P. quadriguttata is one of the most serious insect pests of golf course turf. P. quadriguttata could enter the EU on various pathways including infested soil and growing media accompanying host plants for planning. Biotic factors (host availability) and abiotic factors (climate suitability) suggest that large parts of the EU would be suitable for establishment. Local spread would be mainly via natural dispersal of adults. Long distance spread would be facilitated by the movement of eggs, larvae and pupae infesting soil especially with plants for planting; adults could spread on plants for planting without soil. Economic and or environmental impacts would be expected on a range of plants if P. quadriguttata were to establish in the EU. Phytosanitary measures are available to reduce the likelihood of its introduction. P. quadriguttata satisfies all of the criteria that are within the remit of EFSA to assess for it to be regarded as a potential Union quarantine pest.

19.
EFSA J ; 22(6): e8833, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38946917

RESUMEN

The EFSA Panel on Plant Health performed a pest categorisation of Cenopalpus irani (Trombidiformes: Tenuipalpidae), known as the Iranian false spider mite, following the commodity risk assessment of Malus domestica plants from Türkiye, in which C. irani was identified as a pest of possible concern for the territory of the European Union (EU). The pest is only known to be present in Iran and Türkiye and has not been reported from the EU. The mite primarily feeds on Rosaceae plants but is considered polyphagous. Important crops of the EU that are hosts of C. irani include apples (Malus domestica), pears (Pyrus communis) and figs (Ficus carica). Plants for planting and fruits provide potential pathways for entry into the EU. Host availability and climate suitability in southern EU countries would most probably allow this species to successfully establish and spread. This mite is not listed in Annex II of Commission Implementing Regulation (EU) 2019/2072. Phytosanitary measures are available to reduce the likelihood of entry and spread of this species into the EU. The mite C. irani satisfies the criteria that are within the remit of EFSA to assess for it to be regarded as a potential Union quarantine pest, although there is a key uncertainty over the likelihood and magnitude of impact.

20.
EFSA J ; 22(5): e8806, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38799477

RESUMEN

The EFSA Panel on Plant Health performed a pest categorisation of Diaphania indica (Lepidoptera: Crambidae), the cucumber moth for the territory of the European Union (EU), following the commodity risk assessment of Jasminum polyanthum from Uganda, in which D. indica was identified as a pest of possible concern to the European Union. D. indica is native to South Asian countries and is now distributed in tropical and subtropical areas of the Americas, Africa, Asia and Oceania. In the EU, D. indica occurs in Madeira (Portugal). It is a polyphagous pest, feeding on 16 genera in 6 plant families, primarily on plants of the Cucurbitaceae family. Important cucurbit hosts in the EU include cucumber (Cucumis sativus), melon (Cucumis melo), pumpkin (Cucurbita moschata), summer squash (Cucurbita pepo) and watermelon (Citrullus lanatus). Plants for planting, fruits and cut flowers provide potential pathways for entry into the EU. Climatic conditions and availability of host plants in southern EU countries would most probably allow this species to successfully establish and spread. Establishment could also occur in greenhouses in the northern parts of the EU. Economic impact in cultivated hosts, especially cucurbit crops is anticipated if establishment occurs. This insect is not listed in Annex II of Commission Implementing Regulation (EU) 2019/2072. Phytosanitary measures are available to reduce the likelihood of entry and further spread. D. indica meets the criteria that are within the remit of EFSA to assess for this species to be regarded as a potential Union quarantine pest.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA