Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
1.
J Biol Chem ; 292(18): 7588-7597, 2017 05 05.
Artículo en Inglés | MEDLINE | ID: mdl-28320857

RESUMEN

Ceramide and more complex sphingolipids constitute a diverse group of lipids that serve important roles as structural entities of biological membranes and as regulators of cellular growth, differentiation, and development. Thus, ceramides are vital players in numerous diseases including metabolic and cardiovascular diseases, as well as neurological disorders. Here we show that acyl-coenzyme A-binding protein (ACBP) potently facilitates very-long acyl chain ceramide synthesis. ACBP increases the activity of ceramide synthase 2 (CerS2) by more than 2-fold and CerS3 activity by 7-fold. ACBP binds very-long-chain acyl-CoA esters, which is required for its ability to stimulate CerS activity. We also show that high-speed liver cytosol from wild-type mice activates CerS3 activity, whereas cytosol from ACBP knock-out mice does not. Consistently, CerS2 and CerS3 activities are significantly reduced in the testes of ACBP-/- mice, concomitant with a significant reduction in long- and very-long-chain ceramide levels. Importantly, we show that ACBP interacts with CerS2 and CerS3. Our data uncover a novel mode of regulation of very-long acyl chain ceramide synthesis by ACBP, which we anticipate is of crucial importance in understanding the regulation of ceramide metabolism in pathogenesis.


Asunto(s)
Ceramidas/biosíntesis , Inhibidor de la Unión a Diazepam/metabolismo , Ácidos Grasos/metabolismo , Animales , Línea Celular , Ceramidas/genética , Inhibidor de la Unión a Diazepam/genética , Ácidos Grasos/genética , Humanos , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Ratones , Ratones Noqueados , Esfingosina N-Aciltransferasa/genética , Esfingosina N-Aciltransferasa/metabolismo , Proteínas Supresoras de Tumor/genética , Proteínas Supresoras de Tumor/metabolismo
2.
Biochim Biophys Acta Mol Cell Biol Lipids ; 1862(2): 145-155, 2017 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-27815223

RESUMEN

The acyl-CoA binding protein (ACBP) plays a key role in chaperoning long-chain acyl-CoAs into lipid metabolic processes and acts as an important regulatory hub in mammalian physiology. This is highlighted by the recent finding that mice devoid of ACBP suffer from a compromised epidermal barrier and delayed weaning, the physiological process where newborns transit from a fat-based milk diet to a carbohydrate-rich diet. To gain insights into how ACBP impinges on weaning and the concomitant remodeling of whole-body lipid metabolism we performed a comparative lipidomics analysis charting the absolute abundance of 613 lipid molecules in liver, muscle and plasma from weaning and adult Acbp knockout and wild type mice. Our results reveal that ACBP deficiency affects primarily lipid metabolism of liver and plasma during weaning. Specifically, we show that ACBP deficient mice have elevated levels of hepatic cholesteryl esters, and that lipids featuring an 18:1 fatty acid moiety are increased in Acbp depleted mice across all tissues investigated. Our results also show that the perturbation of systemic lipid metabolism in Acbp knockout mice is transient and becomes normalized and similar to that of wild type as mice grow older. These findings demonstrate that ACBP serves crucial functions in maintaining lipid metabolic homeostasis in mice during weaning.


Asunto(s)
Inhibidor de la Unión a Diazepam/deficiencia , Metabolismo de los Lípidos/fisiología , Animales , Ésteres del Colesterol/metabolismo , Ácidos Grasos/metabolismo , Lípidos/fisiología , Hígado/metabolismo , Masculino , Ratones , Ratones Noqueados
3.
J Lipid Res ; 56(9): 1738-46, 2015 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-26142722

RESUMEN

Acyl-CoA binding protein (ACBP) is a small, ubiquitously expressed intracellular protein that binds C14-C22 acyl-CoA esters with very high affinity and specificity. We have recently shown that targeted disruption of the Acbp gene leads to a compromised epidermal barrier and that this causes delayed adaptation to weaning, including the induction of the hepatic lipogenic and cholesterogenic gene programs. Here we show that ACBP is highly expressed in the Harderian gland, a gland that is located behind the eyeball of rodents and involved in the production of fur lipids and lipids used for lubrication of the eye lid. We show that disruption of the Acbp gene leads to a significant enlargement of this gland with hypertrophy of the acinar cells and increased de novo synthesis of monoalkyl diacylglycerol, the main lipid species produced by the gland. Mice with conditional targeting of the Acbp gene in the epidermis recapitulate this phenotype, whereas generation of an artificial epidermal barrier during gland development reverses the phenotype. Our findings indicate that the Harderian gland is activated by the compromised epidermal barrier as an adaptive and protective mechanism to overcome the barrier defect.


Asunto(s)
Células Acinares/metabolismo , Colesterol/metabolismo , Inhibidor de la Unión a Diazepam/genética , Glándula de Harder/metabolismo , Animales , Colesterol/genética , Inhibidor de la Unión a Diazepam/metabolismo , Epidermis/metabolismo , Epidermis/patología , Lípidos/biosíntesis , Lipogénesis/genética , Hígado/metabolismo , Ratones , Monoglicéridos/biosíntesis
4.
Biochim Biophys Acta ; 1841(3): 369-76, 2014 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-24080521

RESUMEN

The acyl-CoA binding protein (ACBP) is a 10kDa intracellular protein expressed in all eukaryotic species and mammalian tissues investigated. It binds acyl-CoA esters with high specificity and affinity and is thought to act as an intracellular transporter of acyl-CoA esters between different enzymatic systems; however, the precise function remains unknown. ACBP is expressed at relatively high levels in the epidermis, particularly in the suprabasal layers, which are highly active in lipid synthesis. Targeted disruption of the ACBP gene in mice leads to a pronounced skin and fur phenotype, which includes tousled and greasy fur, development of alopecia and scaling of the skin with age. Furthermore, epidermal barrier function is compromised causing a ~50% increase in transepidermal water loss relative to that of wild type mice. Lipidomic analyses indicate that this is due to significantly reduced levels of non-esterified very long chain fatty acids in the stratum corneum of ACBP(-/-) mice. Here we review the current knowledge of ACBP with special focus on the function of ACBP in the epidermal barrier. This article is part of a Special Issue entitled The Important Role of Lipids in the Epidermis and their Role in the Formation and Maintenance of the Cutaneous Barrier. Guest Editors: Kenneth R. Feingold and Peter Elias.


Asunto(s)
Inhibidor de la Unión a Diazepam , Epidermis/metabolismo , Regulación de la Expresión Génica/fisiología , Metabolismo de los Lípidos/fisiología , Equilibrio Hidroelectrolítico/fisiología , Animales , Transporte Biológico Activo/fisiología , Inhibidor de la Unión a Diazepam/genética , Inhibidor de la Unión a Diazepam/metabolismo , Eliminación de Gen , Humanos , Ratones
5.
J Neurochem ; 133(2): 253-65, 2015 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-25598214

RESUMEN

Acyl-CoA-binding protein (ACBP) is a ubiquitously expressed protein that binds intracellular acyl-CoA esters. Several studies have suggested that ACBP acts as an acyl-CoA pool former and regulates long-chain fatty acids (LCFA) metabolism in peripheral tissues. In the brain, ACBP is known as Diazepam-Binding Inhibitor, a secreted peptide acting as an allosteric modulator of the GABAA receptor. However, its role in central LCFA metabolism remains unknown. In the present study, we investigated ACBP cellular expression, ACBP regulation of LCFA intracellular metabolism, FA profile, and FA metabolism-related gene expression using ACBP-deficient and control mice. ACBP was mainly found in astrocytes with high expression levels in the mediobasal hypothalamus. We demonstrate that ACBP deficiency alters the central LCFA-CoA profile and impairs unsaturated (oleate, linolenate) but not saturated (palmitate, stearate) LCFA metabolic fluxes in hypothalamic slices and astrocyte cultures. In addition, lack of ACBP differently affects the expression of genes involved in FA metabolism in cortical versus hypothalamic astrocytes. Finally, ACBP deficiency increases FA content and impairs their release in response to palmitate in hypothalamic astrocytes. Collectively, these findings reveal for the first time that central ACBP acts as a regulator of LCFA intracellular metabolism in astrocytes. Acyl-CoA-binding protein (ACBP) or diazepam-binding inhibitor is a secreted peptide acting centrally as a GABAA allosteric modulator. Using brain slices, cortical, and hypothalamic astrocyte cultures from ACBP KO mice, we demonstrate that ACBP mainly localizes in astrocytes and regulates unsaturated but not saturated long-chain fatty acids (LCFA) metabolism. In addition, ACBP deficiency alters FA metabolism-related genes and results in intracellular FA accumulation while affecting their release. Our results support a novel role for ACBP in brain lipid metabolism. FA, fatty acids; KO, knockout; PL, phospholipids; TAG, triacylglycerol.


Asunto(s)
Astrocitos/metabolismo , Inhibidor de la Unión a Diazepam/metabolismo , Ácidos Grasos/metabolismo , Hipotálamo/citología , Metabolismo de los Lípidos/genética , Acilcoenzima A/metabolismo , Animales , Células Cultivadas , Inhibidor de la Unión a Diazepam/genética , Proteínas de Unión a Ácidos Grasos , Regulación de la Expresión Génica/genética , Proteína Ácida Fibrilar de la Glía/metabolismo , Técnicas In Vitro , Masculino , Ratones , Ratones Noqueados
6.
Nat Commun ; 15(1): 4711, 2024 Jun 03.
Artículo en Inglés | MEDLINE | ID: mdl-38830841

RESUMEN

The fetal development of organs and functions is vulnerable to perturbation by maternal inflammation which may increase susceptibility to disorders after birth. Because it is not well understood how the placenta and fetus respond to acute lung- inflammation, we characterize the response to maternal pulmonary lipopolysaccharide exposure across 24 h in maternal and fetal organs using multi-omics, imaging and integrative analyses. Unlike maternal organs, which mount strong inflammatory immune responses, the placenta upregulates immuno-modulatory genes, in particular the IL-6 signaling suppressor Socs3. Similarly, we observe no immune response in the fetal liver, which instead displays metabolic changes, including increases in lipids containing docosahexaenoic acid, crucial for fetal brain development. The maternal liver and plasma display similar metabolic alterations, potentially increasing bioavailability of docosahexaenoic acid for the mother and fetus. Thus, our integrated temporal analysis shows that systemic inflammation in the mother leads to a metabolic perturbation in the fetus.


Asunto(s)
Feto , Lipopolisacáridos , Hígado , Pulmón , Placenta , Femenino , Embarazo , Placenta/metabolismo , Placenta/inmunología , Animales , Feto/inmunología , Feto/metabolismo , Pulmón/inmunología , Pulmón/metabolismo , Hígado/metabolismo , Hígado/inmunología , Ácidos Docosahexaenoicos/metabolismo , Proteína 3 Supresora de la Señalización de Citocinas/metabolismo , Proteína 3 Supresora de la Señalización de Citocinas/genética , Ratones , Inflamación/inmunología , Inflamación/metabolismo , Ratones Endogámicos C57BL , Adaptación Fisiológica/inmunología , Desarrollo Fetal/inmunología , Intercambio Materno-Fetal/inmunología , Interleucina-6/metabolismo , Interleucina-6/inmunología
7.
J Lipid Res ; 53(10): 2162-2174, 2012 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-22829653

RESUMEN

The acyl-CoA binding protein (ACBP) is a 10 kDa intracellular protein expressed in all eukaryotic species. Mice with targeted disruption of Acbp (ACBP(-/-) mice) are viable and fertile but present a visible skin and fur phenotype characterized by greasy fur and development of alopecia and scaling with age. Morphology and development of skin and appendages are normal in ACBP(-/-) mice; however, the stratum corneum display altered biophysical properties with reduced proton activity and decreased water content. Mass spectrometry analyses of lipids from epidermis and stratum corneum of ACBP(+/+) and ACBP(-/-) mice showed very similar composition, except for a significant and specific decrease in the very long chain free fatty acids (VLC-FFA) in stratum corneum of ACBP(-/-) mice. This finding indicates that ACBP is critically involved in the processes that lead to production of stratum corneum VLC-FFAs via complex phospholipids in the lamellar bodies. Importantly, we show that ACBP(-/-) mice display a ∼50% increased transepidermal water loss compared with ACBP(+/+) mice. Furthermore, skin and fur sebum monoalkyl diacylglycerol (MADAG) levels are significantly increased, suggesting that ACBP limits MADAG synthesis in sebaceous glands. In summary, our study shows that ACBP is required for production of VLC-FFA for stratum corneum and for maintaining normal epidermal barrier function.


Asunto(s)
Inhibidor de la Unión a Diazepam/genética , Epidermis/metabolismo , Animales , Colesterol/metabolismo , Inhibidor de la Unión a Diazepam/metabolismo , Metabolismo de los Lípidos , Lípidos/análisis , Espectrometría de Masas , Ratones , Ratones Endogámicos , Fenotipo , Glándulas Sebáceas/química , Glándulas Sebáceas/metabolismo , Piel/química , Piel/metabolismo
8.
J Biol Chem ; 286(5): 3460-72, 2011 Feb 04.
Artículo en Inglés | MEDLINE | ID: mdl-21106527

RESUMEN

The acyl-CoA-binding protein (ACBP)/diazepam binding inhibitor is an intracellular protein that binds C(14)-C(22) acyl-CoA esters and is thought to act as an acyl-CoA transporter. In vitro analyses have indicated that ACBP can transport acyl-CoA esters between different enzymatic systems; however, little is known about the in vivo function in mammalian cells. We have generated mice with targeted disruption of ACBP (ACBP(-/-)). These mice are viable and fertile and develop normally. However, around weaning, the ACBP(-/-) mice go through a crisis with overall weakness and a slightly decreased growth rate. Using microarray analysis, we show that the liver of ACBP(-/-) mice displays a significantly delayed adaptation to weaning with late induction of target genes of the sterol regulatory element-binding protein (SREBP) family. As a result, hepatic de novo cholesterogenesis is decreased at weaning. The delayed induction of SREBP target genes around weaning is caused by a compromised processing and decreased expression of SREBP precursors, leading to reduced binding of SREBP to target sites in chromatin. In conclusion, lack of ACBP interferes with the normal metabolic adaptation to weaning and leads to delayed induction of the lipogenic gene program in the liver.


Asunto(s)
Adaptación Fisiológica , Inhibidor de la Unión a Diazepam/metabolismo , Hígado/metabolismo , Destete , Animales , Animales Recién Nacidos , Colesterol/biosíntesis , Cromatina/metabolismo , Perfilación de la Expresión Génica , Hígado/fisiología , Metabolismo , Ratones , Ratones Noqueados , Proteína 1 de Unión a los Elementos Reguladores de Esteroles/genética
9.
Am J Physiol Renal Physiol ; 302(8): F1034-44, 2012 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-22237802

RESUMEN

The acyl-CoA binding protein (ACBP) is a small intracellular protein that specifically binds and transports medium to long-chain acyl-CoA esters. Previous studies have shown that ACBP is ubiquitously expressed but found at particularly high levels in lipogenic cell types as well as in many epithelial cells. Here we show that ACBP is widely expressed in human and mouse kidney epithelium, with the highest expression in the proximal convoluted tubules. To elucidate the role of ACBP in the renal epithelium, mice with targeted disruption of the ACBP gene (ACBP(-/-)) were used to study water and NaCl balance as well as urine concentrating ability in metabolic cages. Food intake and urinary excretion of Na(+) and K(+) did not differ between ACBP(-/-) and (+/+) mice. Interestingly, however, water intake and diuresis were significantly higher at baseline in ACBP(-/-) mice compared with that of (+/+) mice. Subsequent to 20-h water deprivation, ACBP(-/-) mice exhibited increased diuresis, reduced urine osmolality, elevated hematocrit, and higher relative weight loss compared with (+/+) mice. There were no significant differences in plasma concentrations of renin, corticosterone, and aldosterone between mice of the two genotypes. After water deprivation, renal medullary interstitial fluid osmolality and concentrations of Na(+), K(+), and urea did not differ between genotypes and cAMP excretion was similar. Renal aquaporin-1 (AQP1), -2, and -4 protein abundances did not differ between water-deprived (+/+) and ACBP(-/-) mice; however, ACBP(-/-) mice displayed increased apical targeting of pS256-AQP2. AQP3 abundance was lower in ACBP(-/-) mice than in (+/+) control animals. Thus we conclude that ACBP is necessary for intact urine concentrating ability. Our data suggest that the deficiency in urine concentrating ability in the ACBP(-/-) may be caused by reduced AQP3, leading to impaired efflux over the basolateral membrane of the collecting duct.


Asunto(s)
Acuaporina 3/biosíntesis , Inhibidor de la Unión a Diazepam/fisiología , Capacidad de Concentración Renal/fisiología , Riñón/fisiología , Aldosterona/sangre , Animales , Acuaporina 3/genética , Corticosterona/sangre , Diuresis/fisiología , Ingestión de Líquidos/fisiología , Eliminación de Gen , Humanos , Riñón/citología , Riñón/metabolismo , Ratones , Ratones Endogámicos C57BL , Concentración Osmolar , Potasio/orina , Renina/sangre , Sodio/orina , Urea/análisis , Privación de Agua/fisiología
10.
Cell Rep ; 34(5): 108710, 2021 02 02.
Artículo en Inglés | MEDLINE | ID: mdl-33535053

RESUMEN

Diurnal regulation of whole-body lipid metabolism plays a vital role in metabolic health. Although changes in lipid levels across the diurnal cycle have been investigated, the system-wide molecular responses to both short-acting fasting-feeding transitions and longer-timescale circadian rhythms have not been explored in parallel. Here, we perform time-series multi-omics analyses of liver and plasma revealing that the majority of molecular oscillations are entrained by adaptations to fasting, food intake, and the postprandial state. By developing algorithms for lipid structure enrichment analysis and lipid molecular crosstalk between tissues, we find that the hepatic phosphatidylethanolamine (PE) methylation pathway is diurnally regulated, giving rise to two pools of oscillating phosphatidylcholine (PC) molecules in the circulation, which are coupled to secretion of either very low-density lipoprotein (VLDL) or high-density lipoprotein (HDL) particles. Our work demonstrates that lipid molecular timeline profiling across tissues is key to disentangling complex metabolic processes and provides a critical resource for the study of whole-body lipid metabolism.


Asunto(s)
Metabolismo de los Lípidos/genética , Hígado/fisiología , Animales , Ritmo Circadiano , Ratones
11.
Mol Metab ; 44: 101144, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-33346070

RESUMEN

OBJECTIVES: The skin is the largest sensory organ of the human body and plays a fundamental role in regulating body temperature. However, adaptive alterations in skin functions and morphology have only vaguely been associated with physiological responses to cold stress or sensation of ambient temperatures. We previously found that loss of acyl-CoA-binding protein (ACBP) in keratinocytes upregulates lipolysis in white adipose tissue and alters hepatic lipid metabolism, suggesting a link between epidermal barrier functions and systemic energy metabolism. METHODS: To assess the physiological responses to loss of ACBP in keratinocytes in detail, we used full-body ACBP-/- and skin-specific ACBP-/- knockout mice to clarify how loss of ACBP affects 1) energy expenditure by indirect calorimetry, 2) response to high-fat feeding and a high oral glucose load, and 3) expression of brown-selective gene programs by quantitative PCR in inguinal WAT (iWAT). To further elucidate the role of the epidermal barrier in systemic energy metabolism, we included mice with defects in skin structural proteins (ma/ma Flgft/ft) in these studies. RESULTS: We show that the ACBP-/- mice and skin-specific ACBP-/- knockout mice exhibited increased energy expenditure, increased food intake, browning of the iWAT, and resistance to diet-induced obesity. The metabolic phenotype, including browning of the iWAT, was reversed by housing the mice at thermoneutrality (30 °C) or pharmacological ß-adrenergic blocking. Interestingly, these findings were phenocopied in flaky tail mice (ma/ma Flgft/ft). Taken together, we demonstrate that a compromised epidermal barrier induces a ß-adrenergic response that increases energy expenditure and browning of the white adipose tissue to maintain a normal body temperature. CONCLUSIONS: Our findings show that the epidermal barrier plays a key role in maintaining systemic metabolic homeostasis. Thus, regulation of epidermal barrier functions warrants further attention to understand the regulation of systemic metabolism in further detail.


Asunto(s)
Inhibidor de la Unión a Diazepam/genética , Inhibidor de la Unión a Diazepam/metabolismo , Metabolismo Energético/fisiología , Homeostasis , Piel/metabolismo , Tejido Adiposo Blanco/metabolismo , Animales , Temperatura Corporal , Metabolismo Energético/genética , Proteínas Filagrina , Proteínas de Filamentos Intermediarios , Metabolismo de los Lípidos , Lipólisis , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Obesidad/metabolismo
12.
Bone Res ; 7: 35, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31754546

RESUMEN

Enhanced bone marrow adipogenesis and impaired osteoblastogenesis have been observed in obesity, suggesting that the metabolic microenvironment regulates bone marrow adipocyte and osteoblast progenitor differentiation fate. To determine the molecular mechanisms, we studied two immortalized murine cell lines of adipocyte or osteoblast progenitors (BMSCsadipo and BMSCsosteo, respectively) under basal and adipogenic culture conditions. At baseline, BMSCsadipo, and BMSCsosteo exhibit a distinct metabolic program evidenced by the presence of specific global gene expression, cellular bioenergetics, and metabolomic signatures that are dependent on insulin signaling and glycolysis in BMSCsosteo versus oxidative phosphorylation in BMSCsadipo. To test the flexibility of the metabolic program, we treated BMSCsadipo with parathyroid hormone, S961 (an inhibitor of insulin signaling) and oligomycin (an inhibitor of oxidative phosphorylation). The treatment induced significant changes in cellular bioenergetics that were associated with decreased adipocytic differentiation. Similarly, 12 weeks of a high-fat diet in mice led to the expansion of adipocyte progenitors, enhanced adipocyte differentiation and insulin signaling in cultured BMSCs. Our data demonstrate that BMSC progenitors possess a distinct metabolic program and are poised to respond to exogenous metabolic cues that regulate their differentiation fate.

13.
Cell Metab ; 28(1): 159-174.e11, 2018 Jul 03.
Artículo en Inglés | MEDLINE | ID: mdl-29861389

RESUMEN

Activation of energy expenditure in thermogenic fat is a promising strategy to improve metabolic health, yet the dynamic processes that evoke this response are poorly understood. Here we show that synthesis of the mitochondrial phospholipid cardiolipin is indispensable for stimulating and sustaining thermogenic fat function. Cardiolipin biosynthesis is robustly induced in brown and beige adipose upon cold exposure. Mimicking this response through overexpression of cardiolipin synthase (Crls1) enhances energy consumption in mouse and human adipocytes. Crls1 deficiency in thermogenic adipocytes diminishes inducible mitochondrial uncoupling and elicits a nuclear transcriptional response through endoplasmic reticulum stress-mediated retrograde communication. Cardiolipin depletion in brown and beige fat abolishes adipose thermogenesis and glucose uptake, which renders animals insulin resistant. We further identify a rare human CRLS1 variant associated with insulin resistance and show that adipose CRLS1 levels positively correlate with insulin sensitivity. Thus, adipose cardiolipin has a powerful impact on organismal energy homeostasis through thermogenic fat bioenergetics.


Asunto(s)
Adipocitos/metabolismo , Tejido Adiposo Beige/metabolismo , Tejido Adiposo Pardo/metabolismo , Cardiolipinas/biosíntesis , Proteínas de la Membrana/metabolismo , Mitocondrias/metabolismo , Transferasas (Grupos de Otros Fosfatos Sustitutos)/metabolismo , Animales , Células Cultivadas , Metabolismo Energético , Humanos , Proteínas de la Membrana/genética , Ratones , Ratones Endogámicos C57BL , Termogénesis , Transferasas (Grupos de Otros Fosfatos Sustitutos)/genética
14.
Trends Endocrinol Metab ; 28(9): 669-683, 2017 09.
Artículo en Inglés | MEDLINE | ID: mdl-28668301

RESUMEN

The skin is the largest sensory organ of the human body. The skin not only prevents loss of water and other components of the body, but also is involved in regulation of body temperature and serves as an essential barrier, protecting mammals from both routine and extreme environments. Given the importance of the skin in temperature regulation, it is surprising that adaptive alterations in skin functions and morphology only vaguely have been associated with systemic physiological responses. Despite that impaired lipid metabolism in the skin often impairs the epidermal permeability barrier and insulation properties of the skin, its role in regulating systemic physiology and metabolism is yet to be recognized.


Asunto(s)
Epidermis/metabolismo , Metabolismo de los Lípidos , Fenómenos Fisiológicos , Fenómenos Fisiológicos de la Piel , Animales , Humanos , Lípidos/fisiología , Permeabilidad , Piel/metabolismo
15.
Prog Lipid Res ; 59: 1-25, 2015 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-25898985

RESUMEN

Long-chain fatty acyl-CoA esters are key intermediates in numerous lipid metabolic pathways, and recognized as important cellular signaling molecules. The intracellular flux and regulatory properties of acyl-CoA esters have been proposed to be coordinated by acyl-CoA-binding domain containing proteins (ACBDs). The ACBDs, which comprise a highly conserved multigene family of intracellular lipid-binding proteins, are found in all eukaryotes and ubiquitously expressed in all metazoan tissues, with distinct expression patterns for individual ACBDs. The ACBDs are involved in numerous intracellular processes including fatty acid-, glycerolipid- and glycerophospholipid biosynthesis, ß-oxidation, cellular differentiation and proliferation as well as in the regulation of numerous enzyme activities. Little is known about the specific roles of the ACBDs in the regulation of these processes, however, recent studies have gained further insights into their in vivo functions and provided further evidence for ACBD-specific functions in cellular signaling and lipid metabolic pathways. This review summarizes the structural and functional properties of the various ACBDs, with special emphasis on the function of ACBD1, commonly known as ACBP.


Asunto(s)
Acilcoenzima A/fisiología , Inhibidor de la Unión a Diazepam/fisiología , Metabolismo de los Lípidos , Secuencia de Aminoácidos , Animales , Vías Biosintéticas , Proteínas Portadoras/metabolismo , Ésteres , Humanos , Datos de Secuencia Molecular , Transducción de Señal
16.
Ann Clin Transl Neurol ; 1(2): 88-98, 2014 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-25356388

RESUMEN

OBJECTIVE: Ceramides are precursors of complex sphingolipids (SLs), which are important for normal functioning of both the developing and mature brain. Altered SL levels have been associated with many neurodegenerative disorders, including epilepsy, although few direct links have been identified between genes involved in SL metabolism and epilepsy. METHODS: We used quantitative real-time PCR, Western blotting, and enzymatic assays to determine the mRNA, protein, and activity levels of ceramide synthase 2 (CERS2) in fiibroblasts isolated from parental control subjects and from a patient diagnosed with progressive myoclonic epilepsy (PME). Mass spectrometry and fluorescence microscopy were used to examine the effects of reduced CERS2 activity on cellular lipid composition and plasma membrane functions. RESULTS: We identify a novel 27 kb heterozygous deletion including the CERS2 gene in a proband diagnosed with PME. Compared to parental controls, levels of CERS2 mRNA, protein, and activity were reduced by ˜50% in fibroblasts isolated from this proband, resulting in significantly reduced levels of ceramides and sphingomyelins containing the very long-chain fatty acids C24:0 and C26:0. The change in SL composition was also reflected in a reduction in cholera toxin B immunofluorescence, indicating that membrane composition and function are altered. INTERPRETATION: We propose that reduced levels of CERS2, and consequently diminished levels of ceramides and SLs containing very long-chain fatty acids, lead to development of PME.

17.
Cell Rep ; 5(5): 1403-12, 2013 Dec 12.
Artículo en Inglés | MEDLINE | ID: mdl-24316079

RESUMEN

We previously reported that mice deficient in acyl-CoA-binding protein (ACBP) display a delayed metabolic adaptation to weaning. This includes a delayed activation of the hepatic lipogenic gene program, which may result from hepatic accumulation of triacylglycerol and/or cholesteryl esters in the late suckling period. To further investigate the basis for this phenotype, we generated mice deficient in ACBP in hepatocytes (Alb-ACBP(-/-)) and keratinocytes (K14-ACBP(-/-)). Surprisingly, the delayed adaptation to weaning, including hepatic lipid accumulation, is caused by ACBP deficiency in the skin rather than in the liver. Similarly to ACBP(-/-) mice, K14-ACBP(-/-) mice exhibit an increased transepidermal water loss, and we show that the hepatic phenotype is caused specifically by the epidermal barrier defect, which leads to increased lipolysis in white adipose tissue. Our data demonstrate that an imperfect epidermal barrier leads to profound suppression of the hepatic SREBP gene program and lipid accumulation in the liver.


Asunto(s)
Adaptación Fisiológica , Inhibidor de la Unión a Diazepam/metabolismo , Epidermis/metabolismo , Hepatocitos/metabolismo , Queratinocitos/metabolismo , Destete , Tejido Adiposo Blanco/metabolismo , Animales , Agua Corporal/metabolismo , Inhibidor de la Unión a Diazepam/genética , Lipólisis , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Proteínas de Unión a los Elementos Reguladores de Esteroles/genética , Proteínas de Unión a los Elementos Reguladores de Esteroles/metabolismo
18.
Mol Cell Biochem ; 284(1-2): 149-57, 2006 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-16411019

RESUMEN

The acyl-CoA binding protein (ACBP) is a 10 kD intracellular lipid binding protein that binds and transports acyl-CoA esters. The protein is expressed in most cell types at low levels; however, expression differs markedly between different cell types with expression being particularly high in e.g. cells with a high turnover of fatty acids. We show here that the relatively high basal promoter activity of the rat ACBP gene in fibroblasts and hepatoma cells relies on sequences between -331 to -182 and on the Sp1 and NF-Y sites at -172 and -143, respectively. The basal transcription is modulated by members of the PPAR and SREBP families. In adipocytes, PPARgamma is in part responsible for the induction during adipocyte differentiation, but other transcription factors appear to play a role as well. In hepatocytes, SREBP-1c is the main regulator of ACBP in response to changes in insulin levels during fasting/refeeding. PPARalpha counteracts this effect by stimulating ACBP expression during fasting. In addition, PPARalpha mediates the induction of ACBP expression in response to peroxisome proliferators. PPARalpha and PPARgamma do not require sequences upstream of -182 for transactivation; however, SREBP-1c requires the synergistic action of sequences in intron 1 for transactivation of the ACBP promoter.


Asunto(s)
Inhibidor de la Unión a Diazepam/metabolismo , PPAR alfa/fisiología , PPAR gamma/fisiología , Proteína 1 de Unión a los Elementos Reguladores de Esteroles/fisiología , Adipocitos/metabolismo , Adipocitos/fisiología , Adipogénesis , Animales , Secuencia de Bases , Diferenciación Celular , Células Cultivadas , Fibroblastos/metabolismo , Regulación de la Expresión Génica , Hepatocitos/metabolismo , Insulina/fisiología , Intrones , Ratones , Ratones Endogámicos C57BL , Datos de Secuencia Molecular , Proliferadores de Peroxisomas/farmacología , Regiones Promotoras Genéticas , Ratas , Transcripción Genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA