Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Brain Behav Immun ; 117: 473-492, 2024 03.
Artículo en Inglés | MEDLINE | ID: mdl-38341052

RESUMEN

The gut and brain are increasingly linked in human disease, with neuropsychiatric conditions classically attributed to the brain showing an involvement of the intestine and inflammatory bowel diseases (IBDs) displaying an ever-expanding list of neurological comorbidities. To identify molecular systems that underpin this gut-brain connection and thus discover therapeutic targets, experimental models of gut dysfunction must be evaluated for brain effects. In the present study, we examine disturbances along the gut-brain axis in a widely used murine model of colitis, the dextran sodium sulfate (DSS) model, using high-throughput transcriptomics and an unbiased network analysis strategy coupled with standard biochemical outcome measures to achieve a comprehensive approach to identify key disease processes in both colon and brain. We examine the reproducibility of colitis induction with this model and its resulting genetic programs during different phases of disease, finding that DSS-induced colitis is largely reproducible with a few site-specific molecular features. We focus on the circulating immune system as the intermediary between the gut and brain, which exhibits an activation of pro-inflammatory innate immunity during colitis. Our unbiased transcriptomics analysis provides supporting evidence for immune activation in the brain during colitis, suggests that myelination may be a process vulnerable to increased intestinal permeability, and identifies a possible role for oxidative stress and brain oxygenation. Overall, we provide a comprehensive evaluation of multiple systems in a prevalent experimental model of intestinal permeability, which will inform future studies using this model and others, assist in the identification of druggable targets in the gut-brain axis, and contribute to our understanding of the concomitance of intestinal and neuropsychiatric dysfunction.


Asunto(s)
Colitis , Redes Reguladoras de Genes , Humanos , Animales , Ratones , Modelos Animales de Enfermedad , Reproducibilidad de los Resultados , Encéfalo , Colitis/inducido químicamente , Estrés Oxidativo
2.
bioRxiv ; 2024 Mar 14.
Artículo en Inglés | MEDLINE | ID: mdl-38558966

RESUMEN

Progranulin is a holoprotein that is critical for successful aging, and insufficient levels of progranulin are associated with increased risk for developing age-related neurodegenerative diseases like AD, PD, and FTD. Symptoms can vary widely, but a uniting feature among these different neurodegenerative diseases is prodromal peripheral immune cell phenotypes. However, there remains considerable gaps in the understanding of the function(s) of progranulin in immune cells, and recent work has identified a novel target candidate called GPNMB. We addressed this gap by investigating the peritoneal macrophages of 5-6-month-old Grn KO mice, and we discovered that GPNMB is actively increased as a result of insufficient progranulin and that MITF, a transcription factor, is also dysregulated in progranulin-deficient macrophages. These findings highlight the importance of early-stage disease mechanism(s) in peripheral cell populations that may lead to viable treatment strategies to delay disease progression at an early, prodromal timepoint and extend therapeutic windows.

3.
Res Sq ; 2024 Mar 12.
Artículo en Inglés | MEDLINE | ID: mdl-38559083

RESUMEN

Parkinson's disease (PD) is characterized by a decades-long prodrome, consisting of a collection of non-motor symptoms that emerges prior to the motor manifestation of the disease. Of these non-motor symptoms, gastrointestinal dysfunction and deficits attributed to central norepinephrine (NE) loss, including mood changes and sleep disturbances, are frequent in the PD population and emerge early in the disease. Evidence is mounting that injury and inflammation in the gut and locus coeruleus (LC), respectively, underlie these symptoms, and the injury of these systems is central to the progression of PD. In this study, we generate a novel two-hit mouse model that captures both features, using dextran sulfate sodium (DSS) to induce gut inflammation and N-(2-chloroethyl)-N-ethyl-2-bromobenzylamine (DSP-4) to lesion the LC. We first confirmed the specificity of DSP-4 for central NE using neurochemical methods and fluorescence light-sheet microscopy of cleared tissue, and established that DSS-induced outcomes in the periphery, including weight loss, gross indices of gut injury and systemic inflammation, the loss of tight junction proteins in the colonic epithelium, and markers of colonic inflammation, were unaffected with DSP-4 pre-administration. We then measured alterations in neuroimmune gene expression in the ventral midbrain in response to DSS treatment alone as well as the extent to which prior LC injury modified this response. In this two-hit model we observed that DSS-induced colitis activates the expression of key cytokines and chemokines in the ventral midbrain only in the presence of LC injury and the typical DSS-associated neuroimmune is blunted by pre-LC lesioning with DSP-4. In all, this study supports the growing appreciation for the LC as neuroprotective against inflammation-induced brain injury and draws attention to the potential for NEergic interventions to exert disease-modifying effects under conditions where peripheral inflammation may compromise ventral midbrain dopaminergic neurons and increase the risk for development of PD.

4.
bioRxiv ; 2024 Feb 13.
Artículo en Inglés | MEDLINE | ID: mdl-38405709

RESUMEN

Parkinson's disease (PD) is characterized by a decades-long prodrome, consisting of a collection of non-motor symptoms that emerges prior to the motor manifestation of the disease. Of these non-motor symptoms, gastrointestinal dysfunction and deficits attributed to central norepinephrine (NE) loss, including mood changes and sleep disturbances, are frequent in the PD population and emerge early in the disease. Evidence is mounting that injury and inflammation in the gut and locus coeruleus (LC), respectively, underlie these symptoms, and the injury of these systems is central to the progression of PD. In this study, we generate a novel two-hit mouse model that captures both features, using dextran sulfate sodium (DSS) to induce gut inflammation and N-(2-chloroethyl)-N-ethyl-2-bromobenzylamine (DSP-4) to lesion the LC. We first confirmed the specificity of DSP-4 for central NE using neurochemical methods and fluorescence light-sheet microscopy of cleared tissue, and established that DSS-induced outcomes in the periphery, including weight loss, gross indices of gut injury and systemic inflammation, the loss of tight junction proteins in the colonic epithelium, and markers of colonic inflammation, were unaffected with DSP-4 pre-administration. We then measured alterations in neuroimmune gene expression in the ventral midbrain in response to DSS treatment alone as well as the extent to which prior LC injury modified this response. In this two-hit model we observed that DSS-induced colitis activates the expression of key cytokines and chemokines in the ventral midbrain only in the presence of LC injury and the typical DSS-associated neuroimmune is blunted by pre-LC lesioning with DSP-4. In all, this study supports the growing appreciation for the LC as neuroprotective against inflammation-induced brain injury and draws attention to the potential for NEergic interventions to exert disease-modifying effects under conditions where peripheral inflammation may compromise ventral midbrain dopaminergic neurons and increase the risk for development of PD.

5.
bioRxiv ; 2024 Jul 23.
Artículo en Inglés | MEDLINE | ID: mdl-39211224

RESUMEN

Background: Increases in GPNMB are detectable in FTD- GRN cerebrospinal fluid (CSF) and post-mortem brain, and brains of aged Grn -deficient mice. Although no upregulation of GPNMB is observed in the brains of young Grn -deficient mice, peripheral immune cells of these mice do exhibit this increase in GPNMB. Importantly, the functional significance of GPNMB upregulation in progranulin-deficient states is currently unknown. Given that GPNMB has been discussed as a potential therapeutic target in GRN -mediated neurodegeneration, it is vital for the field to determine what the normal function of GPNMB is in the immune system, and whether targeting GPNMB will elicit beneficial or deleterious effects. Methods: The effects of GPNMB knock-down via antisense oligonucleotide (ASO) were assessed in peripheral blood mononuclear cells (PBMCs) from 25 neurologically healthy controls (NHCs) and age- and sex-matched FTD- GRN patients, as well as peritoneal macrophages (pMacs) from progranulin-deficient ( Grn -/- ) and B6 mice. Lysosomal function, antigen presentation and MHC-II processing and recycling were assessed, as well as cytokine release and transcription. Results: We demonstrate here that ASO-mediated knockdown of GPNMB increases lysosomal burden and cytokine secretion in FTD-GRN carrier and neurologically healthy controls (NHCs) monocytes. ASO-mediated knockdown of GPNMB in Grn -deficient macrophages decreased lysosomal pan-cathepsin activity and protein degradation. In addition, ASO-mediated knockdown of GPNMB increased MHC-II surface expression, which was driven by decreased MHC-II uptake and recycling, in macrophages from Grn -deficient females. Finally, ASO-mediated knockdown of GPNMB dysregulated IFNγ-stimulated cytokine transcription and secretion by mouse macrophages due to the absence of regulatory actions of the GPNMB extracellular fragment (ECF). Conclusions: Our data herein reveals that GPNMB has a regulatory effect on multiple immune effector functions, including capping inflammation and immune responses in myeloid cells via secretion of its ECF. Therefore, in progranulin-deficient states, the drastic upregulation in GPNMB transcript and protein may represent a compensatory mechanism to preserve lysosomal function in myeloid cells. These novel findings indicate that targeted depletion in FTD- GRN would not be a rational therapeutic strategy because it is likely to dysregulate important immune cell effector functions.

6.
bioRxiv ; 2023 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-37503274

RESUMEN

Genetic variation around the LRRK2 gene affects risk of both familial and sporadic Parkinson's disease (PD). LRRK2 levels have become an appealing target for potential PD-therapeutics with LRRK2 antisense oligonucleotides (ASOs) now in clinical trials. However, LRRK2 has been suggested to play a fundamental role in peripheral immunity, and it is currently unknown if targeting increased LRRK2 levels in peripheral immune cells will be beneficial or deleterious. Furthermore, the precise role of LRRK2 in immune cells is currently unknown, although it has been suggested that LRRK2-mediated lysosomal function may be crucial to immune responses. Here, it was observed that G2019S macrophages exhibited increased stimulation-dependent lysosomal tubule formation (LTF) and MHC-II trafficking from the perinuclear lysosome to the plasma membrane in an mTOR dependent manner with concomitant increases in pro-inflammatory cytokine release. Both ASO-mediated knock down of mutant Lrrk 2 and LRRK2 kinase inhibition ameliorated this phenotype and decreased these immune responses in control cells. Given the critical role of antigen presentation, lysosomal function, and cytokine release in macrophages, it is likely LRRK2-targetting therapies may have therapeutic value with regards to mutant LRRK2 but deleterious effects on the peripheral immune system, such as altered pathogen control and infection resolution.

7.
bioRxiv ; 2023 Aug 13.
Artículo en Inglés | MEDLINE | ID: mdl-37609290

RESUMEN

The gut and brain are increasingly linked in human disease, with neuropsychiatric conditions classically attributed to the brain showing an involvement of the intestine and inflammatory bowel diseases (IBDs) displaying an ever-expanding list of neurological comorbidities. To identify molecular systems that underpin this gut-brain connection and thus discover therapeutic targets, experimental models of gut dysfunction must be evaluated for brain effects. In the present study, we examine disturbances along the gut-brain axis in a widely used murine model of colitis, the dextran sodium sulfate (DSS) model, using high-throughput transcriptomics and an unbiased network analysis strategy coupled with standard biochemical outcome measures to achieve a comprehensive approach to identify key disease processes in both colon and brain. We examine the reproducibility of colitis induction with this model and its resulting genetic programs during different phases of disease, finding that DSS-induced colitis is largely reproducible with a few site-specific molecular features. We focus on the circulating immune system as the intermediary between the gut and brain, which exhibits an activation of pro-inflammatory innate immunity during colitis. Our unbiased transcriptomics analysis provides supporting evidence for immune activation in the brain during colitis, suggests that myelination may be a process vulnerable to increased intestinal permeability, and identifies a possible role for oxidative stress and brain oxygenation. Overall, we provide a comprehensive evaluation of multiple systems in a prevalent experimental model of intestinal permeability, which will inform future studies using this model and others, assist in the identification of druggable targets in the gut-brain axis, and contribute to our understanding of the concomitance of intestinal and neuropsychiatric dysfunction.

8.
bioRxiv ; 2023 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-37905053

RESUMEN

Considering age is the greatest risk factor for many neurodegenerative diseases, aging, in particular aging of the immune system, is the most underappreciated and understudied contributing factor in the neurodegeneration field. Genetic variation around the LRRK2 gene affects risk of both familial and sporadic Parkinson's disease (PD). The leucine-rich repeat kinase 2 (LRRK2) protein has been implicated in peripheral immune signaling, however, the effects of an aging immune system on LRRK2 function have been neglected to be considered. We demonstrate here that the R1441C mutation induces a hyper-responsive phenotype in macrophages from young female mice, characterized by increased effector functions, including stimulation-dependent antigen presentation, cytokine release, phagocytosis, and lysosomal function. This is followed by age-acquired immune cell exhaustion in a Lrrk2-kinase-dependent manner. Immune-exhausted macrophages exhibit suppressed antigen presentation and hypophagocytosis, which is also demonstrated in myeloid cells from R1441C and Y1699C-PD patients. Our novel findings that LRRK2 mutations confer immunological advantage at a young age but may predispose the carrier to age-acquired immune exhaustion have significant implications for LRRK2 biology and therapeutic development. Indeed, LRRK2 has become an appealing target in PD, but our findings suggest that more research is required to understand the cell-type specific consequences and optimal timing of LRRK2-targeting therapeutics.

9.
Mol Ther Nucleic Acids ; 34: 102064, 2023 Dec 12.
Artículo en Inglés | MEDLINE | ID: mdl-38028198

RESUMEN

Genetic variation around the LRRK2 gene affects risk for both familial and sporadic Parkinson's disease (PD). LRRK2 levels have become an appealing target for potential PD therapeutics with LRRK2 antisense oligonucleotides (ASOs) now moving toward clinical trials. However, LRRK2 has been suggested to play a fundamental role in peripheral immunity, and it is currently unknown if targeting increased LRRK2 levels in peripheral immune cells will be beneficial or deleterious. Here it was observed that G2019S macrophages exhibited increased stimulation-dependent lysosomal tubule formation (LTF) and MHC-II trafficking from the perinuclear lysosome to the plasma membrane in an mTOR-dependent manner with concomitant increases in pro-inflammatory cytokine release. Both ASO-mediated knockdown of mutant Lrrk2 and LRRK2 kinase inhibition ameliorated this phenotype and decreased these immune responses in control cells. Given the critical role of antigen presentation, lysosomal function, and cytokine release in macrophages, it is likely LRRK2-targeting therapies with systemic activity may have therapeutic value with regard to mutant LRRK2, but deleterious effects on the peripheral immune system, such as altered pathogen control in these cells, should be considered when reducing levels of non-mutant LRRK2.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA