Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 57
Filtrar
Más filtros

Bases de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Dev Dyn ; 251(4): 714-728, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-34622503

RESUMEN

BACKGROUND: Plasticity-related genes (Prgs/PRGs) or lipid phosphate phosphatase-related proteins (LPPRs) comprise five known members, which have been linked to neuronal differentiation processes, such as neurite outgrowth, axonal branching, or dendritic spine formation. PRGs are highly brain-specific and belong to the lipid phosphate phosphatases (LPPs) superfamily, which influence lipid metabolism by dephosphorylation of bioactive lipids. PRGs, however, do not possess enzymatic activity, but modify lipid metabolism in a way that is still under investigation. RESULTS: We analyzed mRNA expression levels of all Prgs during mouse brain development, in the hippocampus, neocortex, olfactory bulbs, and cerebellum. We found different spatio-temporal expression patterns for each of the Prgs, and identified a high expression of the uncharacterized Prg4 throughout brain development. Unlike its close family members PRG3 and PRG5, PRG4 did not induce filopodial outgrowth in non-neuronal cell lines, and does not localize to the plasma membrane of filopodia. CONCLUSION: We showed PRG4 to be highly expressed in the developing and the adult brain, suggesting that it is of vital importance for normal brain function. Despite its similarities to other family members, it seems not to be involved in changes of cell morphology; instead, it is more likely to be associated with intracellular signaling.


Asunto(s)
Encéfalo , Monoéster Fosfórico Hidrolasas , Animales , Encéfalo/metabolismo , Membrana Celular/metabolismo , Hipocampo/metabolismo , Ratones , Monoéster Fosfórico Hidrolasas/genética , Monoéster Fosfórico Hidrolasas/metabolismo , Proteoglicanos/metabolismo , Seudópodos
2.
Int J Mol Sci ; 23(13)2022 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-35806195

RESUMEN

Variants in the X-linked retinitis pigmentosa GTPase regulator gene (RPGR) and, specifically, in its retinal opening reading frame-15 isoform (RPGRORF15) may cause rod-cone (RCD), cone, and cone-rod dystrophies (CDs and CRDs). While RPGR-related RCDs have been frequently evaluated, the characteristics and progression of RPGR-related CD/CRDs are largely unknown. Therefore, the goal of our work was to perform genotype-phenotype correlations specifically in RPGRORF15-related CD/CRDs. This retrospective longitudinal study included 34 index patients and two affected relatives with a molecular diagnosis of RPGR-related CD/CRDs. Patients were recruited at the "Quinze-Vingts" Hospital, Paris, France and screened for mutations in RPGRORF15 at the Institut de la Vision, Paris, France. We identified 29 distinct variants, of which 27 were truncating. All were located in the 3' half of the RPGRORF15 transcript. Twenty of them were novel. Fifteen subjects were affected by CD, the remaining had CRD. When analyzing the longitudinal data, a progressive decline in visual acuity (VA) was noted, with more than 60% of the patients reaching VA ≥ 1 LogMar in the best eye after the fifth decade of life. To our knowledge, this is the largest described study of a cohort of CD/CRD patients affected by RPGRORF15 variants. Longitudinal data showed a rapidly progressive disease, possibly locating an optimal window of intervention for future therapies in younger ages.


Asunto(s)
Distrofias de Conos y Bastones , Proteínas del Ojo , Retinitis Pigmentosa , Distrofias de Conos y Bastones/genética , Proteínas del Ojo/genética , Genes Reguladores , Humanos , Estudios Longitudinales , Mutación , Linaje , Retinitis Pigmentosa/diagnóstico , Retinitis Pigmentosa/genética , Estudios Retrospectivos
3.
J Hum Genet ; 66(12): 1159-1167, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-34211111

RESUMEN

Heterotopia is a brain malformation caused by a failed migration of cortical neurons during development. Clinical symptoms of heterotopia vary in severity of intellectual disability and may be associated with epileptic disorders. Abnormal neuronal migration is known to be associated with mutations in the doublecortin gene (DCX), the platelet-activating factor acetylhydrolase gene (PAFAH1B1), or tubulin alpha-1A gene (TUBA1A). Recently, a new gene encoding echinoderm microtubule-associated protein-like 1 (EML1) was reported to cause a particular form of subcortical heterotopia, the ribbon-like subcortical heterotopia (RSH). EML1 mutations are inherited in an autosomal recessive manner. Only six unrelated EML1-associated heterotopia-affected families were reported so far. The EML1 protein is a member of the microtubule-associated proteins family, playing an important role in microtubule assembly and stabilization as well as in mitotic spindle formation in interphase. Herein, we present a novel homozygous missense variant in EML1 (NM_004434.2: c.692G>A, NP_004425.2: p.Gly231Asp) identified in a male RSH-affected patient. Our clinical and molecular findings confirm the genotype-phenotype associations of EML1 mutations and RSH. Analyses of patient-derived fibroblasts showed the significantly reduced length of primary cilia. In addition, our results presented, that the mutated EML1 protein did not change binding capacities with tubulin. The data described herein will expand the mutation spectrum of the EML1 gene and provide further insight into molecular and cellular bases of the pathogenic mechanisms underlying RSH.


Asunto(s)
Cilios/metabolismo , Predisposición Genética a la Enfermedad , Malformaciones del Desarrollo Cortical/diagnóstico , Malformaciones del Desarrollo Cortical/genética , Proteínas Asociadas a Microtúbulos/genética , Mutación Missense , Fenotipo , Alelos , Encéfalo/anomalías , Encéfalo/diagnóstico por imagen , Niño , Consanguinidad , Análisis Mutacional de ADN , Fibroblastos/metabolismo , Estudios de Asociación Genética/métodos , Homocigoto , Humanos , Masculino , Proteínas Asociadas a Microtúbulos/química , Proteínas Asociadas a Microtúbulos/metabolismo , Modelos Moleculares , Trastornos del Neurodesarrollo/diagnóstico , Trastornos del Neurodesarrollo/genética , Linaje , Conformación Proteica , Relación Estructura-Actividad , Secuenciación del Exoma
4.
Int J Mol Sci ; 22(7)2021 Mar 30.
Artículo en Inglés | MEDLINE | ID: mdl-33808286

RESUMEN

X-linked retinitis pigmentosa (XLRP) is frequently caused by mutations in the retinitis pigmentosa GTPase regulator (RPGR) gene. A complex splicing process acts on the RPGR gene resulting in three major isoforms: RPGRex1-19, RPGRORF15 and RPGRskip14/15. We characterized the widely expressed, alternatively spliced transcript RPGRskip14/15 lacking exons 14 and 15. Using the CRISPR/eSpCas9 system, we generated HEK293T cell lines exclusively expressing the RPGRskip14/15 transcript from the endogenous RPGR gene. RPGRex1-19 and RPGRORF15 were knocked out. Immunocytochemistry demonstrated that the RPGRskip14/15 protein localizes along primary cilia, resembling the expression pattern of RPGRex1-19. The number of cilia-carrying cells was not affected by the absence of the RPGRex1-19 and RPGRORF15 isoforms. Co-immunoprecipitation assays demonstrated that both RPGRex1-19 and RPGRskip14/15 interact with PDE6D, further supporting that RPGRskip14/15 is associated with the protein networks along the primary cilium. Interestingly, interaction complexes with INPP5E or RPGRIP1L were only detectable with isoform RPGRex1-19, but not with RPGRskip14/15, demonstrating distinct functional properties of the major RPGR isoforms in spite of their similar subcellular localization. Our findings lead to the conclusion that protein binding sites within RPGR are mediated through alternative splicing. A tissue-specific expression ratio between RPGRskip14/15 and RPGRex1-19 seems required to regulate the ciliary concentration of RPGR interaction partners.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/metabolismo , Proteínas del Ojo/genética , Monoéster Fosfórico Hidrolasas/metabolismo , Proteínas Adaptadoras Transductoras de Señales/genética , Empalme Alternativo/genética , Sitios de Unión , Cilios/genética , Cilios/metabolismo , Fosfodiesterasas de Nucleótidos Cíclicos Tipo 6/genética , Fosfodiesterasas de Nucleótidos Cíclicos Tipo 6/metabolismo , Exones/genética , Proteínas del Ojo/metabolismo , Células HEK293 , Humanos , Mutación/genética , Monoéster Fosfórico Hidrolasas/genética , Isoformas de Proteínas/genética , Empalme del ARN/genética , Retinitis Pigmentosa/genética , Retinitis Pigmentosa/metabolismo
5.
J Bacteriol ; 202(5)2020 02 11.
Artículo en Inglés | MEDLINE | ID: mdl-31843798

RESUMEN

Anaerobic degradation of p-cresol (4-methylphenol) by the denitrifying betaproteobacterium Aromatoleum aromaticum EbN1 is regulated with high substrate specificity, presumed to be mediated by the predicted σ54-dependent two-component system PcrSR. An unmarked, in-frame ΔpcrSR deletion mutant showed reduced expression of the genes cmh (21-fold) and hbd (8-fold) that encode the two enzymes for initial oxidation of p-cresol to p-hydroxybenzoate compared to their expression in the wild type. The expression of cmh and hbd was restored by in trans complementation with pcrSR in the ΔpcrSR background to even higher levels than in the wild type. This is likely due to ∼200-/∼30-fold more transcripts of pcrSR in the complemented mutant. The in vivo responsiveness of A. aromaticum EbN1 to p-cresol was studied in benzoate-limited anaerobic cultures by the addition of p-cresol at various concentrations (from 100 µM down to 0.1 nM). Time-resolved transcript profiling by quantitative reverse transcription-PCR (qRT-PCR) revealed that the lowest p-cresol concentrations just affording cmh and hbd expression (response threshold) ranged between 1 and 10 nM, which is even more sensitive than the respective odor receptors of insects. A similar response threshold was determined for another alkylphenol, p-ethylphenol, which strain EbN1 anaerobically degrades via a different route and senses by the σ54-dependent one-component system EtpR. Based on these data and theoretical considerations, p-cresol or p-ethylphenol added as a single pulse (10 nM) requires less than a fraction of a second to reach equilibrium between intra- and extracellular space (∼20 molecules per cell), with an estimated Kd (dissociation constant) of <100 nM alkylphenol (p-cresol or p-ethylphenol) for its respective sensory protein (PcrS or EtpR).IMPORTANCE Alkylphenols (like p-cresol and p-ethylphenol) represent bulk chemicals for industrial syntheses. Besides massive local damage events, large-scale micropollution is likewise of environmental and health concern. Next to understanding how such pollutants can be degraded by microorganisms, it is also relevant to determine the microorganisms' lower threshold of responsiveness. Aromatoleum aromaticum EbN1 is a specialist in anaerobic degradation of aromatic compounds, employing a complex and substrate-specifically regulated catabolic network. The present study aims at verifying the predicted role of the PcrSR system in sensing p-cresol and at determining the threshold of responsiveness for alkylphenols. The findings have implications for the enigmatic persistence of dissolved organic matter (escape from biodegradation) and for the lower limits of aromatic compounds required for bacterial growth.


Asunto(s)
Anaerobiosis , Biodegradación Ambiental , Contaminantes Ambientales/química , Fenoles/química , Algoritmos , Regulación Bacteriana de la Expresión Génica , Modelos Teóricos , Mutación , Proteoma , Rhodocyclaceae/genética , Rhodocyclaceae/metabolismo , Transcriptoma
6.
J Gene Med ; 22(10): e3211, 2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-32367544

RESUMEN

BACKGROUND: Retinitis pigmentosa (RP) is one of the most common form of inherited retinal dystrophies. Identification of disease-causing mutations is a prerequisite for applying targeted therapeutic approaches. The present study aimed to identify disease-associated mutations in a large Serbian family, in which two brothers have suffered from RP starting in the first decade of their lives. METHODS: The index patient and 12 additional members of a four-generation family were analyzed. All participants underwent detailed ophthalmic examinations. Genomic DNA was isolated from family members to perform whole exome sequencing (WES) and Sanger sequencing of candidate genes. RESULTS: An early onset RP phenotype was presented in both ocular fundi of the index patient and his brother: arteriolar attenuation, as well as retinal pigmentary changes in peripheral fundus and waxy disc pallor. Both brothers showed foveal thinning. The index patient showed epiretinal membranes in both eyes and a parafoveal cystic lesion in his right eye, whereas the brother of the index patient showed choroid folds and vitreomacular adhesion in his left eye. We identified compound heterozygous mutations in the RPE65 gene (a novel c.1338+1G>A splice donor site mutation in addition to the frame-shifting mutation c.1207_1210dup (p.Glu404Alafs*4)) using an in-house WES pipeline. CONCLUSIONS: Evaluation of all previously described RPE65 mutations showed that the sequence variants identified in the present study located to rarely altered exons and likely effect a highly conserved region of the RPE65 protein. Gene augmentation therapies might be a promising treatment option for the patients described.


Asunto(s)
Secuenciación del Exoma , Predisposición Genética a la Enfermedad , Retinitis Pigmentosa/genética , cis-trans-Isomerasas/genética , Adulto , Edad de Inicio , Femenino , Estudios de Asociación Genética , Heterocigoto , Humanos , Masculino , Mutación/genética , Linaje , Sitios de Empalme de ARN/genética , Retinitis Pigmentosa/patología , Adulto Joven
7.
Int J Mol Sci ; 21(22)2020 Nov 10.
Artículo en Inglés | MEDLINE | ID: mdl-33182541

RESUMEN

X-chromosomal retinitis pigmentosa (RP) frequently is caused by mutations in the retinitis pigmentosa GTPase regulator (RPGR) gene. We evaluated the potential of PTC124 (Ataluren, TranslamaTM) treatment to promote ribosomal read-through of premature termination codons (PTC) in RPGR. Expression constructs in HEK293T cells showed that the efficacy of read-through reagents is higher for UGA than UAA PTCs. We identified the novel hemizygous nonsense mutation c.1154T > A, p.Leu385* (NM_000328.3) causing a UAA PTC in RPGR and generated patient-derived fibroblasts. Immunocytochemistry of serum-starved control fibroblasts showed the RPGR protein in a dot-like expression pattern along the primary cilium. In contrast, RPGR was no longer detectable at the primary cilium in patient-derived cells. Applying PTC124 restored RPGR at the cilium in approximately 8% of patient-derived cells. RT-PCR and Western blot assays verified the pathogenic mechanisms underlying the nonsense variant. Immunofluorescence stainings confirmed the successful PTC124 treatment. Our results showed for the first time that PTC124 induces read-through of PTCs in RPGR and restores the localization of the RPGR protein at the primary cilium in patient-derived cells. These results may provide a promising new treatment option for patients suffering from nonsense mutations in RPGR or other genetic diseases.


Asunto(s)
Codón sin Sentido/efectos de los fármacos , Proteínas del Ojo/genética , Enfermedades Genéticas Ligadas al Cromosoma X/tratamiento farmacológico , Enfermedades Genéticas Ligadas al Cromosoma X/genética , Proteínas Mutantes/genética , Oxadiazoles/uso terapéutico , Retinitis Pigmentosa/tratamiento farmacológico , Retinitis Pigmentosa/genética , Estudios de Casos y Controles , Células Cultivadas , Cilios/metabolismo , Proteínas del Ojo/biosíntesis , Enfermedades Genéticas Ligadas al Cromosoma X/metabolismo , Células HEK293 , Hemicigoto , Humanos , Proteínas Mutantes/biosíntesis , Prueba de Estudio Conceptual , Biosíntesis de Proteínas/efectos de los fármacos , Estabilidad del ARN , Retinitis Pigmentosa/metabolismo
8.
Int J Mol Sci ; 21(12)2020 Jun 24.
Artículo en Inglés | MEDLINE | ID: mdl-32599915

RESUMEN

Niemann-Pick type C1 (NPC1) is a lysosomal storage disorder, inherited as an autosomal-recessive trait. Mutations in the Npc1 gene result in malfunction of the NPC1 protein, leading to an accumulation of unesterified cholesterol and glycosphingolipids. Beside visceral symptoms like hepatosplenomegaly, severe neurological symptoms such as ataxia occur. Here, we analyzed the sphingosine-1-phosphate (S1P)/S1P receptor (S1PR) axis in different brain regions of Npc1-/- mice and evaluated specific effects of treatment with 2-hydroxypropyl-ß-cyclodextrin (HPßCD) together with the iminosugar miglustat. Using high-performance thin-layer chromatography (HPTLC), mass spectrometry, quantitative real-time PCR (qRT-PCR) and western blot analyses, we studied lipid metabolism in an NPC1 mouse model and human skin fibroblasts. Lipid analyses showed disrupted S1P metabolism in Npc1-/- mice in all brain regions, together with distinct changes in S1pr3/S1PR3 and S1pr5/S1PR5 expression. Brains of Npc1-/- mice showed only weak treatment effects. However, side effects of the treatment were observed in Npc1+/+ mice. The S1P/S1PR axis seems to be involved in NPC1 pathology, showing only weak treatment effects in mouse brain. S1pr expression appears to be affected in human fibroblasts, induced pluripotent stem cells (iPSCs)-derived neural progenitor and neuronal differentiated cells. Nevertheless, treatment-induced side effects make examination of further treatment strategies indispensable.


Asunto(s)
1-Desoxinojirimicina/análogos & derivados , Encéfalo/efectos de los fármacos , Modelos Animales de Enfermedad , Péptidos y Proteínas de Señalización Intracelular/fisiología , Lisofosfolípidos/metabolismo , Mutación , Enfermedad de Niemann-Pick Tipo C/tratamiento farmacológico , Esfingosina/análogos & derivados , 1-Desoxinojirimicina/farmacología , Adulto , Animales , Encéfalo/metabolismo , Encéfalo/patología , Inhibidores de Glicósido Hidrolasas/farmacología , Humanos , Células Madre Pluripotentes Inducidas/efectos de los fármacos , Células Madre Pluripotentes Inducidas/metabolismo , Células Madre Pluripotentes Inducidas/patología , Ratones , Ratones Noqueados , Proteína Niemann-Pick C1 , Enfermedad de Niemann-Pick Tipo C/metabolismo , Enfermedad de Niemann-Pick Tipo C/patología , Esfingosina/metabolismo , Adulto Joven
9.
Am J Med Genet A ; 179(12): 2447-2453, 2019 12.
Artículo en Inglés | MEDLINE | ID: mdl-31512363

RESUMEN

Hartsfield syndrome is a rare clinical entity characterized by holoprosencephaly and ectrodactyly with the variable feature of cleft lip/palate. In addition to these symptoms patients with Hartsfield syndrome can show developmental delay of variable severity, isolated hypogonadotropic hypogonadism, central diabetes insipidus, vertebral anomalies, eye anomalies, and cardiac malformations. Pathogenic variants in FGFR1 have been described to cause phenotypically different FGFR1-related disorders such as Hartsfield syndrome, hypogonadotropic hypogonadism with or without anosmia, Jackson-Weiss syndrome, osteoglophonic dysplasia, Pfeiffer syndrome, and trigonocephaly Type 1. Here, we report three patients with Hartsfield syndrome from two unrelated families. Exome sequencing revealed two siblings harboring a novel de novo heterozygous synonymous variant c.1029G>A, p.Ala343Ala causing a cryptic splice donor site in exon 8 of FGFR1 likely due to gonadal mosaicism in one parent. The third case was a sporadic patient with a novel de novo heterozygous missense variant c.1868A>G, p.(Asp623Gly).


Asunto(s)
Labio Leporino/diagnóstico , Labio Leporino/genética , Fisura del Paladar/diagnóstico , Fisura del Paladar/genética , Dedos/anomalías , Estudios de Asociación Genética , Predisposición Genética a la Enfermedad , Deformidades Congénitas de la Mano/diagnóstico , Deformidades Congénitas de la Mano/genética , Holoprosencefalia/diagnóstico , Holoprosencefalia/genética , Discapacidad Intelectual/diagnóstico , Discapacidad Intelectual/genética , Mutación Missense , Receptor Tipo 1 de Factor de Crecimiento de Fibroblastos/genética , Mutación Silenciosa , Análisis Mutacional de ADN , Femenino , Estudios de Asociación Genética/métodos , Humanos , Masculino , Linaje , Fenotipo
10.
Mol Biol Rep ; 46(4): 4507-4516, 2019 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-31270756

RESUMEN

Inherited white matter disorders of the central nervous system frequently are degenerative and progressive clinical entities. They are classified into myelin disorders, including hypomyelination, dysmyelination, demyelination, and myelin vacuolization, but also astrocytopathies, leuko-axonopathies, microgliopathies, and leuko-vasculopathies. Hypomyelinating leukodystrophy is the main feature of Pelizaeus-Merzbacher disease (PMD) and Pelizaeus-Merzbacher-like disease (PMLD1). PMD- and PMLD1-affected patients display comparable neurological symptoms, including psychomotor developmental delay, spasticity, nystagmus, impairment of cognitive skills, sensorineural hearing loss, and different ophthalmological disabilities. While clinical features overlap, PMD and PMLD1 can be distinguished on the molecular genetic level. PMD is caused by mutations in the gene encoding for the proteolipid protein 1 (PLP1), whereas PMLD1 is associated with mutations in the gene encoding for the gap junction protein gamma 2 (GJC2). Here we present novel compound-heterozygous mutations in the GJC2 gene identified in two, unrelated infantile patients affected with PMLD1. The heterozygous frameshift mutations c.392dupC, p.H132Afs*6 and c.989delC, p.P330Rfs*141 were found in the first patient. The heterozygous nonsense variant c.291C>G, p.Y97*, as well as the heterozygous missense variant c.716T>C, p.V239A were detected in the second patient. All four variants were predicted to be damaging for structure and/or function of the GJC2 protein. Combinations of these genetic variants likely are pathogenic and resulted in the PMLD1-phenotype in the investigated children. In conclusion, our clinical and molecular findings confirmed the genotype-phenotype relationship between mutations in the GJC2 and PMLD1. The novel mutations of GJC2 described herein will help to further understand the pathogenic mechanism underlying PMLD1.


Asunto(s)
Conexinas/genética , Enfermedades Desmielinizantes del Sistema Nervioso Central Hereditarias/genética , Adulto , Niño , Preescolar , Conexinas/metabolismo , Femenino , Estudios de Asociación Genética , Alemania , Enfermedades Desmielinizantes del Sistema Nervioso Central Hereditarias/metabolismo , Heterocigoto , Humanos , Lactante , Masculino , Mutación/genética , Mutación Missense/genética , Enfermedad de Pelizaeus-Merzbacher/genética
11.
Lipids Health Dis ; 18(1): 146, 2019 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-31248418

RESUMEN

BACKGROUND: Niemann-Pick disease type C1 (NPC1) is an autosomal-recessive lipid-storage disorder with an estimated minimal incidence of 1/120,000 live births. Besides other neuronal and visceral symptoms, NPC1 patients develop spleen dysfunction, isolated spleno- or hepatosplenomegaly and infections. The mechanisms of splenomegaly and alterations of lipid metabolism-related genes in NPC1 disease are still poorly understood. METHODS: Here, we used an NPC1 mouse model to study a splenoprotective effect of a treatment with miglustat, 2-hydroxypropyl-ß-cyclodextrin and allopregnanolone and showed that this treatment has a positive effect on spleen morphology and lipid metabolism. RESULTS: Disease progress can be halted and blocked at the molecular level. Mutant Npc1 (Npc1-/-) mice showed increased spleen weight and increased lipid accumulation that could be avoided by our treatment. Also, FACS analyses showed that the increased number of splenic myeloid cells in Npc1-/- mice was normalized by the treatment. Treated Npc1-/- mice showed decreased numbers of cytotoxic T cells and increased numbers of T helper cells. CONCLUSIONS: In summary, the treatment promotes normal spleen morphology, stabilization of lipid homeostasis and blocking of inflammation, but alters the composition of T cell subtypes.


Asunto(s)
1-Desoxinojirimicina/análogos & derivados , 2-Hidroxipropil-beta-Ciclodextrina/uso terapéutico , Pregnanolona/uso terapéutico , Bazo/metabolismo , 1-Desoxinojirimicina/uso terapéutico , Animales , Separación Celular , Modelos Animales de Enfermedad , Citometría de Flujo , Genotipo , Metabolismo de los Lípidos/efectos de los fármacos , Ratones , Enfermedad de Niemann-Pick Tipo C , Bazo/efectos de los fármacos
12.
Int J Mol Sci ; 19(3)2018 Mar 07.
Artículo en Inglés | MEDLINE | ID: mdl-29518907

RESUMEN

Leber congenital amaurosis (LCA) is a rare inherited retinal disorder affecting approximately 1:50,000 people worldwide. So far, mutations in 25 genes have been associated with LCA, with CEP290 (encoding the Centrosomal protein of 290 kDa) being the most frequently mutated gene. The most recurrent LCA-causing CEP290 mutation, c.2991+1655A>G, causes the insertion of a pseudoexon into a variable proportion of CEP290 transcripts. We previously demonstrated that antisense oligonucleotides (AONs) have a high therapeutic potential for patients homozygously harbouring this mutation, although to date, it is unclear whether rescuing one single allele is enough to restore CEP290 function. Here, we assessed the AON efficacy at RNA, protein and cellular levels in samples that are compound heterozygous for this mutation, together with a protein-truncating mutation in CEP290. We demonstrate that AONs can efficiently restore splicing and increase protein levels. However, due to a high variability in ciliation among the patient-derived cell lines, the efficacy of the AONs was more difficult to assess at the cellular level. This observation points towards the importance of the severity of the second allele and possibly other genetic variants present in each individual. Overall, AONs seem to be a promising tool to treat CEP290-associated LCA, not only in homozygous but also in compound heterozygous carriers of the c.2991+1655A>G variant.


Asunto(s)
Alelos , Antígenos de Neoplasias/genética , Heterocigoto , Amaurosis Congénita de Leber/genética , Mutación , Proteínas de Neoplasias/genética , Oligonucleótidos Antisentido , Empalme del ARN , Antígenos de Neoplasias/metabolismo , Proteínas de Ciclo Celular , Línea Celular , Proteínas del Citoesqueleto , Femenino , Expresión Génica , Humanos , Inmunohistoquímica , Amaurosis Congénita de Leber/metabolismo , Masculino , Proteínas de Neoplasias/metabolismo
13.
Hum Mol Genet ; 22(16): 3218-26, 2013 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-23578822

RESUMEN

Creatine transport has been assigned to creatine transporter 1 (CRT1), encoded by mental retardation associated SLC6A8. Here, we identified a second creatine transporter (CRT2) known as monocarboxylate transporter 12 (MCT12), encoded by the cataract and glucosuria associated gene SLC16A12. A non-synonymous alteration in MCT12 (p.G407S) found in a patient with age-related cataract (ARC) leads to a significant reduction of creatine transport. Furthermore, Slc16a12 knockout (KO) rats have elevated creatine levels in urine. Transport activity and expression characteristics of the two creatine transporters are distinct. CRT2 (MCT12)-mediated uptake of creatine was not sensitive to sodium and chloride ions or creatine biosynthesis precursors, breakdown product creatinine or creatine phosphate. Increasing pH correlated with increased creatine uptake. Michaelis-Menten kinetics yielded a Vmax of 838.8 pmol/h/oocyte and a Km of 567.4 µm. Relative expression in various human tissues supports the distinct mutation-associated phenotypes of the two transporters. SLC6A8 was predominantly found in brain, heart and muscle, while SLC16A12 was more abundant in kidney and retina. In the lens, the two transcripts were found at comparable levels. We discuss the distinct, but possibly synergistic functions of the two creatine transporters. Our findings infer potential preventive power of creatine supplementation against the most prominent age-related vision impaired condition.


Asunto(s)
Catarata/metabolismo , Creatina/metabolismo , Glucosuria Renal/metabolismo , Transportadores de Ácidos Monocarboxílicos/genética , Transportadores de Ácidos Monocarboxílicos/metabolismo , Proteínas del Tejido Nervioso/genética , Proteínas del Tejido Nervioso/metabolismo , Proteínas de Transporte de Neurotransmisores en la Membrana Plasmática/genética , Proteínas de Transporte de Neurotransmisores en la Membrana Plasmática/metabolismo , Animales , Catarata/genética , Femenino , Glucosuria Renal/genética , Humanos , Riñón/metabolismo , Masculino , Proteínas de Transporte de Membrana/genética , Proteínas de Transporte de Membrana/metabolismo , Metabolómica , Mutación , Oocitos/citología , Especificidad de Órganos , Ratas , Retina/metabolismo , Trastornos de la Visión/genética , Trastornos de la Visión/metabolismo , Xenopus laevis
14.
Ann Neurol ; 75(1): 147-54, 2014 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-24272827

RESUMEN

OBJECTIVE: To identify novel epilepsy genes using a panel approach and describe the functional consequences of mutations. METHODS: Using a panel approach, we screened 357 patients comprising a vast spectrum of epileptic disorders for defects in genes known to contribute to epilepsy and/or intellectual disability (ID). After detection of mutations in a novel epilepsy gene, we investigated functional effects in Xenopus laevis oocytes and screened a follow-up cohort. RESULTS: We revealed de novo mutations in GRIN2B encoding the NR2B subunit of the N-methyl-D-aspartate (NMDA) receptor in 2 individuals with West syndrome and severe developmental delay as well as 1 individual with ID and focal epilepsy. The patient with ID and focal epilepsy had a missense mutation in the extracellular glutamate-binding domain (p.Arg540His), whereas both West syndrome patients carried missense mutations within the NR2B ion channel-forming re-entrant loop (p.Asn615Ile, p.Val618Gly). Subsequent screening of 47 patients with unexplained infantile spasms did not reveal additional de novo mutations, but detected a carrier of a novel inherited GRIN2B splice site variant in close proximity (c.2011-5_2011-4delTC). Mutations p.Asn615Ile and p.Val618Gly cause a significantly reduced Mg(2+) block and higher Ca(2+) permeability, leading to a dramatically increased Ca(2+) influx, whereas p.Arg540His caused less severe disturbance of channel function, corresponding to the milder patient phenotype. INTERPRETATION: We identified GRIN2B gain-of-function mutations as a cause of West syndrome with severe developmental delay as well as of ID with childhood onset focal epilepsy. Severely disturbed channel function corresponded to severe clinical phenotypes, underlining the important role of facilitated NMDA receptor signaling in epileptogenesis.


Asunto(s)
Epilepsias Parciales/genética , Discapacidad Intelectual/genética , Mutación/genética , Receptores de N-Metil-D-Aspartato/genética , Espasmos Infantiles/genética , Animales , Niño , Preescolar , Cristalografía por Rayos X , Epilepsias Parciales/complicaciones , Epilepsias Parciales/diagnóstico , Femenino , Humanos , Recién Nacido , Discapacidad Intelectual/complicaciones , Discapacidad Intelectual/diagnóstico , Ratas , Receptores de N-Metil-D-Aspartato/química , Espasmos Infantiles/complicaciones , Espasmos Infantiles/diagnóstico , Xenopus laevis
15.
Microbiol Spectr ; 12(4): e0403523, 2024 Apr 02.
Artículo en Inglés | MEDLINE | ID: mdl-38466097

RESUMEN

With almost a quadrillion individuals, the Antarctic krill processes five million tons of organic carbon every day during austral summer. This high carbon flux requires a broad range of hydrolytic enzymes to decompose the diverse food-derived biopolymers. While krill itself possesses numerous such enzymes, it is unclear, to what extent the endogenous microbiota contribute to the hydrolytic potential of the gut environment. Here we applied amplicon sequencing, shotgun metagenomics, cultivation, and physiological assays to characterize the krill gut microbiota. The broad bacterial diversity (273 families, 919 genera, and 2,309 species) also included a complex potentially anaerobic sub-community. Plate-based assays with 198 isolated pure cultures revealed widespread capacities to utilize lipids (e.g., tributyrin), followed by proteins (casein) and to a lesser extent by polysaccharides (e.g., alginate and chitin). While most isolates affiliated with the genera Pseudoalteromonas and Psychrobacter, also Rubritalea spp. (Verrucomicrobia) were observed. The krill gut microbiota growing on marine broth agar plates possess 13,012 predicted hydrolyses; 15-fold more than previously predicted from a transcriptome-proteome compendium of krill. Cultivation-independent and -dependent approaches indicated members of the families Flavobacteriaceae and Pseudoalteromonadaceae to dominate the capacities for lipid/protein hydrolysis and to provide a plethora of carbohydrate-active enzymes, sulfatases, and laminarin- or porphyrin-depolymerizing hydrolases. Notably, also the potential to hydrolyze plastics such as polyethylene terephthalate and polylactatide was observed, affiliating mostly with Moraxellaceae. Overall, this study shows extensive microbial diversity in the krill gut, and suggests that the microbiota likely play a significant role in the nutrient acquisition of the krill by enriching its hydrolytic enzyme repertoire.IMPORTANCEThe Antarctic krill (Euphausia superba) is a keystone species of the Antarctic marine food web, connecting the productivity of phyto- and zooplankton with the nutrition of the higher trophic levels. Accordingly, krill significantly contributes to biomass turnover, requiring the decomposition of seasonally varying plankton-derived biopolymers. This study highlights the likely role of the krill gut microbiota in this ecosystem function by revealing the great number of diverse hydrolases that microbes contribute to the krill gut environment. The here resolved repertoire of hydrolytic enzymes could contribute to the overall nutritional resilience of krill and to the general organic matter cycling under changing environmental conditions in the Antarctic sea water. Furthermore, the krill gut microbiome could serve as a valuable resource of cold-adapted hydrolytic enzymes for diverse biotechnological applications.


Asunto(s)
Euphausiacea , Humanos , Animales , Euphausiacea/metabolismo , Ecosistema , Estaciones del Año , Hidrolasas/genética , Hidrolasas/metabolismo , Biopolímeros/metabolismo
16.
Cells ; 12(6)2023 03 21.
Artículo en Inglés | MEDLINE | ID: mdl-36980294

RESUMEN

Efficacy and safety considerations constitute essential steps during development of in vivo gene therapies. Herein, we evaluated efficacy and safety of splice factor-based treatments to correct mutation-induced splice defects in an Opa1 mutant mouse line. We applied adeno-associated viruses to the retina. The viruses transduced retinal cells with an engineered U1 snRNA splice factor designed to correct the Opa1 splice defect. We found the treatment to be efficient in increasing wild-type Opa1 transcripts. Correspondingly, Opa1 protein levels increased significantly in treated eyes. Measurements of retinal morphology and function did not reveal therapy-related side-effects supporting the short-term safety of the treatment. Alterations of potential off-target genes were not detected. Our data suggest that treatments of splice defects applying engineered U1 snRNAs represent a promising in vivo therapeutic approach. The therapy increased wild-type Opa1 transcripts and protein levels without detectable morphological, functional or genetic side-effects in the mouse eye. The U1 snRNA-based therapy can be tailored to specific disease gene mutations, hence, raising the possibility of a wider applicability of this promising technology towards treatment of different inherited retinal diseases.


Asunto(s)
Sitios de Empalme de ARN , Empalme del ARN , Animales , Ratones , Empalme del ARN/genética , ARN Nuclear Pequeño/genética , ARN Nuclear Pequeño/metabolismo , Retina/metabolismo
17.
Life Sci Alliance ; 6(10)2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37541846

RESUMEN

Progressive degeneration of rod and cone photoreceptors frequently is caused by mutations in the X-chromosomal gene Retinitis Pigmentosa GTPase Regulator (RPGR). Males hemizygous for a RPGR mutation often are affected by Retinitis Pigmentosa (RP), whereas female mutation carriers only occasionally present with severe RP phenotypes. The underlying pathomechanism leading to RP in female carriers is not well understood. Here, we analyzed a three-generation family in which two of three female carriers of a nonsense RPGR mutation presented with RP. Among two cell lines derived from the same female family members, differences were detected in RPGR transcript expression, in localization of RPGR along cilia, as well as in primary cilium length. Significantly, these differences correlated with alterations in X-chromosomal inactivation patterns found in the patient-derived cell lines from females. In summary, our data suggest that skewed X-chromosomal inactivation is an important factor that determines the disease manifestation of RP among female carriers of pathogenic sequence alterations in the RPGR gene.


Asunto(s)
Retinitis Pigmentosa , Inactivación del Cromosoma X , Masculino , Femenino , Humanos , Inactivación del Cromosoma X/genética , Mutación/genética , Retinitis Pigmentosa/genética , Heterocigoto , Células Fotorreceptoras Retinianas Conos , Proteínas del Ojo/genética
18.
Microbiol Spectr ; 11(6): e0210023, 2023 Dec 12.
Artículo en Inglés | MEDLINE | ID: mdl-37823660

RESUMEN

IMPORTANCE: Aromatic compounds are globally abundant organic molecules with a multitude of natural and anthropogenic sources, underpinning the relevance of their biodegradation. A. aromaticum EbN1T is a well-studied environmental betaproteobacterium specialized on the anaerobic degradation of aromatic compounds. The here studied responsiveness toward phenol in conjunction with the apparent high ligand selectivity (non-promiscuity) of its PheR sensor and those of the related p-cresol (PcrS) and p-ethylphenol (EtpR) sensors are in accord with the substrate-specificity and biochemical distinctiveness of the associated degradation pathways. Furthermore, the present findings advance our general understanding of the substrate-specific regulation of the strain's remarkable degradation network and of the concentration thresholds below which phenolic compounds become essentially undetectable and as a consequence should escape substantial biodegradation. Furthermore, the findings may inspire biomimetic sensor designs for detecting and quantifying phenolic contaminants in wastewater or environments.


Asunto(s)
Fenol , Fenoles , Fenol/metabolismo , Fenoles/metabolismo , Rhodocyclaceae/metabolismo , Biodegradación Ambiental , Anaerobiosis
19.
iScience ; 26(10): 107723, 2023 Oct 20.
Artículo en Inglés | MEDLINE | ID: mdl-37692287

RESUMEN

Splicing of transcripts is catalyzed by the spliceosome, a mega-complex consisting of hundreds of proteins and five snRNAs, which employs direct interactions. When U1 snRNA forms high-affinity binding, namely more than eight base pairs, with the 5'SS, the result is usually a suppressing effect on the splicing activity. This likely occurs due to the inefficient unwinding of U1/5'SS base-pairing or other regulatory obstructions. Here, we show in vitro and in patient-derived cell lines that pre-microRNAs can modulate the splicing reaction by interacting with U1 snRNA. This leads to reduced binding affinity to the 5'SS, and hence promotes the inclusion of exons containing 5'SS, despite sequence-based high affinity to U1. Application of the mechanism resulted in correction of the splicing defect in the disease-causing VCAN gene from an individual with Wagner syndrome. This pre-miRNA/U1 interaction can regulate the expression of alternatively spliced exons, thus extending the scope of mechanisms regulating splicing.

20.
Mol Ther ; 19(5): 936-41, 2011 May.
Artículo en Inglés | MEDLINE | ID: mdl-21326217

RESUMEN

Retinitis pigmentosa (RP) is a disease that primarily affects the peripheral retina and ultimately causes visual impairment. X-chromosomal forms of RP are frequently caused by mutations in the retinitis pigmentosa GTPase regulator (RPGR) gene. We show that the novel splice donor site (SDS) mutation c.1245+3A>T in intron 10 of RPGR cosegregates with RP in a five-generation Caucasian family. The mutation causes in-frame skipping of exon 10 from RPGR transcripts in patient-derived primary fibroblasts. To correct the splice defect, we developed a gene therapeutic approach using mutation-adapted U1 small nuclear RNA (U1). U1 is required for SDS recognition of pre-mRNAs and initiates the splice process. The mutation described herein interferes with the recognition of the SDS by U1. To overcome the deleterious effects of the mutation, we generated four U1 isoforms with increasing complementarity to the SDS. Lentiviral particles were used to transduce patient-derived fibroblasts with these U1 variants. Full complementarity of U1 corrects the splice defect partially and increases recognition of the mutant SDS. The therapeutic effect is U1-concentration dependent as we show for endogenously expressed RPGR transcripts in patient-derived cells. U1-based gene therapeutic approaches constitute promising technologies to treat SDS mutations in inherited diseases including X-linked RP.


Asunto(s)
Proteínas del Ojo/genética , Mutación , Empalme del ARN , ARN Nuclear Pequeño/genética , Retinitis Pigmentosa/terapia , Células Cultivadas , Proteínas del Ojo/metabolismo , Terapia Genética , Células HEK293 , Humanos , Sitios de Empalme de ARN/genética , Retinitis Pigmentosa/genética , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA