Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
1.
Artif Organs ; 40(3): E12-24, 2016 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-26416723

RESUMEN

Successful visual prostheses require stable, long-term attachment. Epiretinal prostheses, in particular, require attachment methods to fix the prosthesis onto the retina. The most common method is fixation with a retinal tack; however, tacks cause retinal trauma, and surgical proficiency is important to ensure optimal placement of the prosthesis near the macula. Accordingly, alternate attachment methods are required. In this study, we detail a novel method of magnetic attachment for an epiretinal prosthesis using two prostheses components positioned on opposing sides of the retina. The magnetic attachment technique was piloted in a feline animal model (chronic, nonrecovery implantation). We also detail a new method to reliably control the magnet coupling force using heat. It was found that the force exerted upon the tissue that separates the two components could be minimized as the measured force is proportionately smaller at the working distance. We thus detail, for the first time, a surgical method using customized magnets to position and affix an epiretinal prosthesis on the retina. The position of the epiretinal prosthesis is reliable, and its location on the retina is accurately controlled by the placement of a secondary magnet in the suprachoroidal location. The electrode position above the retina is less than 50 microns at the center of the device, although there were pressure points seen at the two edges due to curvature misalignment. The degree of retinal compression found in this study was unacceptably high; nevertheless, the normal structure of the retina remained intact under the electrodes.


Asunto(s)
Imanes/química , Implantación de Prótesis/métodos , Retina/cirugía , Prótesis Visuales/química , Animales , Gatos , Electrodos Implantados , Calor , Magnetismo/métodos , Diseño de Prótesis , Retina/ultraestructura
2.
Clin Exp Ophthalmol ; 43(3): 247-58, 2015 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-25196241

RESUMEN

BACKGROUND: A key requirement for retinal prostheses is the ability for safe removal or replacement. We examined whether suprachoroidal electrode arrays can be removed or replaced after implantation. METHODS: Suprachoroidal electrode arrays were unilaterally implanted into 13 adult felines. After 1 month, arrays were surgically explanted (n = 6), replaced (n = 5) or undisturbed (n = 2). The retina was assessed periodically using fundus photography and optical coherence tomography. Three months after the initial implantation, the function of replaced or undisturbed arrays was assessed by measuring the responses of the visual cortex to retinal electrical stimulation. The histopathology of tissues surrounding the implant was examined. RESULTS: Array explantation or replacement was successful in all cases. Fundus photography showed localized disruption to the tapetum lucidum near the implant's tip in seven subjects following implantation. Although optical coherence tomography showed localized retinal changes, there were no widespread statistically significant differences in the thickness of the retinal layers or choroid. The distance between the electrodes and retina increased after device replacement but returned to control values within eight weeks (P < 0.03). Staphylomas developed near the scleral wound in five animals after device explantation. Device replacement did not alter the cortical evoked potential threshold. Histopathology showed localized outer nuclear layer thinning, tapetal disruption and pseudo-rosette formation, but the overall retinal morphology was preserved. CONCLUSIONS: It is feasible to remove or replace conformable medical grade silicone electrode arrays implanted suprachoroidally. The scleral wound requires careful closure to minimize the risk of staphylomas.


Asunto(s)
Coroides/cirugía , Remoción de Dispositivos/métodos , Modelos Animales de Enfermedad , Electrodos Implantados , Microelectrodos , Prótesis Visuales , Animales , Gatos , Remoción de Dispositivos/efectos adversos , Estimulación Eléctrica , Electrorretinografía , Potenciales Evocados Visuales , Angiografía con Fluoresceína , Complicaciones Intraoperatorias/prevención & control , Complicaciones Posoperatorias/prevención & control , Implantación de Prótesis , Reoperación , Retina/fisiología , Tomografía de Coherencia Óptica , Corteza Visual/fisiología
3.
Clin Exp Ophthalmol ; 42(7): 665-74, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24330322

RESUMEN

BACKGROUND: Current surgical techniques for retinal prosthetic implantation require long and complicated surgery, which can increase the risk of complications and adverse outcomes. METHOD: The suprachoroidal position is known to be an easier location to access surgically, and so this study aimed to develop a surgical procedure for implanting a prototype suprachoroidal retinal prosthesis. The array implantation procedure was developed in 14 enucleated eyes. A full-thickness scleral incision was made parallel to the intermuscular septum and superotemporal to the lateral rectus muscle. A pocket was created in the suprachoroidal space, and the moulded electrode array was inserted. The scleral incision was closed and scleral anchor point sutured. In 9 of the 14 eyes examined, the device insertion was obstructed by the posterior ciliary neurovascular bundle. Subsequently, the position of this neurovascular bundle in 10 eyes was characterized. Implantation and lead routing procedure was then developed in six human cadavers. The array was tunnelled forward from behind the pinna to the orbit. Next, a lateral canthotomy was made. Lead fixation was established by creating an orbitotomy drilled in the frontal process of the zygomatic bone. The lateral rectus muscle was detached, and implantation was carried out. Finally, pinna to lateral canthus measurements were taken on 61 patients in order to determine optimal lead length. RESULTS: These results identified potential anatomical obstructions and informed the anatomical fitting of the suprachoroidal retinal prosthesis. CONCLUSION: As a result of this work, a straightforward surgical approach for accurate anatomical suprachoroidal array and lead placement was developed for clinical application.


Asunto(s)
Coroides/cirugía , Procedimientos Quirúrgicos Oftalmológicos , Implantación de Prótesis/métodos , Prótesis Visuales , Cadáver , Femenino , Humanos , Masculino , Ensayo de Materiales , Colgajos Quirúrgicos , Técnicas de Sutura , Donantes de Tejidos
4.
Front Cell Dev Biol ; 12: 1422764, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38966426

RESUMEN

Purpose: Extraocular electrical stimulation is known to provide neuroprotection for retinal cells in retinal and optic nerve diseases. Currently, the treatment approach requires patients to set up extraocular electrodes and stimulate potentially weekly due to the lack of an implantable stimulation device. Hence, a minimally-invasive implant was developed to provide chronic electrical stimulation to the retina, potentially improving patient compliance for long-term use. The aim of the present study was to determine the surgical and stimulation safety of this novel device designed for neuroprotective stimulation. Methods: Eight normally sighted adult feline subjects were monocularly implanted in the suprachoroidal space in the peripheral retina for 9-39 weeks. Charge balanced, biphasic, current pulses (100 µA, 500 µs pulse width and 50 pulses/s) were delivered continuously to platinum electrodes for 3-34 weeks. Electrode impedances were measured hourly. Retinal structure and function were assessed at 1-, 2-, 4-, 6- and 8-month using electroretinography, optical coherence tomography and fundus photography. Retina and fibrotic thickness were measured from histological sections. Randomized, blinded histopathological assessments of stimulated and non-stimulated retina were performed. Results: All subjects tolerated the surgical and stimulation procedure with no evidence of discomfort or unexpected adverse outcomes. The device position was stable after a post-surgery settling period. Median electrode impedance remained within a consistent range (5-10 kΩ) over time. There was no change in retinal thickness or function relative to baseline and fellow eyes. Fibrotic capsule thickness was equivalent between stimulated and non-stimulated tissue and helps to hold the device in place. There was no scarring, insertion trauma, necrosis, retinal damage or fibroblastic response in any retinal samples from implanted eyes, whilst 19% had a minimal histiocytic response, 19% had minimal to mild acute inflammation and 28% had minimal to mild chronic inflammation. Conclusion: Chronic suprathreshold electrical stimulation of the retina using a minimally invasive device evoked a mild tissue response and no adverse clinical findings. Peripheral suprachoroidal electrical stimulation with an implanted device could potentially be an alternative approach to transcorneal electrical stimulation for delivering neuroprotective stimulation.

5.
Transl Vis Sci Technol ; 12(3): 20, 2023 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-36943168

RESUMEN

Purpose: Accurate mapping of phosphene locations from visual prostheses is vital to encode spatial information. This process may involve the subject pointing to evoked phosphene locations with their finger. Here, we demonstrate phosphene mapping for a retinal implant using eye movements and compare it with retinotopic electrode positions and previous results using conventional finger-based mapping. Methods: Three suprachoroidal retinal implant recipients (NCT03406416) indicated the spatial position of phosphenes. Electrodes were stimulated individually, and the subjects moved their finger (finger based) or their eyes (gaze based) to the perceived phosphene location. The distortion of the measured phosphene locations from the expected locations (retinotopic electrode locations) was characterized with Procrustes analysis. Results: The finger-based phosphene locations were compressed spatially relative to the expected locations all three subjects, but preserved the general retinotopic arrangement (scale factors ranged from 0.37 to 0.83). In two subjects, the gaze-based phosphene locations were similar to the expected locations (scale factors of 0.72 and 0.99). For the third subject, there was no apparent relationship between gaze-based phosphene locations and electrode locations (scale factor of 0.07). Conclusions: Gaze-based phosphene mapping was achievable in two of three tested retinal prosthesis subjects and their derived phosphene maps correlated well with the retinotopic electrode layout. A third subject could not produce a coherent gaze-based phosphene map, but this may have revealed that their phosphenes were indistinct spatially. Translational Relevance: Gaze-based phosphene mapping is a viable alternative to conventional finger-based mapping, but may not be suitable for all subjects.


Asunto(s)
Movimientos Oculares , Prótesis Visuales , Humanos , Fosfenos , Trastornos de la Visión , Retina/cirugía
6.
Transl Vis Sci Technol ; 11(6): 12, 2022 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-35696133

RESUMEN

Purpose: To report the long-term observations of the electrode-tissue interface and perceptual stability in humans after chronic stimulation with a 44-channel suprachoroidal retinal implant. Methods: Four subjects (S1-4) with end-stage retinitis pigmentosa received the implant unilaterally (NCT03406416). Electrode impedances, electrode-retina distance (measured using optical coherence tomography imaging), and perceptual thresholds were monitored up to 181 weeks after implantation as the subjects used the prosthesis in the laboratory and in daily life. Stimulation charge density was limited to 32 µC/cm2 per phase. Results: Electrode impedances were stable longitudinally. The electrode-retina distances increased after surgery and then stabilized, and were well-described by an asymptotic exponential model. The stabilization of electrode-retina distances was variable between subjects, stabilizing after 45 weeks for S1, 63 weeks for S2, and 24 weeks for S3 (linear regression; Pgradient > 0.05). For S4, a statistically significant increase in electrode-retina distance persisted (P < 0.05), but by the study end point the rate of increase was clinically insignificant (exponential model: 0.33 µm/wk). Perceptual electrical thresholds were stable in one subject, decreased over time in two subjects (linear model; P < 0.05), and increased slightly in one subject but remained within the predefined charge limits (P = 0.02). Conclusions: Chronic stimulation with the suprachoroidal retinal prosthesis over 3 years resulted in stable impedances, small individual changes in perceptual electrical thresholds, and no clinically significant increase in electrode-retina distances after a period of settling after surgery. Translational Relevance: Chronic stimulation with the 44-channel suprachoroidal retinal implant with a charge density of up to 32 µC/cm2 per phase is suitable for long-term use in humans.


Asunto(s)
Retinitis Pigmentosa , Prótesis Visuales , Estimulación Eléctrica/métodos , Humanos , Microelectrodos , Retina/diagnóstico por imagen , Retina/cirugía , Retinitis Pigmentosa/cirugía
7.
Small ; 7(8): 1035-42, 2011 Apr 18.
Artículo en Inglés | MEDLINE | ID: mdl-21374804

RESUMEN

In vivo host responses to an electrode-like array of aligned carbon nanotubes (ACNTs) embedded within a biopolymer sheet are reported. This biocompatibility study assesses the suitability of immobilized carbon nanotubes for bionic devices. Inflammatory responses and foreign-body histiocytic reactions are not substantially elevated when compared to negative controls following 12 weeks implantation. A fibrous capsule isolates the implanted ACNTs from the surrounding muscle tissue. Filamentous nanotube fragments are engulfed by macrophages, and globular debris is incorporated into the fibrous capsule with no further reaction. Scattered leukocytes are observed, adherent to the ACNT surface. These data indicate that there is a minimal local foreign-body response to immobilized ACNTs, that detached fragments are phagocytosed into an inert material, and that ACNTs do not attract high levels of surface fouling. Collectively, these results suggest that immobilized nanotube structures should be considered for further investigation as bionic components.


Asunto(s)
Materiales Biocompatibles/química , Ensayo de Materiales/métodos , Nanotubos de Carbono/química , Animales , Incrustaciones Biológicas , Reacción a Cuerpo Extraño/patología , Cobayas , Implantes Experimentales , Masculino , Fagocitosis , Estirenos/química
8.
Transl Vis Sci Technol ; 10(7): 9, 2021 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-34110385

RESUMEN

Purpose: Artificial intelligence (AI) techniques are increasingly being used to classify retinal diseases. In this study we investigated the ability of a convolutional neural network (CNN) in categorizing histological images into different classes of retinal degeneration. Methods: Images were obtained from a chemically induced feline model of monocular retinal dystrophy and split into training and testing sets. The training set was graded for the level of retinal degeneration and used to train various CNN architectures. The testing set was evaluated through the best architecture and graded by six observers. Comparisons between model and observer classifications, and interobserver variability were measured. Finally, the effects of using less training images or images containing half the presentable context were investigated. Results: The best model gave weighted-F1 scores in the range 85% to 90%. Cohen kappa scores reached up to 0.86, indicating high agreement between the model and observers. Interobserver variability was consistent with the model-observer variability in the model's ability to match predictions with the observers. Image context restriction resulted in model performance reduction by up to 6% and at least one training set size resulted in a model performance reduction of 10% compared to the original size. Conclusions: Detecting the presence and severity of up to three classes of retinal degeneration in histological data can be reliably achieved with a deep learning classifier. Translational Relevance: This work lays the foundations for future AI models which could aid in the evaluation of more intricate changes occurring in retinal degeneration, particularly in other types of clinically derived image data.


Asunto(s)
Aprendizaje Profundo , Degeneración Retiniana , Animales , Inteligencia Artificial , Gatos , Redes Neurales de la Computación , Degeneración Retiniana/diagnóstico
9.
Transl Vis Sci Technol ; 10(10): 12, 2021 08 12.
Artículo en Inglés | MEDLINE | ID: mdl-34581770

RESUMEN

Purpose: To report the initial safety and efficacy results of a second-generation (44-channel) suprachoroidal retinal prosthesis at 56 weeks after device activation. Methods: Four subjects, with advanced retinitis pigmentosa and bare-light perception only, enrolled in a phase II trial (NCT03406416). A 44-channel electrode array was implanted in a suprachoroidal pocket. Device stability, efficacy, and adverse events were investigated at 12-week intervals. Results: All four subjects were implanted successfully and there were no device-related serious adverse events. Color fundus photography indicated a mild postoperative subretinal hemorrhage in two recipients, which cleared spontaneously within 2 weeks. Optical coherence tomography confirmed device stability and position under the macula. Screen-based localization accuracy was significantly better for all subjects with device on versus device off. Two subjects were significantly better with the device on in a motion discrimination task at 7, 15, and 30°/s and in a spatial discrimination task at 0.033 cycles per degree. All subjects were more accurate with the device on than device off at walking toward a target on a modified door task, localizing and touching tabletop objects, and detecting obstacles in an obstacle avoidance task. A positive effect of the implant on subjects' daily lives was confirmed by an orientation and mobility assessor and subject self-report. Conclusions: These interim study data demonstrate that the suprachoroidal prosthesis is safe and provides significant improvements in functional vision, activities of daily living, and observer-rated quality of life. Translational Relevance: A suprachoroidal prosthesis can provide clinically useful artificial vision while maintaining a safe surgical profile.


Asunto(s)
Retinitis Pigmentosa , Prótesis Visuales , Actividades Cotidianas , Humanos , Calidad de Vida , Visión Ocular
10.
Transl Vis Sci Technol ; 10(10): 7, 2021 08 12.
Artículo en Inglés | MEDLINE | ID: mdl-34383875

RESUMEN

Purpose: In a clinical trial (NCT03406416) of a second-generation (44-channel) suprachoroidal retinal prosthesis implanted in subjects with late-stage retinitis pigmentosa (RP), we assessed performance in real-world functional visual tasks and emotional well-being. Methods: The Functional Low-Vision Observer Rated Assessment (FLORA) and Impact of Vision Impairment-Very Low Vision (IVI-VLV) instruments were administered to four subjects before implantation and after device fitting. The FLORA contains 13 self-reported and 35 observer-reported items ranked for ease of conducting task (impossible-easy, central tendency given as mode). The IVI-VLV instrument quantified the impact of low vision on daily activities and emotional well-being. Results: Three subjects completed the FLORA for two years after device fitting; the fourth subject ceased participation in the FLORA after fitting for reasons unrelated to the device. For all subjects at each post-fitting visit, the mode ease of task with device ON was better or equal to device OFF. Ease of task improved over the first six months with device ON, then remained stable. Subjects reported improvements in mobility, functional vision, and quality of life with device ON. The IVI-VLV suggested self-assessed vision-related quality of life was not impacted by device implantation or usage. Conclusions: Subjects demonstrated sustained improved ease of task scores with device ON compared to OFF, indicating the device has a positive impact in the real-world setting. Translational Relevance: Our suprachoroidal retinal prosthesis shows potential utility in everyday life, by enabling an increased environmental awareness and improving access to sensory information for people with end-stage RP.


Asunto(s)
Retinitis Pigmentosa , Baja Visión , Prótesis Visuales , Humanos , Calidad de Vida , Retinitis Pigmentosa/cirugía , Visión Ocular
11.
J Neural Eng ; 17(4): 045014, 2020 08 05.
Artículo en Inglés | MEDLINE | ID: mdl-32659750

RESUMEN

OBJECTIVE: Due to their increased proximity to retinal ganglion cells (RGCs), epiretinal visual prostheses present the opportunity for eliciting phosphenes with low thresholds through direct RGC activation. This study characterised the in vivo performance of a novel prototype monolithic epiretinal prosthesis, containing Nitrogen incorporated ultrananocrystalline (N-UNCD) diamond electrodes. APPROACH: A prototype implant containing up to twenty-five 120 × 120 µm N-UNCD electrodes was implanted into 16 anaesthetised cats and attached to the retina either using a single tack or via magnetic coupling with a suprachoroidally placed magnet. Multiunit responses to retinal stimulation using charge-balanced biphasic current pulses were recorded acutely in the visual cortex using a multichannel planar array. Several stimulus parameters were varied including; the stimulating electrode, stimulus polarity, phase duration, return configuration and the number of electrodes stimulated simultaneously. MAIN RESULTS: The rigid nature of the device and its form factor necessitated complex surgical procedures. Surgeries were considered successful in 10/16 animals and cortical responses to single electrode stimulation obtained in eight animals. Clinical imaging and histological outcomes showed severe retinal trauma caused by the device in situ in many instances. Cortical measures were found to significantly depend on the surgical outcomes of individual experiments, phase duration, return configuration and the number of electrodes stimulated simultaneously, but not stimulus polarity. Cortical thresholds were also found to increase over time within an experiment. SIGNIFICANCE: The study successfully demonstrated that an epiretinal prosthesis containing diamond electrodes could produce cortical activity with high precision, albeit only in a small number of cases. Both surgical approaches were highly challenging in terms of reliable and consistent attachment to and stabilisation against the retina, and often resulted in severe retinal trauma. There are key challenges (device form factor and attachment technique) to be resolved for such a device to progress towards clinical application, as current surgical techniques are unable to address these issues.


Asunto(s)
Diamante , Prótesis Visuales , Animales , Gatos , Estimulación Eléctrica , Electrodos , Electrodos Implantados , Estudios de Factibilidad , Retina
12.
J Neural Eng ; 15(4): 041004, 2018 08.
Artículo en Inglés | MEDLINE | ID: mdl-29756600

RESUMEN

OBJECTIVE: Given the rapid expansion of the field of neural stimulation and the rigorous regulatory approval requirements required before these devices can be applied clinically, it is important that there is clarity around conducting preclinical safety and efficacy studies required for the development of this technology. APPROACH: The present review examines basic design principles associated with the development of a safe neural stimulator and describes the suite of preclinical safety studies that need to be considered when taking a device to clinical trial. MAIN RESULTS: Neural stimulators are active implantable devices that provide therapeutic intervention, sensory feedback or improved motor control via electrical stimulation of neural or neuro-muscular tissue in response to trauma or disease. Because of their complexity, regulatory bodies classify these devices in the highest risk category (Class III), and they are therefore required to go through a rigorous regulatory approval process before progressing to market. The successful development of these devices is achieved through close collaboration across disciplines including engineers, scientists and a surgical/clinical team, and the adherence to clear design principles. Preclinical studies form one of several key components in the development pathway from concept to product release of neural stimulators. Importantly, these studies provide iterative feedback in order to optimise the final design of the device. Key components of any preclinical evaluation include: in vitro studies that are focussed on device reliability and include accelerated testing under highly controlled environments; in vivo studies using animal models of the disease or injury in order to assess efficacy and, given an appropriate animal model, the safety of the technology under both passive and electrically active conditions; and human cadaver and ex vivo studies designed to ensure the device's form factor conforms to human anatomy, to optimise the surgical approach and to develop any specialist surgical tooling required. SIGNIFICANCE: The pipeline from concept to commercialisation of these devices is long and expensive; careful attention to both device design and its preclinical evaluation will have significant impact on the duration and cost associated with taking a device through to commercialisation. Carefully controlled in vitro and in vivo studies together with ex vivo and human cadaver trials are key components of a thorough preclinical evaluation of any new neural stimulator.


Asunto(s)
Estimulación Encefálica Profunda/métodos , Diseño de Equipo/métodos , Neuroestimuladores Implantables , Animales , Estimulación Encefálica Profunda/instrumentación , Estimulación Encefálica Profunda/tendencias , Diseño de Equipo/tendencias , Humanos , Neuroestimuladores Implantables/tendencias , Enfermedades del Sistema Nervioso/fisiopatología , Enfermedades del Sistema Nervioso/terapia , Resultado del Tratamiento
13.
Invest Ophthalmol Vis Sci ; 59(3): 1410-1424, 2018 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-29625464

RESUMEN

Purpose: Following successful clinical outcomes of the prototype suprachoroidal retinal prosthesis, Bionic Vision Australia has developed an upgraded 44-channel suprachoroidal retinal prosthesis to provide a wider field of view and more phosphenes. The aim was to evaluate the preclinical passive safety characteristics of the upgraded electrode array. Methods: Ten normal-sighted felines were unilaterally implanted with an array containing platinum electrodes (44 stimulating and 2 returns) on a silicone carrier near the area centralis. Clinical assessments (color fundus photos, optical coherence tomography, full-field electroretinography, intraocular pressure) were performed under anesthesia prior to surgery, and longitudinally for up to 20 weeks. Histopathology grading of fibrosis and inflammation was performed in two animals at 13 to 15 weeks. Results: Eight animals showed safe electrode array insertion (good retinal health) and good conformability of the array to the retinal curvature. Eight animals demonstrated good mechanical stability of the array with only minor (<2 disc diameters) lateral movement. Four cases of surgical or stability complications occurred due to (1) bulged choroid during surgery, (2) hemorrhage from a systemic bleeding disorder, (3) infection, and (4) partial erosion of thin posterior sclera. There was no change in retinal structure or function (other than that seen at surgery) at endpoint. Histopathology showed a mild foreign body response. Electrodes were intact on electrode array removal. Conclusions: The 44-channel suprachoroidal electrode array has an acceptable passive safety profile to proceed to clinical trial. The safety profile is expected to improve in human studies, as the complications seen are specific to limitations (anatomic differences) with the feline model.


Asunto(s)
Coroides/cirugía , Electrodos Implantados , Microelectrodos , Implantación de Prótesis , Retina/cirugía , Prótesis Visuales , Animales , Gatos , Modelos Animales de Enfermedad , Electrodos Implantados/efectos adversos , Implantación de Prótesis/efectos adversos , Prótesis Visuales/efectos adversos
14.
J Comp Neurol ; 498(2): 295-315, 2006 Sep 10.
Artículo en Inglés | MEDLINE | ID: mdl-16856136

RESUMEN

The function of the ventral and intermediate nuclei of the lateral lemniscus (VNLL and INLL), collectively termed ventral complex of the lateral lemniscus (VCLL), is unclear. Several studies have suggested that it plays a role in coding the temporal aspects of sound. In our study, a sample (n = 161) of intracellular responses to dichotically presented noise or tone bursts was collected from the VCLL of urethane-anesthetized rats in vivo. Intracellular recordings revealed six distinct response types to tones, distinguished by their synaptic and membrane characteristics as well as firing pattern. Three of these response types were correlated with distinct cellular morphologies revealed by intracellular injection of neurobiotin. 3D reconstructions of recorded neurons within the VCLL showed the spatial distribution of various response properties, including response type, laterality, characteristic frequency (CF), and binaural influences. Cells that responded to monaural (55%) or binaural (45%) stimulation were distributed throughout the VCLL. Almost all VCLL units were responsive to contralateral stimulation (97%). Most neurons were excited by contralateral stimulation (83%), many exclusively (43%), and some in conjunction with ipsilateral inhibition (28%) or excitation (12%). The INLL contained mostly binaural neurons (65%), typically with ipsilateral inhibition and contralateral excitation. These results indicate that the VCLL is not a monaural structure and there is a dorsal-ventral segregation of binaural and monaural cells. 3D reconstructions of intracellular CFs did not reveal the presence of any tonotopic arrangement within the VCLL. Presumably, the proposed timing role of this structure does not require a systematic representation of tonal frequency.


Asunto(s)
Vías Auditivas/fisiología , Forma de la Célula , Neuronas , Estimulación Acústica , Potenciales de Acción/fisiología , Animales , Vías Auditivas/anatomía & histología , Percepción Auditiva/fisiología , Electrofisiología , Masculino , Neuronas/citología , Neuronas/metabolismo , Ratas , Ratas Wistar
15.
J Biomed Mater Res B Appl Biomater ; 104(1): 19-26, 2016 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-25611731

RESUMEN

Recently, there has been interest in investigating diamond as a material for use in biomedical implants. Diamond can be rendered electrically conducting by doping with boron or nitrogen. This has led to inclusion of boron doped and nitrogen included diamond elements as electrodes and/or feedthroughs for medical implants. As these conductive device elements are not encapsulated, there is a need to establish their clinical safety for use in implants. This article compares the biocompatibility of electrically conducting boron doped diamond (BDD) and nitrogen included diamond films and electrically insulating poly crystalline diamond films against a silicone negative control and a BDD sample treated with stannous octoate as a positive control. Samples were surgically implanted into the back muscle of a guinea pig for a period of 4-15 weeks, excised and the implant site sectioned and submitted for histological analysis. All forms of diamond exhibited a similar or lower thickness of fibrotic tissue encapsulating compared to the silicone negative control samples. All forms of diamond exhibited similar or lower levels of acute, chronic inflammatory, and foreign body responses compared to the silicone negative control indicating that the materials are well tolerated in vivo.


Asunto(s)
Boro/química , Diamante/química , Implantes Experimentales , Ensayo de Materiales , Nitrógeno/química , Animales , Conductividad Eléctrica , Cobayas
16.
IEEE Trans Biomed Eng ; 62(3): 849-57, 2015 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-25376031

RESUMEN

Platinum (Pt) is the most commonly used metal for stimulating electrodes. This study aims to determine the amount of charge that can be delivered without causing irreversible electrochemical reactions (charge injection capacity, Q inj) of Pt macroelectrodes (geometric surface area >0.001 cm(2)) in vitro and in vivo using voltage transient measurements. Pt macroelectrodes were stimulated with biphasic charge-balanced cathodic-first constant-current pulses in phosphate buffered saline. Potential excursions were measured (versus Ag/AgCl electrode) and used to determine Qinj. The in vitro Qinj were compared to those measured in vivo following: acute and chronic implantation close to the retina; chronic intracochlear implantation; and acute subdural implantation, in the cat. Qinj increased with pulsewidth from 35 to 54 µC/cm(2) for respective pulse widths of 100 to 3200 µs per phase in vitro. Qinj was significantly less in vivo. There was no significant difference in Qinj between acutely (3.84 to 16.6 µC/cm(2) with pulsewidths of 100 to 3200 µs) and chronically (6.99 to 15.8 µC/cm(2) with pulsewidths of 200 to 3200 µs) implanted suprachoroidal electrodes. Intracochlear Qinj was not different to suprachoroidal Qinj, while subdural Qinj was significantly less than the suprachoroidal Q inj (p < 0.05). These results have important implications in providing guidelines on Qinj for the safe use of Pt stimulating macroelectrodes and question the relevance of measuring Qinj in vivo using voltage transients.


Asunto(s)
Estimulación Eléctrica/instrumentación , Electrodos Implantados , Platino (Metal)/química , Animales , Gatos , Electroquímica , Ensayo de Materiales
17.
J Vis Exp ; (96)2015 Feb 14.
Artículo en Inglés | MEDLINE | ID: mdl-25798628

RESUMEN

Retinal prostheses for the treatment of certain forms of blindness are gaining traction in clinical trials around the world with commercial devices currently entering the market. In order to evaluate the safety of these devices, in preclinical studies, reliable techniques are needed. However, the hard metal components utilised in some retinal implants are not compatible with traditional histological processes, particularly in consideration for the delicate nature of the surrounding tissue. Here we describe techniques for assessing the health of the eye directly adjacent to a retinal implant secured epiretinally with a metal tack. Retinal prostheses feature electrode arrays in contact with eye tissue. The most commonly used location for implantation is the epiretinal location (posterior chamber of the eye), where the implant is secured to the retina with a metal tack that penetrates all the layers of the eye. Previous methods have not been able to assess the proximal ocular tissue with the tack in situ, due to the inability of traditional histological techniques to cut metal objects. Consequently, it has been difficult to assess localized damage, if present, caused by tack insertion. Therefore, we developed a technique for visualizing the tissue around a retinal tack and implant. We have modified an established technique, used for processing and visualizing hard bony tissue around a cochlear implant, for the soft delicate tissues of the eye. We orientated and embedded the fixed eye tissue, including the implant and retinal tack, in epoxy resin, to stabilise and protect the structure of the sample. Embedded samples were then ground, polished, stained, and imaged under various magnifications at incremental depths through the sample. This technique allowed the reliable assessment of eye tissue integrity and cytoarchitecture adjacent to the metal tack.


Asunto(s)
Implantación de Prótesis/métodos , Retina/citología , Prótesis Visuales , Implantación Coclear/efectos adversos , Implantación Coclear/métodos , Electrodos Implantados , Humanos , Implantación de Prótesis/efectos adversos , Retina/patología , Prótesis Visuales/efectos adversos
18.
PLoS One ; 10(5): e0126500, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-25978772

RESUMEN

In vivo intracellular responses to auditory stimuli revealed that, in a particular population of cells of the ventral nucleus of the lateral lemniscus (VNLL) of rats, fast inhibition occurred before the first action potential. These experimental data were used to constrain a leaky integrate-and-fire (LIF) model of the neurons in this circuit. The post-synaptic potentials of the VNLL cell population were characterized using a method of triggered averaging. Analysis suggested that these inhibited VNLL cells produce action potentials in response to a particular magnitude of the rate of change of their membrane potential. The LIF model was modified to incorporate the VNLL cells' distinctive action potential production mechanism. The model was used to explore the response of the population of VNLL cells to simple speech-like sounds. These sounds consisted of a simple tone modulated by a saw tooth with exponential decays, similar to glottal pulses that are the repeated impulses seen in vocalizations. It was found that the harmonic component of the sound was enhanced in the VNLL cell population when compared to a population of auditory nerve fibers. This was because the broadband onset noise, also termed spectral splatter, was suppressed by the fast onset inhibition. This mechanism has the potential to greatly improve the clarity of the representation of the harmonic content of certain kinds of natural sounds.


Asunto(s)
Vías Auditivas/fisiología , Tronco Encefálico/fisiología , Estimulación Acústica/métodos , Potenciales de Acción/fisiología , Animales , Electrofisiología/métodos , Masculino , Modelos Biológicos , Neuronas/fisiología , Ratas , Ratas Wistar , Sonido , Potenciales Sinápticos/fisiología
19.
Biomaterials ; 53: 464-74, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-25890743

RESUMEN

As the field of biomedical implants matures the functionality of implants is rapidly increasing. In the field of neural prostheses this is particularly apparent as researchers strive to build devices that interact with highly complex neural systems such as vision, hearing, touch and movement. A retinal implant, for example, is a highly complex device and the surgery, training and rehabilitation requirements involved in deploying such devices are extensive. Ideally, such devices will be implanted only once and will continue to function effectively for the lifetime of the patient. The first and most pivotal factor that determines device longevity is the encapsulation that separates the sensitive electronics of the device from the biological environment. This paper describes the realisation of a free standing device encapsulation made from diamond, the most impervious, long lasting and biochemically inert material known. A process of laser micro-machining and brazing is described detailing the fabrication of hermetic electrical feedthroughs and laser weldable seams using a 96.4% gold active braze alloy, another material renowned for biochemical longevity. Accelerated ageing of the braze alloy, feedthroughs and hermetic capsules yielded no evidence of corrosion and no loss of hermeticity. Samples of the gold braze implanted for 15 weeks, in vivo, caused minimal histopathological reaction and results were comparable to those obtained from medical grade silicone controls. The work described represents a first account of a free standing, fully functional hermetic diamond encapsulation for biomedical implants, enabled by gold active alloy brazing and laser micro-machining.


Asunto(s)
Aleaciones , Materiales Biocompatibles , Diamante , Oro , Prótesis Neurales , Cemento de Óxido de Zinc-Eugenol , Animales , Cobayas
20.
J Neural Eng ; 11(4): 046017, 2014 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-24965866

RESUMEN

OBJECTIVE: The research goal is to develop a wide-field retinal stimulating array for prosthetic vision. This study aimed at evaluating the efficacy of a suprachoroidal electrode array in evoking visual cortex activity after long term implantation. APPROACH: A planar silicone based electrode array (8 mm × 19 mm) was implanted into the suprachoroidal space in cats (ntotal = 10). It consisted of 20 platinum stimulating electrodes (600 µm diameter) and a trans-scleral cable terminated in a subcutaneous connector. Three months after implantation (nchronic = 6), or immediately after implantation (nacute = 4), an electrophysiological study was performed. Electrode total impedance was measured from voltage transients using 500 µs, 1 mA pulses. Electrically evoked potentials (EEPs) and multi-unit activity were recorded from the visual cortex in response to monopolar retinal stimulation. Dynamic range and cortical activation spread were calculated from the multi-unit recordings. MAIN RESULTS: The mean electrode total impedance in vivo following 3 months was 12.5 ± 0.3 kΩ. EEPs were recorded for 98% of the electrodes. The median evoked potential threshold was 150 nC (charge density 53 µC cm(-2)). The lowest stimulation thresholds were found proximal to the area centralis. Mean thresholds from multiunit activity were lower for chronic (181 ± 14 nC) compared to acute (322 ± 20 nC) electrodes (P < 0.001), but there was no difference in dynamic range or cortical activation spread. SIGNIFICANCE: Suprachoroidal stimulation threshold was lower in chronic than acute implantation and was within safe charge limits for platinum. Electrode-tissue impedance following chronic implantation was higher, indicating the need for sufficient compliance voltage (e.g. 12.8 V for mean impedance, threshold and dynamic range). The wide-field suprachoroidal array reliably activated the retina after chronic implantation.


Asunto(s)
Coroides/fisiología , Implantación de Prótesis , Retina/fisiología , Corteza Visual/fisiología , Prótesis Visuales , Animales , Gatos , Estimulación Eléctrica , Electrodos , Electrodos Implantados , Diseño de Prótesis
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA