Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
1.
Mol Biol Rep ; 50(6): 4759-4767, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-37014567

RESUMEN

BACKGROUND: Assessment of genetic diversity and population genetic structure is important for species that are economically important, threatened, and are at global conservation priority. Analysis of mitochondrial DNA is broadly used in species identification and population genetics studies due to the availability of sufficient reference data and better evolutionary dynamics for phylogeographic investigation. Labeo rohita (Rohu) is an economically important species cultured under carp polyculture systems in Asia. The present study explores the genetic diversity, phylogeography, and population structure of L. rohita from different countries using cytochrome oxidase subunit I (COI) gene. METHODS AND RESULTS: A total of 17 L. rohita specimens were sampled from River Beas, India. For the genetic study, we amplified and sequenced COI mitochondrial DNA region. The obtained genetic data was combined with 268 COI records available in the NCBI and BOLD databases originating from multiple populations/countries across South and Southeast Asia. As a result, 33 haplotypes were identified that displayed low nucleotide (π = 0.0233) and moderate haplotype diversity (Hd = 0.523). Tajima (D) was found to be negative (P > 0.05), whereas Fu's Fs showed a positive value (P > 0.05). The overall FST value between studied populations was 0.481 (P < 0.05). CONCLUSION: AMOVA analysis indicated higher variation within than among the population examined. The neutrality tests suggested the presence of rare haplotypes and stable demography within studied populations of L. rohita. The Bayesian skyline plot indicated steady population growth until 1 Mya followed by population decline, whereas FST values indicated significant genetic differentiation. High heterogeneity was observed in the Pakistan population which could be indicative of long-term isolation and excessive culturing to meet market demands. The present results are the first global comparative analysis of L. rohita and pave the way forward for detailed genomic and ecological studies aimed at the development of improved stock and effective conservation plans. The study also makes recommendations to conserve the genetic integrity of wild species from aquaculture-reared fishes.


Asunto(s)
Cyprinidae , ADN Mitocondrial , Animales , ADN Mitocondrial/genética , Genética de Población , Variación Genética/genética , Teorema de Bayes , Filogenia , Cyprinidae/genética , Asia Sudoriental , Estructuras Genéticas , Pakistán
2.
Appl Microbiol Biotechnol ; 107(10): 3273-3289, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-37052633

RESUMEN

The hot spring microbiome is a complex assemblage of micro- and macro-organisms; however, the understanding and projection of enzymatic repertoire that access earth's integral ecosystem processes remains ambivalent. Here, the Khirganga hot spring characterized with white microbial mat and ions rich in sulfate, chlorine, sodium, and magnesium ions is investigated and displayed the examination of 41 high and medium qualified metagenome-assembled genomes (MAGs) belonged to at least 12 bacterial and 2 archaeal phyla which aids to drive sulfur, oxygen, iron, and nitrogen cycles with metabolic mechanisms involved in heavy metal tolerance. These MAGs possess over 1749 genes putatively involved in crucial metabolism of elements viz. nitrogen, phosphorus, and sulfur and 598 genes encoding enzymes for czc efflux system, chromium, arsenic, and copper heavy metals resistance. The MAGs also constitute 229 biosynthetic gene clusters classified abundantly as bacteriocins and terpenes. The metabolic roles possibly involved in altering linkages in nitrogen biogeochemical cycles and explored a discerned rate of carbon fixation exclusively in archaeal member Methanospirillum hungatei inhabited in microbial mat. Higher Pfam entropy scores of biogeochemical cycling in Proteobacteria members assuring their major contribution in assimilation of ammonia and sequestration of nitrate and sulfate components as electron acceptors. This study will readily improve the understanding of the composite relationship between bacterial species owning metal resistance genes (MRGs) and underline the exploration of adaptive mechanism of these MAGs in multi-metal contaminated environment. KEY POINTS: • Identification of 41 novel bacterial and archaeal species in habitats of hot spring • Genome-resolved metagenomics revealed MRGs (n = 598) against Cr, Co, Zn, Cd, As, and Cu • Highest entropies of N (0.48) and Fe (0.44) cycles were detected within the MAGs.


Asunto(s)
Manantiales de Aguas Termales , Microbiota , Manantiales de Aguas Termales/microbiología , Metagenómica , Bacterias/genética , Bacterias/metabolismo , Archaea/genética , Archaea/metabolismo , Metagenoma , Metales/metabolismo , Azufre/metabolismo , Nitrógeno/metabolismo , Filogenia
3.
Antonie Van Leeuwenhoek ; 116(3): 193-206, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36400900

RESUMEN

A Gram-stain-positive, motile, and rod-shaped bacterium, designated as strain MB25T, was isolated from the gut of Cyprinus carpio from the highly polluted river Yamuna, India. Phylogenetic analysis based on 16S rRNA gene sequence revealed that strain MB25T belonged to the genus Sporosarcina, sharing the highest sequence similarity with S. luteola Y1T (98.98%) and S. koreensis S-K12T (98.91%). Digital DNA-DNA hybridization and average nucleotide identity values of strain MB25T with strain Y1T and S-K12T were 18.9, 77.69, and 18.2, 76.80 respectively. Genome analysis of strain MB25T revealed its biotechnological properties such as tolerance to potent heavy metals, genes for the production of carbohydrate-active enzymes, antimicrobial compounds, and also degradation of aromatic compounds. The G + C content of strain MB25T genome was 45%. Growth observed at 10-40 °C (optimum, 28-30 °C), pH 6.0-8.5 (optimum pH 7.5-8.0); NaCl concentrations up to 6.0% (w/v). The dominant respiratory quinone was MK-7, cell wall peptidoglycan is of the A-4 type containing amino acids Lys-Glu and the major fatty acids are anteiso-C11:0 and iso-C15: 0. The major polar lipids of strain MB25T are diphosphatidylglycerol, phosphatidylglycerol, and phosphatidylethanolamine. On the basis of phenotypic, chemotaxonomic, phylogenetic, and phylogenomic data, strain MB25T represents a novel species of the genus Sporosarcina, for which the name Sporosarcina cyprini sp. nov. is proposed. The type strain is MB25T (= MCC 4366 T = JCM 34521 T = CCM 9113 T).


Asunto(s)
Carpas , Sporosarcina , Animales , Fosfolípidos/análisis , Sporosarcina/genética , Cadmio , Especies Introducidas , Análisis de Secuencia de ADN , Filogenia , ARN Ribosómico 16S/genética , Ácidos Grasos/análisis , Genómica , ADN , ADN Bacteriano/genética , ADN Bacteriano/química , Técnicas de Tipificación Bacteriana
4.
Arch Microbiol ; 204(8): 509, 2022 Jul 20.
Artículo en Inglés | MEDLINE | ID: mdl-35859219

RESUMEN

The gastrointestinal microbial community plays a crucial role in host health, immunity, protection, development and provides nutrients to the host. The rising human-induced pollution and heavy metal contamination in all aquatic systems globally has led us to explore the gut microbial diversity of two exotic invasive fish Cyprinus carpio (Linnaeus, 1858) and Oreochromis niloticus (Linnaeus,1857) from river Yamuna, India. These fishes are aquatic bioindicators with high demographic resilience. Exploring these associations would pave the way for addressing problems that inhabitant fishes are facing due to the increasing pollution load in the River Yamuna. Based on 16S rRNA gene amplicon sequencing, our results deliver comparative information on the gut microbiome of these fishes and highlight connotations between the microbiome of gut and water samples. The gut of C. carpio and O. niloticus was dominated by phyla Proteobacteria whereas Bacteroidetes dominated the water sample. Microbial communities showed predicted roles such as pathogenicity (Escherichia-Shigella, Aeromonas veronii, Vibrio cholerae, Streptococcus iniae, Flavobacterium columnare, Klebsiella pneumoniae, Mycobacterium sp.), probiotic applications (Bacillus velezensis, Lactobacillus plantarum, Enterococcus faecalis, Bifidobacterium longum, Lactococcus lactis, Leuconostoc falkenbergense) and involvement in sewage and organic matter decomposition (Nitrosomonas sp., Methanosaeta harundinacea, Dechloromonas agitata, Thauera humireducens, Zoogloea ramigera). Heavy metal degrading members (Leucobacter chromiireducens, Pseudomonas fluorescens, P. aeruginosa, Klebsiella pneumoniae, and Micrococcus luteus) were detected in gut microbiome samples thus supporting the notion that fish shapes its gut microbiota with changing ecology. Functional profiling showed that microbial communities are specialized in metabolic functions thus reflecting the dietary profile of these invasive fishes.


Asunto(s)
Carpas , Microbiota , Animales , Humanos , Especies Introducidas , ARN Ribosómico 16S/genética , Ríos , Agua
5.
Genomics ; 113(2): 815-826, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-33508444

RESUMEN

Silver carp is an invasive fish present in the Gobindsagar reservoir, India and has a profound impact on aquaculture. Understanding taxonomic diversity and functional attributes of gut microbiota will provide insights into the important role of bacteria in metabolism of silver carp that facilitated invasion of this exotic species. Microbial composition in foregut, midgut, hindgut and water samples was analysed using 16S rRNA gene amplicon sequencing. The bacterial communities of water samples were distinct from gut microbiota, and unique microbial assemblages were present in different regions of gut depicting profound impact of gut environment on microflora. Proteobacteria was the most abundant phyla across all samples. Ecological network analysis showed dominance of competitive interactions within posteriors region of the gut, promoting niche specialization. Predictive functional profiling revealed the microbiota specialized in digestive functions in different regions of the gut, which also reflects the dietary profile of silver carp.


Asunto(s)
Carpas/microbiología , Microbioma Gastrointestinal , Animales , Mucosa Intestinal/metabolismo , Mucosa Intestinal/microbiología , Especies Introducidas
6.
Genomics ; 112(5): 3191-3200, 2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-32512145

RESUMEN

The genus Bacillus constitutes a plethora of species that have medical, environmental, and industrial applications. While genus Bacillus has been the focus of several studies where genomic data have been used to resolve many taxonomic issues, there still exist several ambiguities. Through the use of in-silico genome-based methods, we tried to resolve the taxonomic anomalies of a large set of Bacillus genomes (n = 178). We also proposed species names for uncharacterized strains and reported genome sequence of a novel isolate Bacillus sp. RL. In the hierarchical clustering on genome-to-genome distances, we observed 11 distinct monophyletic clusters and investigated the functional pathways annotated as the property of these clusters and core-gene content of the entire dataset. Thus, we were able to assert the possible outlier strains (n = 17) for this genus. Analyses of secondary metabolite potential of each strain helped us unravel still unexplored diversity for various biosynthetic genes.


Asunto(s)
Bacillus/genética , Genoma Bacteriano , Animales , Bacillus/clasificación , Bacillus/aislamiento & purificación , Bacillus/metabolismo , Bovinos , Genómica , Filogenia , Metabolismo Secundario/genética
7.
Genomics ; 112(2): 1956-1969, 2020 03.
Artículo en Inglés | MEDLINE | ID: mdl-31740292

RESUMEN

Members of genus Sphingopyxis are known to thrive in diverse environments. Genomes of 21 Sphingopyxis strains were selected. Phylogenetic analysis was performed using GGDC, AAI and core-SNP showed agreement at sub-species level. Based on our results, we propose that both S. baekryungensis DSM16222 and Sphingopyxis sp. LPB0140 strains should not be included under genus Sphingopyxis. Core-analysis revealed, 1422 genes were shared which included essential pathways and genes for conferring adaptation against stress environment. Polyhydroxybutyrate degradation, anaerobic respiration, type IV secretion were notable abundant pathways and exopolysaccharide, hyaluronic acid production and toxin-antitoxin system were differentially present families. Interestingly, genome of S. witflariensis DSM14551, Sphingopyxis sp. MG and Sphingopyxis sp. FD7 provided a hint of probable pathogenic abilities. Protein-Protein Interactome depicted that membrane proteins and stress response has close integration with core-proteins while aromatic compounds degradation and virulence ability formed a separate network. Thus, these should be considered as strain specific attributes.


Asunto(s)
Genoma Bacteriano , Sphingomonadaceae/genética , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Filogenia , Mapas de Interacción de Proteínas , Sphingomonadaceae/clasificación , Sphingomonadaceae/metabolismo , Estrés Fisiológico , Sistemas Toxina-Antitoxina
8.
J Environ Manage ; 280: 111744, 2021 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-33280938

RESUMEN

The genus Sphingopyxis was first reported in the year 2001. Phylogenetically, Sphingopyxis is well delineated from other genera Sphingobium, Sphingomonas and Novosphingobium of sphingomonads group, family Sphingomonadaceae of Proteobacteria. To date (at the time of writing), the genus Sphingopyxis comprises of twenty validly published species available in List of Prokaryotic Names with Standing in Nomenclature. Sphingopyxis spp. have been isolated from diverse niches including, agricultural soil, marine and fresh water, caves, activated sludge, thermal spring, oil and pesticide contaminated soil, and heavy metal contaminated sites. Sphingopyxis species have drawn considerable attention not only for their ability to survive under extreme environments, but also for their potential to degrade number of xenobiotics and other environmental contaminants that impose serious threat to human health. At present, genome sequence of both cultivable and non-cultivable strains (metagenome assembled genome) are available in the public databases (NCBI) and genome wide studies confirms the presence of mobile genetic elements and plethora of degradation genes and pathways making them a potential candidate for bioremediation. Beside genome wide predictions there are number of experimental evidences confirm the degradation potential of bacteria belonging to genus Sphingopyxis and also the production of different secondary metabolites that help them interact and survive in their ecological niches. This review provides detailed information on ecology, general characteristic and the significant implications of Sphingopyxis species in environmental management along with the bio-synthetic potential.


Asunto(s)
Sphingomonadaceae , Sphingomonas , Biodegradación Ambiental , Humanos , Filogenia , ARN Ribosómico 16S , Sphingomonadaceae/genética , Sphingomonas/genética
9.
BMC Microbiol ; 20(1): 249, 2020 08 12.
Artículo en Inglés | MEDLINE | ID: mdl-32787773

RESUMEN

BACKGROUND: Tor putitora, the largest freshwater fish of the Indian subcontinent, is an endangered species. Several factors have been attributed towards its continuous population decrease, but very little is known about the gut microbiome of this fish. Also, the fish gut microbiome serves as a reservoir of virulence factors and antibiotic resistance determinants. Therefore, the shotgun metagenomic approach was employed to investigate the taxonomic composition and functional potential of microbial communities present in the gut of Tor putitora, as well as the detection of virulence and antibiotic resistance genes in the microbiome. RESULTS: The analysis of bacterial diversity showed that Proteobacteria was predominant phylum, followed by Chloroflexi, Bacteroidetes, and Actinobacteria. Within Proteobacteria, Aeromonas and Caulobacter were chiefly present; also, Klebsiella, Escherichia, and plant symbionts were noticeably detected. Functional characterization of gut microbes endowed the virulence determinants, while surveillance of antibiotic resistance genes showed the dominance of ß-lactamase variants. The antibiotic-resistant Klebsiella pneumoniae and Escherichia coli pathovars were also detected. Microbial genome reconstruction and comparative genomics confirmed the presence of Aeromonads, the predominant fish pathogens. CONCLUSIONS: Gut microbiome of endangered Tor putitora consisted of both commensals and opportunistic pathogens, implying that factors adversely affecting the non-pathogenic population would allow colonization and proliferation of pathogens causing diseased state in asymptomatic Tor putitora. The presence of virulence factors and antibiotic resistance genes suggested the potential risk of dissemination to other bacteria due to horizontal gene transfer, thereby posing a threat to fish and human health. The preservation of healthy gut microflora and limited use of antibiotics are some of the prerequisites for the conservation of this imperilled species.


Asunto(s)
Bacterias/clasificación , Farmacorresistencia Bacteriana , Peces/microbiología , Metagenómica/métodos , Animales , Bacterias/genética , Bacterias/aislamiento & purificación , Bacterias/patogenicidad , Proteínas Bacterianas/genética , Especies en Peligro de Extinción , Microbioma Gastrointestinal , Secuenciación de Nucleótidos de Alto Rendimiento , Filogenia , Análisis de Secuencia de ADN , Factores de Virulencia/genética
10.
Int J Syst Evol Microbiol ; 70(6): 3939-3952, 2020 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-32441613

RESUMEN

The spirotrichean ciliate Stylonychia notophora has previously been recorded in India although the descriptions are lacking in detail. It has been suggested several times that the Indian population, S. notophora sensu Sapra and Dass, 1970 collected along the Delhi stretch of the River Yamuna, is identical to Tetmemena pustulata, but this has never been confirmed due to insufficient data for the former. The present study includes detailed descriptions (classical and molecular) of populations of Tetmemena isolated from six locations along the River Yamuna, India. These include four from the Delhi stretch including that from which Sapra and Dass, 1970 isolated their population of S. notophora. Due to the lack of a sufficiently detailed description, the taxonomic status of S. notophora sensu Sapra and Dass, 1970 was not clear. Comparisons among the populations isolated in the present study with previous descriptions of T. pustulata and S. notophora sensu Sapra and Dass, 1970 show only minor differences in morphometry, morphogenesis and in 18S rDNA sequences. The 18S rDNA sequences of all six populations had 99% similarity to both T. pustulata and S. notophora. These findings support the contention that S. notophora sensu Sapra and Dass, 1970 was misidentified and is a population of T. pustulata. This study supports the need for adopting an integrative approach based on morphological, morphogenetic and molecular data in order to understand species delimitation in ciliated protists.


Asunto(s)
Cilióforos/clasificación , Filogenia , Cilióforos/aislamiento & purificación , ADN Ribosómico/genética , India , Ríos , Análisis de Secuencia de ADN
11.
Int J Syst Evol Microbiol ; 70(7): 4111-4118, 2020 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-32538739

RESUMEN

A novel orange to pink coloured bacterial strain designated as CT19T was isolated from the gastrointestinal tract of mirror carp, Cyprinus carpio var. specularis (Lacepède, 1803) collected from the Gobind Sagar reservoir at village Lathiani, Una, Himachal Pradesh, India. Cells of the strain were found to be aerobic, Gram-stain-positive, non-motile and non-spore-forming coccoids. Based on the 16S rRNA gene sequence, the strain was closely related to Salinicoccus hispanicus J-82T (=DSM 5352T; 97.4 %), followed by S. sesuvii CC-SPL15-2T (=DSM 23267T; 96.4 %), S. amylolyticus JC304T (=KCTC 33661T; 95.6 %) and S. roseus DSM 5351T (95.4 %). Identity with all other members of the genus were <94.5 %. The draft genome of strain CT19T was assembled to 2.4 Mbp with a G+C content of 47.9 mol%. Average nucleotide identity and digital DNA-DNA hybridization values between strain CT19T and S. hispanicus J-82T were found to be 85.9 and 31.3% respectively which is far below the threshold for species delineation. Iso-C15 : 0, anteiso-C15 : 0, iso-C17 : 0, C16 : 0 and anteiso-C17 : 0 were the major cellular fatty acids of strain CT19T. Major polar lipids were diphosphatidylglycerol, phosphatidylgylcerol and an unidentified glycolipid. Respiratory quinone system was composed of menaquinone-6 and major cell wall amino acid was l-lysine. Based on phylogenomic, physiological and biochemical characteristics, strain CT19T represents a novel species of the genus Salinicoccus for which the name Salinicoccus cyprini sp. nov. is proposed. The type strain is CT19T (=KCTC 43022T =CCM 8886T=MCC 3834T).


Asunto(s)
Carpas/microbiología , Microbioma Gastrointestinal , Tracto Gastrointestinal/microbiología , Filogenia , Staphylococcaceae/clasificación , Animales , Técnicas de Tipificación Bacteriana , Composición de Base , ADN Bacteriano/genética , Ácidos Grasos/química , India , Hibridación de Ácido Nucleico , Fosfolípidos/química , Pigmentación , ARN Ribosómico 16S/genética , Análisis de Secuencia de ADN , Staphylococcaceae/aislamiento & purificación , Vitamina K 2/análogos & derivados , Vitamina K 2/química
12.
Indian J Microbiol ; 59(4): 482-489, 2019 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-31762512

RESUMEN

Metagenomics is the study of gene pool of an entire community in a particular niche. This provides valuable information about the functionality of host-microbe interaction in a biological ecosystem. Efficient metagenomic DNA extraction is a critical pre-requisite for a successful sequencing run in a metagenomic study. Although isolation of human stool metagenomic DNA is fairly standardized, the same protocol does not work as efficiently in fecal DNA from other organisms. In this study, we report a comparison of manual and commercial DNA extraction methods for diverse samples such as human stool, fish gut and soil. Fishes are known to have variable microbial diversity based on their food habits, so the study included two different varieties of fishes. A modified protocol for effective isolation of metagenomic DNA from human milk samples is also reported, highlighting critical precautions. Recent studies have emphasized the importance of studying functionality of human milk metagenome to understand its influence on infants' health. While manual method works well with most samples and therefore can be a method of choice for testing new samples, broad-range commercial kit offers advantage of high purity and quality. DNA extraction of different samples would go a long way in unraveling the unexplored association between microbes and host in a biological system.

14.
Indian J Microbiol ; 58(4): 397-414, 2018 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-30262950

RESUMEN

In recent years, investigations of microbial flora associated with fish gut have deepened our knowledge of the complex interactions occurring between microbes and host fish. The gut microbiome not only reinforces the digestive and immune systems in fish but is itself shaped by several host-associated factors. Unfortunately, in the past, majority of studies have focused upon the structure of fish gut microbiome providing little knowledge of effects of these factors distinctively and the immense functional potential of the gut microbiome. In this review, we have highlighted the recently gained insights into the diversity and functions of the fish gut microbiome. We have also delved on the current approaches that are being employed to study the fish gut microbiome with an aim to collate all the knowledge gained and make accurate conclusions for their application based perspectives. The literature reviewed indicated that the future research should shift towards functional microbiomics to improve the maximum sustainable yield in aquaculture.

15.
Antonie Van Leeuwenhoek ; 110(10): 1357-1371, 2017 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-28831610

RESUMEN

The current prokaryotic taxonomy classifies phenotypically and genotypically diverse microorganisms using a polyphasic approach. With advances in the next-generation sequencing technologies and computational tools for analysis of genomes, the traditional polyphasic method is complemented with genomic data to delineate and classify bacterial genera and species as an alternative to cumbersome and error-prone laboratory tests. This review discusses the applications of sequence-based tools and techniques for bacterial classification and provides a scheme for more robust and reproducible bacterial classification based on genomic data. The present review highlights promising tools and techniques such as ortho-Average Nucleotide Identity, Genome to Genome Distance Calculator and Multi Locus Sequence Analysis, which can be validly employed for characterizing novel microorganisms and assessing phylogenetic relationships. In addition, the review discusses the possibility of employing metagenomic data to assess the phylogenetic associations of uncultured microorganisms. Through this article, we present a review of genomic approaches that can be included in the scheme of taxonomy of bacteria and archaea based on computational and in silico advances to boost the credibility of taxonomic classification in this genomic era.


Asunto(s)
Archaea/clasificación , Bacterias/clasificación , Técnicas de Tipificación Bacteriana , Biología Computacional , Genómica , Genoma Arqueal/genética , Genoma Bacteriano/genética , Metagenoma , Anotación de Secuencia Molecular , Filogenia
16.
Artículo en Inglés | MEDLINE | ID: mdl-38367166

RESUMEN

The complex niche of fish gut is often characterized by the associated microorganisms that have implications in fish gut-health nexus. Although efforts to distinguish the microbial communities have highlighted their disparate structure along the gut length, remarkably little information is available about their distinct structural and functional profiles in different gut compartments in different fish species. Here, we performed comparative taxonomic and predictive functional analyses of the foregut and hindgut microbiota in an omnivorous freshwater fish species, Cyprinus carpio var. specularis, commonly known as mirror carp. Our analyses showed that the hindgut microbiota could be distinguished from foregut based on the abundance of ammonia-oxidizing, denitrifying, and nitrogen-fixing commensals of families such as Rhodospirillaceae, Oxalobacteraceae, Nitrosomonadaceae, and Nitrospiraceae. Functionally, unique metabolic pathways such as degradation of lignin, 2-nitrobenzoate, vanillin, vanillate, and toluene predicted within hindgut also hinted at the ability of hindgut microbiota for assimilation of nitrogen and detoxification of ammonia. The study highlights a major role of hindgut microbiota in assimilating nitrogen, which remains to be one of the limiting nutrients within the gut of mirror carp.

17.
Sci Rep ; 14(1): 2763, 2024 02 02.
Artículo en Inglés | MEDLINE | ID: mdl-38307873

RESUMEN

The Beas River is one of the important rivers of the Indus River system located in Himachal Pradesh, India, that harbors a diverse range of freshwater fish species. The present study employed COI gene to investigate the ichthyofaunal diversity of river Beas. Through the sequencing of 203 specimens from Beas River, we identified 43 species, belonging to 31 genera, 16 families, and 10 orders. To analyze the genetic divergence and phylogeny of identified species, 485 sequences of Indian origin were retrieved from BOLD, resulting in a dataset of 688 sequences. Our findings consistently revealed a hierarchical increase in the mean K2P genetic divergence within species (0.80%), genus (9.06%), and families (15.35%). Automated Barcode Gap discovery, Neighbour Joining, and Bayesian inference consensus tree methodologies were employed to determine the putative species and their phylogeny, successfully delimiting most of the species with only a few exceptions. The results unveiled six species exhibiting high intra-species divergence (> 2%), suggesting the presence of sibling species and falsely identified sequences on online databases. The present study established the first DNA barcoding-based inventory of freshwater fish species in the Beas River providing comprehensive insights into economically exploited endangered and vulnerable species. In order to ensure the sustainable use of aquatic resources in the Beas River, we recommend the implementation of species measures to protect biodiversity and genetic resources.


Asunto(s)
Código de Barras del ADN Taxonómico , Ríos , Humanos , Animales , Código de Barras del ADN Taxonómico/métodos , Teorema de Bayes , Complejo IV de Transporte de Electrones/genética , Peces/genética , Agua Dulce , ADN , Filogenia , Biodiversidad
18.
3 Biotech ; 13(10): 320, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37649590

RESUMEN

Humans are significantly impacting riverine systems worldwide, prompting us to investigate the effects of water pollution on the gut microbiome of Cyprinus carpio (common carp). Using 16S rRNA gene sequencing, we compared the gut microbiomes of common carp from two sites along river Yamuna with different pollution levels. Water pollution significantly altered the fish gut microbiome structure and microbial composition. Proteobacteria dominated in both sampling sites, while Bacteroidota prevailed in polluted water samples, indicating sewage and fecal contamination. Less polluted samples exhibited Verrucomicrobiae and Planctomycetes, negatively correlated with pollution levels. The polluted site had higher prevalence of potentially pathogenic and heavy metal-resistant bacteria, as well as microbial communities associated with wastewater treatment systems. Functional prediction highlighted the significant role of the gut microbiome in digestion and metabolism, with active enzymes for breaking down various organic substances. Biosynthetic pathways for leucine, valine, and isoleucine were present in both sites, known to be involved fish immunity. The host maintained a stable and diverse bacterial consortium, while microbial diversity became more specialized due to human activities, adapting to anthropogenic stress and selection pressures. Supplementary Information: The online version contains supplementary material available at 10.1007/s13205-023-03747-0.

19.
Front Microbiol ; 13: 848010, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35495730

RESUMEN

Sulfur related prokaryotes residing in hot spring present good opportunity for exploring the limitless possibilities of integral ecosystem processes. Metagenomic analysis further expands the phylogenetic breadth of these extraordinary sulfur (S) metabolizing microorganisms as well as their complex metabolic networks and syntrophic interactions in environmental biosystems. Through this study, we explored and expanded the microbial genetic repertoire with focus on S cycling genes through metagenomic analysis of S contaminated hot spring, located at the Northern Himalayas. The analysis revealed rich diversity of microbial consortia with established roles in S cycling such as Pseudomonas, Thioalkalivibrio, Desulfovibrio, and Desulfobulbaceae (Proteobacteria). The major gene families inferred to be abundant across microbial mat, sediment, and water were assigned to Proteobacteria as reflected from the reads per kilobase (RPKs) categorized into translation and ribosomal structure and biogenesis. An analysis of sequence similarity showed conserved pattern of both dsrAB genes (n = 178) retrieved from all metagenomes while other S disproportionation proteins were diverged due to different structural and chemical substrates. The diversity of S oxidizing bacteria (SOB) and sulfate reducing bacteria (SRB) with conserved (r)dsrAB suggests for it to be an important adaptation for microbial fitness at this site. Here, (i) the oxidative and reductive dsr evolutionary time-scale phylogeny proved that the earliest (but not the first) dsrAB proteins belong to anaerobic Thiobacillus with other (rdsr) oxidizers, also we confirm that (ii) SRBs belongs to δ-Proteobacteria occurring independent lateral gene transfer (LGT) of dsr genes to different and few novel lineages. Further, the structural prediction of unassigned DsrAB proteins confirmed their relatedness with species of Desulfovibrio (TM score = 0.86, 0.98, 0.96) and Archaeoglobus fulgidus (TM score = 0.97, 0.98). We proposed that the genetic repertoire might provide the basis of studying time-scale evolution and horizontal gene transfer of these genes in biogeochemical S cycling.

20.
Data Brief ; 39: 107551, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-34825025

RESUMEN

Khirganga, a pristine hot spring that lies in the Parvati Valley within the Northern Himalayas characterised with unique white colour microbial mat and divine water with healing abilities. Here, we report 41 metagenome-assembled genomes (MAGs) reconstructed from the microbial mat, sediment and water samples of hot spring passed through Genome Standards Consortium (GSC) and Minimum Information of Metagenome-assembled Genome (MIMAG).

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA