Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 72
Filtrar
Más filtros

Bases de datos
Tipo del documento
Intervalo de año de publicación
1.
FASEB J ; 37(2): e22729, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36583688

RESUMEN

Several redox modifications have been described during viral infection, including influenza virus infection, but little is known about glutathionylation and this respiratory virus. Glutathionylation is a reversible, post-translational modification, in which protein cysteine forms transient disulfides with glutathione (GSH), catalyzed by cellular oxidoreductases and in particular by glutaredoxin (Grx). We show here that (i) influenza virus infection induces protein glutathionylation, including that of viral proteins such as hemagglutinin (HA); (ii) Grx1-mediated deglutathionylation is important for the viral life cycle, as its inhibition, either with an inhibitor of its enzymatic activity or by siRNA, decreases viral replication. Overall these data contribute to the characterization of the complex picture of redox regulation of the influenza virus replication cycle and could help to identify new targets to control respiratory viral infection.


Asunto(s)
Gripe Humana , Infecciones por Orthomyxoviridae , Humanos , Glutatión/metabolismo , Oxidación-Reducción , Oxidorreductasas/metabolismo , Replicación Viral , Procesamiento Proteico-Postraduccional
2.
FASEB J ; 37(2): e22741, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36583713

RESUMEN

The SARS-CoV-2 life cycle is strictly dependent on the environmental redox state that influences both virus entry and replication. A reducing environment impairs the binding of the spike protein (S) to the angiotensin-converting enzyme 2 receptor (ACE2), while a highly oxidizing environment is thought to favor S interaction with ACE2. Moreover, SARS-CoV-2 interferes with redox homeostasis in infected cells to promote the oxidative folding of its own proteins. Here we demonstrate that synthetic low molecular weight (LMW) monothiol and dithiol compounds induce a redox switch in the S protein receptor binding domain (RBD) toward a more reduced state. Reactive cysteine residue profiling revealed that all the disulfides present in RBD are targets of the thiol compounds. The reduction of disulfides in RBD decreases the binding to ACE2 in a cell-free system as demonstrated by enzyme-linked immunosorbent and surface plasmon resonance (SPR) assays. Moreover, LMW thiols interfere with protein oxidative folding and the production of newly synthesized polypeptides in HEK293 cells expressing the S1 and RBD domain, respectively. Based on these results, we hypothesize that these thiol compounds impair both the binding of S protein to its cellular receptor during the early stage of viral infection, as well as viral protein folding/maturation and thus the formation of new viral mature particles. Indeed, all the tested molecules, although at different concentrations, efficiently inhibit both SARS-CoV-2 entry and replication in Vero E6 cells. LMW thiols may represent innovative anti-SARS-CoV-2 therapeutics acting directly on viral targets and indirectly by inhibiting cellular functions mandatory for viral replication.


Asunto(s)
COVID-19 , SARS-CoV-2 , Humanos , SARS-CoV-2/metabolismo , Enzima Convertidora de Angiotensina 2/metabolismo , Proteínas Virales/metabolismo , Células HEK293 , Unión Proteica , Compuestos de Sulfhidrilo/farmacología
3.
J Pept Sci ; 30(1): e3534, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37501572

RESUMEN

The recent pandemic caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has highlighted how urgent and necessary the discovery of new antiviral compounds is for novel therapeutic approaches. Among the various classes of molecules with antiviral activity, antimicrobial peptides (AMPs) of innate immunity are among the most promising ones, mainly due to their different mechanisms of action against viruses and additional biological properties. In this review, the main physicochemical characteristics of AMPs are described, with particular interest toward peptides derived from amphibian skin. Living in aquatic and terrestrial environments, amphibians are one of the richest sources of AMPs with different primary and secondary structures. Besides describing the various antiviral activities of these peptides and the underlying mechanism, this review aims at emphasizing the high potential of these small molecules for the development of new antiviral agents that likely reduce the selection of resistant strains.


Asunto(s)
COVID-19 , Humanos , SARS-CoV-2 , Pandemias , Péptidos Antimicrobianos , Péptidos/farmacología , Péptidos/uso terapéutico , Antivirales/farmacología , Antivirales/uso terapéutico
4.
Virol J ; 20(1): 239, 2023 10 18.
Artículo en Inglés | MEDLINE | ID: mdl-37853388

RESUMEN

SARS-CoV-2 has evolved several strategies to overcome host cell defenses by inducing cell injury to favour its replication. Many viruses have been reported to modulate the intracellular redox balance, affecting the Nuclear factor erythroid 2-Related Factor 2 (NRF2) signaling pathway. Although antioxidant modulation by SARS-CoV-2 infection has already been described, the viral factors involved in modulating the NRF2 pathway are still elusive. Given the antagonistic activity of ORF6 on several cellular pathways, we investigated the role of the viral protein towards NRF2-mediated antioxidant response. The ectopic expression of the wt-ORF6 protein negatively impacts redox cell homeostasis, leading to an increase in ROS production, along with a decrease in NRF2 protein and its downstream controlled genes. Moreover, when investigating the Δ61 mutant, previously described as an inactive nucleopore proteins binding mutant, we prove that the oxidative stress induced by ORF6 is substantially related to its C-terminal domain, speculating that ORF6 mechanism of action is associated with the inhibition of nuclear mRNA export processes. In addition, activation by phosphorylation of the serine residue at position 40 of NRF2 is increased in the cytoplasm of wt-ORF6-expressing cells, supporting the presence of an altered redox state, although NRF2 nuclear translocation is hindered by the viral protein to fully antagonize the cell response. Furthermore, wt-ORF6 leads to phosphorylation of a stress-activated serine/threonine protein kinase, p38 MAPK, suggesting a role of the viral protein in regulating p38 activation. These findings strengthen the important role of oxidative stress in the pathogenesis of SARS-CoV-2 and identify ORF6 as an important viral accessory protein hypothetically involved in modulating the antioxidant response during viral infection.


Asunto(s)
COVID-19 , SARS-CoV-2 , Humanos , Antioxidantes , Homeostasis , Factor 2 Relacionado con NF-E2/genética , Factor 2 Relacionado con NF-E2/metabolismo , Oxidación-Reducción , Serina/metabolismo , Proteínas Virales/genética , Proteínas Virales/metabolismo
5.
Int J Mol Sci ; 24(13)2023 Jun 22.
Artículo en Inglés | MEDLINE | ID: mdl-37445672

RESUMEN

There is an urgent need to identify efficient antiviral compounds to combat existing and emerging RNA virus infections, particularly those related to seasonal and pandemic influenza outbreaks. While inhibitors of the influenza viral integral membrane proton channel protein (M2), neuraminidase (NA), and cap-dependent endonuclease are available, circulating influenza viruses acquire resistance over time. Thus, the need for the development of additional anti-influenza drugs with novel mechanisms of action exists. In the present study, a cell-based screening assay and a small molecule library were used to screen for activities that antagonized influenza A non-structural protein 1 (NS1), a highly conserved, multifunctional accessory protein that inhibits the type I interferon response against influenza. Two potential anti-influenza agents, compounds 157 and 164, were identified with anti-NS1 activity, resulting in the reduction of A/PR/8/34(H1N1) influenza A virus replication and the restoration of IFN-ß expression in human lung epithelial A549 cells. A 3D pharmacophore modeling study of the active compounds provided a glimpse of the structural motifs that may contribute to anti-influenza virus activity. This screening approach is amenable to a broader analysis of small molecule compounds to inhibit other viral targets.


Asunto(s)
Subtipo H1N1 del Virus de la Influenza A , Virus de la Influenza A , Gripe Humana , Interferón Tipo I , Humanos , Subtipo H1N1 del Virus de la Influenza A/genética , Interferón Tipo I/metabolismo , Proteínas no Estructurales Virales/metabolismo , Gripe Humana/tratamiento farmacológico , Virus de la Influenza A/genética , Antivirales/farmacología , Antivirales/metabolismo , Replicación Viral
6.
Int J Mol Sci ; 23(11)2022 Jun 06.
Artículo en Inglés | MEDLINE | ID: mdl-35683025

RESUMEN

The increasing resistance to conventional antifungal drugs is a widespread concern, and a search for new compounds, active against different species of fungi, is demanded. Antimicrobial peptides (AMPs) hold promises in this context. Here we investigated the activity of the frog skin AMP Temporin G (TG) against a panel of fungal strains, by following the Clinical and Laboratory Standards Institute protocols. TG resulted to be active against (i) Candida species and Cryptococcus neoformans, with MIC50 between 4 µM and 64 µM after 24 h of incubation; (ii) dermatophytes with MIC80 ranging from 4 to 32 µM, and (iii) Aspergillus strains with MIC80 of 128 µM. In addition, our tests revealed that TG reduced the metabolic activity of Candida albicans cells, with moderate membrane perturbation, as proven by XTT and Sytox Green assays, respectively. Furthermore, TG was found to be effective against some C. albicans virulence factors; indeed, at 64 µM it was able to inhibit ~90% of yeast-mycelial switching, strongly prevented biofilm formation, and led to a 50% reduction of metabolic activity in mature biofilm cells, and ~30-35% eradication of mature biofilm biomass. Even though further studies are needed to deepen our knowledge of the mechanisms of TG antifungal activity, our results suggest this AMP as an attractive lead compound for treatment of fungal diseases.


Asunto(s)
Antifúngicos , Candida albicans , Animales , Antifúngicos/química , Péptidos Catiónicos Antimicrobianos/farmacología , Anuros , Biopelículas , Pruebas de Sensibilidad Microbiana , Factores de Virulencia/farmacología
7.
Int J Mol Sci ; 23(4)2022 Feb 13.
Artículo en Inglés | MEDLINE | ID: mdl-35216177

RESUMEN

The COVID-19 pandemic has evidenced the urgent need for the discovery of broad-spectrum antiviral therapies that could be deployed in the case of future emergence of novel viral threats, as well as to back up current therapeutic options in the case of drug resistance development. Most current antivirals are directed to inhibit specific viruses since these therapeutic molecules are designed to act on a specific viral target with the objective of interfering with a precise step in the replication cycle. Therefore, antimicrobial peptides (AMPs) have been identified as promising antiviral agents that could help to overcome this limitation and provide compounds able to act on more than a single viral family. We evaluated the antiviral activity of an amphibian peptide known for its strong antimicrobial activity against both Gram-positive and Gram-negative bacteria, namely Temporin L (TL). Previous studies have revealed that TL is endowed with widespread antimicrobial activity and possesses marked haemolytic activity. Therefore, we analyzed TL and a previously identified TL derivative (Pro3, DLeu9 TL, where glutamine at position 3 is replaced with proline, and the D-Leucine enantiomer is present at position 9) as well as its analogs, for their activity against a wide panel of viruses comprising enveloped, naked, DNA and RNA viruses. We report significant inhibition activity against herpesviruses, paramyxoviruses, influenza virus and coronaviruses, including SARS-CoV-2. Moreover, we further modified our best candidate by lipidation and demonstrated a highly reduced cytotoxicity with improved antiviral effect. Our results show a potent and selective antiviral activity of TL peptides, indicating that the novel lipidated temporin-based antiviral agents could prove to be useful additions to current drugs in combatting rising drug resistance and epidemic/pandemic emergencies.


Asunto(s)
Proteínas Anfibias/farmacología , Anfibios/metabolismo , Péptidos Catiónicos Antimicrobianos/farmacología , Antivirales/química , Virus ADN/efectos de los fármacos , Virus ARN/efectos de los fármacos , Secuencia de Aminoácidos , Proteínas Anfibias/química , Proteínas Anfibias/metabolismo , Animales , Péptidos Catiónicos Antimicrobianos/química , Péptidos Catiónicos Antimicrobianos/metabolismo , Antivirales/farmacología , Supervivencia Celular/efectos de los fármacos , Chlorocebus aethiops , Bacterias Gramnegativas/efectos de los fármacos , Bacterias Grampositivas/efectos de los fármacos , Humanos , Lípidos/química , SARS-CoV-2/efectos de los fármacos , Células Vero
8.
Int J Mol Sci ; 23(13)2022 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-35806198

RESUMEN

Herpes simplex virus type-1 (HSV-1) and John Cunningham polyomavirus (JCPyV) are widely distributed DNA viruses causing mainly asymptomatic infection, but also mild to very severe diseases, especially when these viruses reach the brain. Some drugs have been developed to inhibit HSV-1 replication in host cells, but their prolonged use may induce resistance phenomena. In contrast, to date, there is no cure for JCPyV. The search for alternative drugs that can reduce viral infections without undermining the host cell is moving toward antimicrobial peptides (AMPs) of natural occurrence. These include amphibian AMPs belonging to the temporin family. Herein, we focus on temporin G (TG), showing that it strongly affects HSV-1 replication by acting either during the earliest stages of its life cycle or directly on the virion. Computational studies have revealed the ability of TG to interact with HSV-1 glycoprotein B. We also found that TG reduced JCPyV infection, probably affecting both the earliest phases of its life cycle and the viral particle, likely through an interaction with the viral capsid protein VP1. Overall, our results are promising for the development of short naturally occurring peptides as antiviral agents used to counteract diseases related to HSV-1 and JCPyV.


Asunto(s)
Herpesvirus Humano 1 , Anfibios , Animales , Péptidos Catiónicos Antimicrobianos/farmacología , Péptidos Antimicrobianos , Herpesvirus Humano 1/fisiología , Replicación Viral
9.
Molecules ; 27(12)2022 Jun 09.
Artículo en Inglés | MEDLINE | ID: mdl-35744845

RESUMEN

Influenza viruses are transmitted from human to human via airborne droplets and can be transferred through contaminated environmental surfaces. Some works have demonstrated the efficacy of essential oils (EOs) as antimicrobial and antiviral agents, but most of them examined the liquid phases, which are generally toxic for oral applications. In our study, we describe the antiviral activity of Citrus bergamia, Melaleuca alternifolia, Illicium verum and Eucalyptus globulus vapor EOs against influenza virus type A. In the vapor phase, C. bergamia and M. alternifolia strongly reduced viral cytopathic effect without exerting any cytotoxicity. The E. globulus vapor EO reduced viral infection by 78% with no cytotoxicity, while I. verum was not effective. Furthermore, we characterized the EOs and their vapor phase by the head-space gas chromatography-mass spectrometry technique, observing that the major component found in each liquid EO is the same one of the corresponding vapor phases, with the exception of M. alternifolia. To deepen the mechanism of action, the morphological integrity of virus particles was checked by negative staining transmission electron microscopy, showing that they interfere with the lipid bilayer of the viral envelope, leading to the decomposition of membranes. We speculated that the most abundant components of the vapor EOs might directly interfere with influenza virus envelope structures or mask viral structures important for early steps of viral infection.


Asunto(s)
Antiinfecciosos , Eucalyptus , Subtipo H1N1 del Virus de la Influenza A , Melaleuca , Aceites Volátiles , Antiinfecciosos/farmacología , Antivirales/farmacología , Eucalyptus/química , Melaleuca/química , Aceites Volátiles/química , Aceites Volátiles/farmacología
10.
J Enzyme Inhib Med Chem ; 36(1): 2128-2138, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-34583607

RESUMEN

Influenza viruses represent a major threat to human health and are responsible for seasonal epidemics, along with pandemics. Currently, few therapeutic options are available, with most drugs being at risk of the insurgence of resistant strains. Hence, novel approaches targeting less explored pathways are urgently needed. In this work, we assayed a library of nitrobenzoxadiazole derivatives against the influenza virus A/Puerto Rico/8/34 H1N1 (PR8) strain. We identified three promising 4-thioether substituted nitrobenzoxadiazoles (12, 17, and 25) that were able to inhibit viral replication at low micromolar concentrations in two different infected cell lines using a haemagglutination assay. We further assessed these molecules using an In-Cell Western assay, which confirmed their potency in the low micromolar range. Among the three molecules, 12 and 25 displayed the most favourable profile of activity and selectivity and were selected as hit compounds for future optimisation studies.


Asunto(s)
4-Cloro-7-nitrobenzofurazano/farmacología , Antivirales/farmacología , Subtipo H1N1 del Virus de la Influenza A/efectos de los fármacos , 4-Cloro-7-nitrobenzofurazano/síntesis química , 4-Cloro-7-nitrobenzofurazano/química , Animales , Antivirales/síntesis química , Antivirales/química , Supervivencia Celular/efectos de los fármacos , Células Cultivadas , Perros , Relación Dosis-Respuesta a Droga , Humanos , Pruebas de Sensibilidad Microbiana , Estructura Molecular , Relación Estructura-Actividad
11.
Int J Mol Sci ; 22(12)2021 Jun 11.
Artículo en Inglés | MEDLINE | ID: mdl-34208020

RESUMEN

Herpes simplex virus 1 (HSV-1) is a widespread neurotropic virus establishing a life-long latent infection in neurons with periodic reactivations. Recent studies linked HSV-1 to neurodegenerative processes related to age-related disorders such as Alzheimer's disease. Here, we explored whether recurrent HSV-1 infection might accelerate aging in neurons, focusing on peculiar marks of aged cells, such as the increase in histone H4 lysine (K) 16 acetylation (ac) (H4K16ac); the decrease of H3K56ac, and the modified expression of Sin3/HDAC1 and HIRA proteins. By exploiting both in vitro and in vivo models of recurrent HSV-1 infection, we found a significant increase in H4K16ac, Sin3, and HDAC1 levels, suggesting that the neuronal response to virus latency and reactivation includes the upregulation of these aging markers. On the contrary, we found a significant decrease in H3K56ac that was specifically linked to viral reactivation and apparently not related to aging-related markers. A complex modulation of HIRA expression and localization was found in the brain from HSV-1 infected mice suggesting a specific role of this protein in viral latency and reactivation. Overall, our results pointed out novel molecular mechanisms through which recurrent HSV-1 infection may affect neuronal aging, likely contributing to neurodegeneration.


Asunto(s)
Senescencia Celular , Herpes Simple/patología , Herpes Simple/virología , Herpesvirus Humano 1/fisiología , Modelos Biológicos , Neuronas/patología , Neuronas/virología , Acetilación , Animales , Proteínas de Ciclo Celular/metabolismo , Modelos Animales de Enfermedad , Chaperonas de Histonas/metabolismo , Histona Desacetilasa 1/metabolismo , Histonas/metabolismo , Lisina/metabolismo , Ratas Wistar , Recurrencia , Complejo Correpresor Histona Desacetilasa y Sin3/metabolismo , Factores de Transcripción/metabolismo , Latencia del Virus
12.
Int J Mol Sci ; 22(7)2021 Mar 30.
Artículo en Inglés | MEDLINE | ID: mdl-33808471

RESUMEN

Host-directed therapy using drugs that target cellular pathways required for virus lifecycle or its clearance might represent an effective approach for treating infectious diseases. Changes in redox homeostasis, including intracellular glutathione (GSH) depletion, are one of the key events that favor virus replication and contribute to the pathogenesis of virus-induced disease. Redox homeostasis has an important role in maintaining an appropriate Th1/Th2 balance, which is necessary to mount an effective immune response against viral infection and to avoid excessive inflammatory responses. It is known that excessive production of reactive oxygen species (ROS) induced by viral infection activates nuclear factor (NF)-kB, which orchestrates the expression of viral and host genes involved in the viral replication and inflammatory response. Moreover, redox-regulated protein disulfide isomerase (PDI) chaperones have an essential role in catalyzing formation of disulfide bonds in viral proteins. This review aims at describing the role of GSH in modulating redox sensitive pathways, in particular that mediated by NF-kB, and PDI activity. The second part of the review discusses the effectiveness of GSH-boosting molecules as broad-spectrum antivirals acting in a multifaceted way that includes the modulation of immune and inflammatory responses.


Asunto(s)
Glutatión/metabolismo , Virosis/tratamiento farmacológico , Replicación Viral/efectos de los fármacos , Animales , Antivirales/farmacología , Humanos , FN-kappa B/metabolismo , Oxidación-Reducción/efectos de los fármacos , Proteína Disulfuro Isomerasas/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Virosis/metabolismo
13.
Int J Mol Sci ; 22(3)2021 Jan 29.
Artículo en Inglés | MEDLINE | ID: mdl-33572794

RESUMEN

Belladine N-oxides active against influenza A virus have been synthetized by a novel laccase-catalyzed 1,4-dioxane-mediated oxidation of aromatic and side-chain modified belladine derivatives. Electron paramagnetic resonance (EPR) analysis confirmed the role of 1,4-dioxane as a co-oxidant. The reaction was chemo-selective, showing a high functional-group compatibility. The novel belladine N-oxides were active against influenza A virus, involving the early stage of the virus replication life cycle.


Asunto(s)
Antivirales/farmacología , Dioxanos/química , Virus de la Influenza A/efectos de los fármacos , Lacasa/química , Óxidos/farmacología , Polyporaceae/enzimología , Antivirales/química , Catálisis , Humanos , Gripe Humana/tratamiento farmacológico , Gripe Humana/virología , Oxidación-Reducción , Óxidos/química
14.
Int J Mol Sci ; 21(11)2020 Jun 08.
Artículo en Inglés | MEDLINE | ID: mdl-32521619

RESUMEN

Viruses use cell machinery to replicate their genome and produce viral proteins. For this reason, several intracellular factors, including the redox state, might directly or indirectly affect the progression and outcome of viral infection. In physiological conditions, the redox balance between oxidant and antioxidant species is maintained by enzymatic and non-enzymatic systems, and it finely regulates several cell functions. Different viruses break this equilibrium and induce an oxidative stress that in turn facilitates specific steps of the virus lifecycle and activates an inflammatory response. In this context, many studies highlighted the importance of redox-sensitive pathways as novel cell-based targets for therapies aimed at blocking both viral replication and virus-induced inflammation. In the review, we discuss the most recent findings in this field. In particular, we describe the effects of natural or synthetic redox-modulating molecules in inhibiting DNA or RNA virus replication as well as inflammatory pathways. The importance of the antioxidant transcription factor Nrf2 is also discussed. Most of the data reported here are on influenza virus infection. We believe that this approach could be usefully applied to fight other acute respiratory viral infections characterized by a strong inflammatory response, like COVID-19.


Asunto(s)
Antivirales/uso terapéutico , Oxidación-Reducción/efectos de los fármacos , Virosis/tratamiento farmacológico , Animales , Infecciones por Coronavirus/tratamiento farmacológico , Glutatión/metabolismo , Humanos , Inflamación/tratamiento farmacológico , Gripe Humana/tratamiento farmacológico , Virosis/inmunología , Virosis/patología , Replicación Viral/efectos de los fármacos , Tratamiento Farmacológico de COVID-19
15.
Molecules ; 23(8)2018 Aug 17.
Artículo en Inglés | MEDLINE | ID: mdl-30126139

RESUMEN

DR2B and DR2C extracts, obtained by ethanolic maceration of peel from commercially and physiologically ripe aubergine berries, were studied for the antioxidative cytoprotective properties and anti-HSV-1 activity, in line with the evidence that several antioxidants can impair viral replication by maintaining reducing conditions in host cells. The antioxidative cytoprotective effects against tBOOH-induced damage were assessed in Caco2 cells, while antiviral activity was studied in Vero cells; polyphenolic fingerprints were characterized by integrated phytochemical methods. Results highlighted different compositions of the extracts, with chlorogenic acid and delphinidin-3-rutinoside as the major constituents; other peculiar phytochemicals were also identified. Both samples reduced reactive oxygen species (ROS) production and exhibited scavenging and chelating properties. DR2C partly counteracted the tBOOH-induced cytotoxicity, with a remarkable lowering of lactate metabolism under both normoxia and hypoxia; interestingly, it increased intracellular GSH levels. Furthermore, DR2C inhibited the HSV-1 replication when added for 24 h after viral adsorption, as also confirmed by the reduction of many viral proteins' expression. Since DR2C was able to reduce NOX4 expression during HSV-1 infection, its antiviral activity may be correlated to its antioxidant properties. Although further studies are needed to better characterize DR2C activity, the results suggest this extract as a promising new anti-HSV-1 agent.


Asunto(s)
Antioxidantes/química , Antioxidantes/farmacología , Antivirales/química , Antivirales/farmacología , Herpesvirus Humano 1/efectos de los fármacos , Extractos Vegetales/química , Extractos Vegetales/farmacología , Solanum melongena/química , Animales , Antocianinas/química , Antocianinas/farmacología , Línea Celular , Células Cultivadas , Quelantes/química , Quelantes/farmacología , Cromatografía Líquida de Alta Presión , Citoprotección , Flavonoides/química , Flavonoides/farmacología , Humanos , Estrés Oxidativo/efectos de los fármacos , Fitoquímicos/química , Fitoquímicos/farmacología , Polifenoles/química , Polifenoles/farmacología , Replicación Viral/efectos de los fármacos
16.
J Nat Prod ; 80(12): 3247-3254, 2017 12 22.
Artículo en Inglés | MEDLINE | ID: mdl-29236486

RESUMEN

Different catechol and pyrogallol derivatives have been synthesized by oxidation of coumarins with 2-iodoxybenzoic acid (IBX) in DMSO at 25 °C. A high regioselectivity was observed in accordance with the stability order of the incipient carbocation or radical benzylic-like intermediate. The oxidation was also effective in water under heterogeneous conditions by using IBX supported on polystyrene. The new derivatives showed improved antioxidant effects in the DPPH test and inhibitory activity against the influenza A/PR8/H1N1 virus. These data represent a new entry for highly oxidized coumarins showing an antiviral activity possibly based on the control of the intracellular redox value.


Asunto(s)
Antioxidantes/química , Antivirales/química , Cumarinas/química , Subtipo H1N1 del Virus de la Influenza A/efectos de los fármacos , Yodobencenos/química , Células A549 , Antioxidantes/farmacología , Antivirales/farmacología , Catecoles/química , Catecoles/farmacología , Línea Celular Tumoral , Cumarinas/farmacología , Humanos , Yodobencenos/farmacología , Oxidación-Reducción/efectos de los fármacos , Poliestirenos/química , Relación Estructura-Actividad
17.
Cell Microbiol ; 17(1): 131-45, 2015 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-25154738

RESUMEN

An overproduction of reactive oxygen species (ROS) mediated by NADPH oxidase 2 (NOX2) has been related to airway inflammation typical of influenza infection. Virus-induced oxidative stress may also control viral replication, but the mechanisms underlying ROS production, as well as their role in activating intracellular pathways and specific steps of viral life cycle under redox control have to be fully elucidated. In this study, we demonstrate that influenza A virus infection of lung epithelial cells causes a significant ROS increase that depends mainly on NOX4, which is upregulated at both mRNA and protein levels, while the expression of NOX2, the primary source of ROS in inflammatory cells, is downregulated. Inhibition of NOX4 activity through chemical inhibitors or RNA silencing blocks the ROS increase, prevents MAPK phosphorylation, and inhibits viral ribonucleoprotein (vRNP) nuclear export and viral release. Overall these data, obtained in cell lines and primary culture, describe a so far unrecognized role for NOX4-derived ROS in activating redox-regulated intracellular pathways during influenza virus infection and highlight their relevance in controlling specific steps of viral replication in epithelial cells. Pharmacological modulation of NOX4-mediated ROS production may open the way for new therapeutic approaches to fighting influenza by targeting cell and not the virus.


Asunto(s)
Células Epiteliales/virología , Interacciones Huésped-Patógeno , Virus de la Influenza A/fisiología , NADPH Oxidasas/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Replicación Viral , Animales , Células Cultivadas , Células Epiteliales/enzimología , Expresión Génica , Humanos , Ratones , NADPH Oxidasa 4 , Oxidación-Reducción , Regulación hacia Arriba
18.
Bioorg Med Chem ; 23(17): 5345-51, 2015 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-26260341

RESUMEN

Hydroxytyrosol and dihydrocaffeoyl catechols with lipophilic properties have been synthesized in high yield using tyrosinase immobilized on multi-walled carbon nanotubes by the Layer-by-Layer technique. All synthesized catechols were evaluated against a large panel of DNA and RNA viruses, including Poliovirus type 1, Echovirus type 9, Herpes simplex virus type 1 (HSV-1), Herpes simplex virus type 2 (HSV-2), Coxsackievirus type B3 (Cox B3), Adenovirus type 2 and type 5 and Cytomegalovirus (CMV). A significant antiviral activity was observed in the inhibition of HSV-1, HSV-2, Cox B3 and CMV. The mechanism of action of the most active dihydrocaffeoyl derivative was investigated against a model of HSV-1 infection.


Asunto(s)
Antivirales/química , Antivirales/farmacología , Catecoles/química , Catecoles/farmacología , Virus ADN/efectos de los fármacos , Virus ARN/efectos de los fármacos , Agaricus/enzimología , Infecciones por Virus ADN/tratamiento farmacológico , Enzimas Inmovilizadas/química , Humanos , Modelos Moleculares , Monofenol Monooxigenasa/química , Nanotubos de Carbono/química , Alcohol Feniletílico/análogos & derivados , Alcohol Feniletílico/química , Alcohol Feniletílico/farmacología , Infecciones por Virus ARN/tratamiento farmacológico
19.
Chemistry ; 19(7): 2392-404, 2013 Feb 11.
Artículo en Inglés | MEDLINE | ID: mdl-23225323

RESUMEN

This paper describes a new route for the synthesis of 1'-homo-N-nucleoside derivatives by means of either methyltrioxorhenium (MTO) or supported MTO catalysts, with H(2)O(2) as the primary oxidant. Under these selective conditions, the oxyfunctionalization of the heterocyclic ring and the N heteroatom oxidation were operative processes, regardless of the type of substrate used, that is, purine or pyrimidine derivatives. In addition, the oxidation of 1'-homo-N-thionucleosides, showed the occurrence of site-specific oxidative nucleophilic substitutions of the heterocyclic ring. The MTO/H(2)O(2) system showed, in general, high reactivity under both homogeneous and heterogeneous conditions, affording the final products with high conversion values of substrates and from medium to high yields. Many of the novel 1'-homo-N-nucleoside analogues were active against the influenza A virus, without any cytotoxic effects, retaining their activity in both protected and unprotected forms.


Asunto(s)
Antivirales/síntesis química , Antivirales/farmacología , Peróxido de Hidrógeno/química , Virus de la Influenza A/química , Virus de la Influenza A/efectos de los fármacos , Nucleósidos/química , Nucleósidos/síntesis química , Nucleósidos/farmacología , Compuestos Organometálicos/química , Animales , Antivirales/química , Catálisis , Humanos , Estructura Molecular , Oxidación-Reducción
20.
Virol J ; 10: 298, 2013 Sep 30.
Artículo en Inglés | MEDLINE | ID: mdl-24079660

RESUMEN

BACKGROUND: Progressive multifocal leukoencephalopathy (PML) onset, caused by Polyomavirus JC (JCPyV) in patients affected by immune-mediated diseases during biological treatment, raised concerns about the safety profile of these agents. Therefore, the aims of this study were the JCPyV reactivation monitoring and the noncoding control region (NCCR) and viral protein 1 (VP1) analysis in patients affected by different immune-mediated diseases and treated with biologics. METHODS: We performed JCPyV-specific quantitative PCR of biological samples collected at moment of recruitment (t0) and every 4 months (t1, t2, t3, t4). Subsequently, rearrangements' analysis of NCCR and VP1 was carried out. Data were analyzed using χ2 test. RESULTS: Results showed that at t0 patients with chronic inflammatory rheumatic diseases presented a JCPyV load in the urine significantly higher (p≤0.05) than in patients with multiple sclerosis (MS) and Crohn's disease (CD). It can also be observed a significant association between JC viruria and JCPyV antibodies after 1 year of natalizumab (p=0.04) in MS patients. Finally, NCCR analysis showed the presence of an archetype-like sequence in all urine samples, whereas a rearranged NCCR Type IR was found in colon-rectal biopsies collected from 2 CD patients after 16 months of infliximab. Furthermore, sequences isolated from peripheral blood mononuclear cells (PBMCs) of 2 MS patients with JCPyV antibody at t0 and t3, showed a NCCR Type IIR with a duplication of a 98 bp unit and a 66 bp insert, resulting in a boxB deletion and 37 T to G transversion into the Spi-B binding site. In all patients, a prevalence of genotypes 1A and 1B, the predominant JCPyV genotypes in Europe, was observed. CONCLUSIONS: It has been important to understand whether the specific inflammatory scenario in different immune-mediated diseases could affect JCPyV reactivation from latency, in particular from kidneys. Moreover, for a more accurate PML risk stratification, testing JC viruria seems to be useful to identify patients who harbor JCPyV but with an undetectable JCPyV-specific humoral immune response. In these patients, it may also be important to study the JCPyV NCCR rearrangement: in particular, Spi-B expression in PBMCs could play a crucial role in JCPyV replication and NCCR rearrangement.


Asunto(s)
Productos Biológicos/uso terapéutico , ADN Intergénico , Enfermedades del Sistema Inmune/tratamiento farmacológico , Enfermedades del Sistema Inmune/virología , Virus JC/genética , Virus JC/fisiología , Activación Viral , Adulto , Colon/virología , Femenino , Genotipo , Humanos , Leucocitos Mononucleares/virología , Masculino , Estudios Prospectivos , Reacción en Cadena en Tiempo Real de la Polimerasa , Recombinación Genética , Orina/virología , Carga Viral , Proteínas Estructurales Virales/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA