Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
1.
Int J Mol Sci ; 23(23)2022 Nov 24.
Artículo en Inglés | MEDLINE | ID: mdl-36499000

RESUMEN

Resistance to chemo- and radiotherapy is a common event among cancer patients and a reason why new cancer therapies and therapeutic strategies need to be in continuous investigation and development. DNA damage response (DDR) comprises several pathways that eliminate DNA damage to maintain genomic stability and integrity, but different types of cancers are associated with DDR machinery defects. Many improvements have been made in recent years, providing several drugs and therapeutic strategies for cancer patients, including those targeting the DDR pathways. Currently, poly (ADP-ribose) polymerase inhibitors (PARP inhibitors) are the DDR inhibitors (DDRi) approved for several cancers, including breast, ovarian, pancreatic, and prostate cancer. However, PARPi resistance is a growing issue in clinical settings that increases disease relapse and aggravate patients' prognosis. Additionally, resistance to other DDRi is also being found and investigated. The resistance mechanisms to DDRi include reversion mutations, epigenetic modification, stabilization of the replication fork, and increased drug efflux. This review highlights the DDR pathways in cancer therapy, its role in the resistance to conventional treatments, and its exploitation for anticancer treatment. Biomarkers of treatment response, combination strategies with other anticancer agents, resistance mechanisms, and liabilities of treatment with DDR inhibitors are also discussed.


Asunto(s)
Reparación del ADN , Recurrencia Local de Neoplasia , Masculino , Humanos , Recurrencia Local de Neoplasia/tratamiento farmacológico , Inhibidores de Poli(ADP-Ribosa) Polimerasas/efectos adversos , Daño del ADN , Inestabilidad Genómica
2.
Int J Mol Sci ; 23(22)2022 Nov 11.
Artículo en Inglés | MEDLINE | ID: mdl-36430404

RESUMEN

Cancer recurrence and metastasis, following successful treatment, constitutes a critical threat in clinical oncology and are the leading causes of death amongst cancer patients. This phenomenon is largely attributed to metastatic tumor dormancy, a rate-limiting stage during cancer progression, in which disseminated cancer cells remain in a viable, yet not proliferating state for a prolonged period. Dormant cancer cells are characterized by their entry into cell cycle arrest and survival in a quiescence state to adapt to their new microenvironment through the acquisition of mutations and epigenetic modifications, rendering them resistant to anti-cancer treatment and immune surveillance. Under favorable conditions, disseminated dormant tumor cells 're-awake', resume their proliferation and thus colonize distant sites. Due to their rarity, detection of dormant cells using current diagnostic tools is challenging and, thus, therapeutic targets are hard to be identified. Therefore, unraveling the underlying mechanisms required for keeping disseminating tumor cells dormant, along with signals that stimulate their "re-awakening" are crucial for the discovery of novel pharmacological treatments. In this review, we shed light into the main mechanisms that control dormancy induction and escape as well as emerging therapeutic strategies for the eradication of metastatic dormant cells, including dormancy maintenance, direct targeting of dormant cells and re-awakening dormant cells. Studies on the ability of the metastatic cancer cells to cease proliferation and survive in a quiescent state before re-initiating proliferation and colonization years after successful treatment, will pave the way toward developing innovative therapeutic strategies against dormancy-mediated metastatic outgrowth.


Asunto(s)
Recurrencia Local de Neoplasia , Neoplasias Primarias Secundarias , Humanos , Recurrencia Local de Neoplasia/patología , Puntos de Control del Ciclo Celular , División Celular , Epigénesis Genética , Microambiente Tumoral/fisiología
3.
Molecules ; 26(16)2021 Aug 19.
Artículo en Inglés | MEDLINE | ID: mdl-34443605

RESUMEN

Extracts derived from the Ceratonia siliqua L. (carob) tree have been widely studied for their ability to prevent many diseases mainly due to the presence of polyphenolic compounds. In this study, we explored, for the first time, the anti-cancer properties of Cypriot carobs. We produced extracts from ripe and unripe whole carobs, pulp and seeds using solvents with different polarities. We measured the ability of the extracts to inhibit proliferation and induce apoptosis in cancer and normal immortalized breast cells, using the MTT assay, cell cycle analysis and Western Blotting. The extracts' total polyphenol content and anti-oxidant action was evaluated using the Folin-Ciocalteu method and the DPPH assay. Finally, we used LC-MS analysis to identify and quantify polyphenols in the most effective extracts. Our results demonstrate that the anti-proliferative capacity of carob extracts varied with the stage of carob maturity and the extraction solvent. The Diethyl-ether and Ethyl acetate extracts derived from the ripe whole fruit had high Myricetin content and also displayed specific activity against cancer cells. Their mechanism of action involved caspase-dependent and independent apoptosis. Our results indicate that extracts from Cypriot carobs may have potential uses in the development of nutritional supplements and pharmaceuticals.


Asunto(s)
Antineoplásicos/química , Antineoplásicos/farmacología , Fabaceae/química , Fenoles/química , Fenoles/farmacología , Solventes/química , Apoptosis/efectos de los fármacos , Caspasas/metabolismo , Línea Celular Tumoral , Frutas/química , Humanos , Semillas/química
4.
J Biochem Mol Toxicol ; 34(3): e22443, 2020 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-31909879

RESUMEN

The aim of this study was to evaluate the impact that 6-O-(3″, 4″-di-O-trans-cinnamoyl)-α- l-rhamnopyranosylcatalpol (Dicinn) and verbascoside (Verb), two compounds simultaneously reported in Verbascum ovalifolium, have on tumor cell viability, apoptosis, cell cycle kinetics, and intracellular reactive oxygen species (ROS) level. At 100 µg/mL and 48 hours incubation time, Dicinn and Verb produced good cytotoxic effects in A549, HT-29, and MCF-7 cells. Dicinn induced cell-cycle arrest at the G0 /G1 phase and apoptosis, whereas Verb increased the population of subG1 cells and cell apoptosis rates. Furthermore, the two compounds exhibited time-dependent ROS generating effects in tumor cells (1-24 hours). Importantly, no cytotoxic effects were induced in nontumor MCF-10A cells by the two compounds up to 100 µg/mL. Overall, the effects exhibited by Verb in tumor cells were more potent, which can be correlated with its structural features, such as the presence of phenolic hydroxyl groups.


Asunto(s)
Antineoplásicos Fitogénicos/farmacología , Apoptosis/efectos de los fármacos , Ciclo Celular/efectos de los fármacos , Citotoxinas/farmacología , Neoplasias/tratamiento farmacológico , Especies Reactivas de Oxígeno/metabolismo , Verbascum/química , Células A549 , Antineoplásicos Fitogénicos/química , Citotoxinas/química , Ensayos de Selección de Medicamentos Antitumorales , Células HT29 , Humanos , Células MCF-7 , Neoplasias/metabolismo , Neoplasias/patología
5.
Environ Res ; 175: 235-256, 2019 08.
Artículo en Inglés | MEDLINE | ID: mdl-31146096

RESUMEN

Human biomonitoring measures the concentrations of environmental chemicals or their metabolites in body fluids or tissues. Complementing exposure biomarkers with mechanistically based effect biomarkers may further elucidate causal pathways between chemical exposure and adverse health outcomes. We combined information on effect biomarkers previously implemented in human observational studies with mechanisms of action reported in experimental studies and with information from published Adverse Outcome Pathways (AOPs), focusing on adverse reproductive effects of phthalate exposure. Phthalates constitute a group of chemicals that are ubiquitous in consumer products and have been related to a wide range of adverse health effects. As a result of a comprehensive literature search, we present an overview of effect biomarkers for reproductive toxicity that are substantiated by mechanistic information. The activation of several receptors, such as PPARα, PPARγ, and GR, may initiate events leading to impaired male and female fertility as well as other adverse effects of phthalate exposure. Therefore, these receptors appear as promising targets for the development of novel effect biomarkers. The proposed strategy connects the fields of epidemiology and toxicology and may strengthen the weight of evidence in observational studies that link chemical exposures to health outcomes.


Asunto(s)
Rutas de Resultados Adversos , Contaminantes Ambientales/toxicidad , Ácidos Ftálicos/toxicidad , Biomarcadores/metabolismo , Exposición a Riesgos Ambientales , Femenino , Humanos , Masculino , Reproducción/efectos de los fármacos
6.
Int J Mol Sci ; 20(24)2019 Dec 06.
Artículo en Inglés | MEDLINE | ID: mdl-31817646

RESUMEN

Metastasis, a multistep process during which tumor cells disseminate to secondary organs, represents the main cause of death for cancer patients. Metastatic dormancy is a late stage during cancer progression, following extravasation of cells at a secondary site, where the metastatic cells stop proliferating but survive in a quiescent state. When the microenvironmental conditions are favorable, they re-initiate proliferation and colonize, sometimes years after treatment of the primary tumor. This phenomenon represents a major clinical obstacle in cancer patient care. In this review, we describe the current knowledge regarding the genetic or epigenetic mechanisms that are activated by cancer cells that either sustain tumor dormancy or promote escape from this inactive state. In addition, we focus on the role of the microenvironment with emphasis on the effects of extracellular matrix proteins and in factors implicated in regulating dormancy during colonization to the lungs, brain, and bone. Finally, we describe the opportunities and efforts being made for the development of novel therapeutic strategies to combat metastatic cancer, by targeting the dormancy stage.


Asunto(s)
Matriz Extracelular/metabolismo , Recurrencia Local de Neoplasia/metabolismo , Microambiente Tumoral/fisiología , Animales , Humanos , Metástasis de la Neoplasia/genética , Recurrencia Local de Neoplasia/genética , Microambiente Tumoral/genética
7.
BMC Cancer ; 16: 279, 2016 Apr 20.
Artículo en Inglés | MEDLINE | ID: mdl-27098354

RESUMEN

BACKGROUND: Acquired resistance towards apoptosis is a hallmark of cancer. Elimination of cells bearing activated oncogenes or stimulation of tumor suppressor mediators may provide a selection pressure to overcome resistance. KC-53 is a novel biyouyanagin analogue known to elicit strong anti-inflammatory and anti-viral activity. The current study was designed to evaluate the anticancer efficacy and molecular mechanisms of KC-53 against human cancer cells. METHODS: Using the MTT assay we examined initially how KC-53 affects the proliferation rates of thirteen representative human cancer cell lines in comparison to normal peripheral blood mononuclear cells (PBMCs) and immortalized cell lines. To decipher the key molecular events underlying its mode of action we selected the human promyelocytic leukemia HL-60 and the acute lymphocytic leukemia CCRF/CEM cell lines that were found to be the most sensitive to the antiproliferative effects of KC-53. RESULTS: KC-53 promoted rapidly and irreversibly apoptosis in both leukemia cell lines at relatively low concentrations. Apoptosis was characterized by an increase in membrane-associated TNFR1, activation of Caspase-8 and proteolytic inactivation of the death domain kinase RIP1 indicating that KC-53 induced mainly the extrinsic/death receptor apoptotic pathway. Regardless, induction of the intrinsic/mitochondrial pathway was also achieved by Caspase-8 processing of Bid, activation of Caspase-9 and increased translocation of AIF to the nucleus. FADD protein knockdown restored HL-60 and CCRF/CEM cell viability and completely blocked KC-53-induced apoptosis. Furthermore, KC-53 administration dramatically inhibited TNFα-induced serine phosphorylation on TRAF2 and on IκBα hindering therefore p65/NF-κΒ translocation to nucleus. Reduced transcriptional expression of pro-inflammatory and pro-survival p65 target genes, confirmed that the agent functionally inhibited the transcriptional activity of p65. CONCLUSIONS: Our findings demonstrate, for the first time, the selective anticancer properties of KC-53 towards leukemic cell lines and provide a detailed understanding of the molecular events underlying its dual anti-proliferative and pro-apoptotic properties. These results provide new insights into the development of innovative and targeted therapies for the treatment of some forms of leukemia.


Asunto(s)
Proliferación Celular/efectos de los fármacos , Leucemia/tratamiento farmacológico , Proteínas de Neoplasias/biosíntesis , Sesquiterpenos/administración & dosificación , Compuestos de Espiro/administración & dosificación , Apoptosis/efectos de los fármacos , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Células HL-60 , Humanos , Leucemia/genética , Leucemia/patología , Leucocitos Mononucleares/efectos de los fármacos , Leucocitos Mononucleares/patología , Mitocondrias/efectos de los fármacos , Mitocondrias/genética , FN-kappa B/biosíntesis , FN-kappa B/genética , Proteínas de Neoplasias/genética , Fosforilación , Receptores Tipo I de Factores de Necrosis Tumoral/biosíntesis , Receptores Tipo I de Factores de Necrosis Tumoral/genética , Sesquiterpenos/química , Transducción de Señal/efectos de los fármacos , Compuestos de Espiro/química
8.
Breast Cancer Res ; 17: 98, 2015 Jul 25.
Artículo en Inglés | MEDLINE | ID: mdl-26208975

RESUMEN

INTRODUCTION: Basal-like breast cancer (BLBC) is an aggressive subtype often characterized by distant metastasis, poor patient prognosis, and limited treatment options. Therefore, the discovery of alternative targets to restrain its metastatic potential is urgently needed. In this study, we aimed to identify novel genes that drive metastasis of BLBC and to elucidate the underlying mechanisms of action. METHODS: An unbiased approach using gene expression profiling of a BLBC progression model and in silico leveraging of pre-existing tumor transcriptomes were used to uncover metastasis-promoting genes. Lentiviral-mediated knockdown of interleukin-13 receptor alpha 2 (IL13Ralpha2) coupled with whole-body in vivo bioluminescence imaging was performed to assess its role in regulating breast cancer tumor growth and lung metastasis. Gene expression microarray analysis was followed by in vitro validation and cell migration assays to elucidate the downstream molecular pathways involved in this process. RESULTS: We found that overexpression of the decoy receptor IL13Ralpha2 is significantly enriched in basal compared with luminal primary breast tumors as well as in a subset of metastatic basal-B breast cancer cells. Importantly, breast cancer patients with high-grade tumors and increased IL13Ralpha2 levels had significantly worse prognosis for metastasis-free survival compared with patients with low expression. Depletion of IL13Ralpha2 in metastatic breast cancer cells modestly delayed primary tumor growth but dramatically suppressed lung metastasis in vivo. Furthermore, IL13Ralpha2 silencing was associated with enhanced IL-13-mediated phosphorylation of signal transducer and activator of transcription 6 (STAT6) and impaired migratory ability of metastatic breast cancer cells. Interestingly, genome-wide transcriptional analysis revealed that IL13Ralpha2 knockdown and IL-13 treatment cooperatively upregulated the metastasis suppressor tumor protein 63 (TP63) in a STAT6-dependent manner. These observations are consistent with increased metastasis-free survival of breast cancer patients with high levels of TP63 and STAT6 expression and suggest that the STAT6-TP63 pathway could be involved in impairing metastatic dissemination of breast cancer cells to the lungs. CONCLUSION: Our findings indicate that IL13Ralpha2 could be used as a promising biomarker to predict patient outcome and provide a rationale for assessing the efficacy of anti-IL13Ralpha2 therapies in a subset of highly aggressive basal-like breast tumors as a strategy to prevent metastatic disease.


Asunto(s)
Neoplasias de la Mama/genética , Subunidad alfa2 del Receptor de Interleucina-13/genética , Neoplasias Pulmonares/genética , Metástasis de la Neoplasia/genética , Factor de Transcripción STAT6/genética , Transducción de Señal/genética , Factores de Transcripción/genética , Proteínas Supresoras de Tumor/genética , Neoplasias de la Mama/patología , Línea Celular Tumoral , Supervivencia sin Enfermedad , Femenino , Perfilación de la Expresión Génica/métodos , Regulación Neoplásica de la Expresión Génica/genética , Humanos , Neoplasias Pulmonares/patología , Neoplasias Pulmonares/secundario , Metástasis de la Neoplasia/patología , Fosforilación/genética , Pronóstico
9.
Life (Basel) ; 14(2)2024 Feb 06.
Artículo en Inglés | MEDLINE | ID: mdl-38398737

RESUMEN

Vitis vinifera extracts have been shown to possess antioxidant activity because of their polyphenol content. In addition, their therapeutic potential against several diseases, including cancer, has been reported. In this study, we produced twelve extracts from the seeds, fruit, leaves, and wood of the Vitis vinifera Airen variety using different extraction methodologies and measured their total polyphenol content (TPC). We also determined their antioxidant and antiproliferative effects against normal cells and evaluated the most potent extract against a panel of breast cancer cell lines. We found that the extracts produced by the seeds of Vitis vinifera had a higher TPC compared to the other parts of the plant. Most extracts produced from seeds had antioxidant activity and did not show cytotoxicity against normal breast cells. The extract produced from whole organic seeds of white grape showed the best correlation between the dose and the ROS inhibition at all time points compared to the other seed extracts and also had antiproliferative properties in estrogen-receptor-positive MCF-7 breast cancer cells. Its mechanism of action involves inhibition of proteins Bcl-2, Bcl-xL, and survivin, and induction of apoptosis. Further investigation of the constituents and activity of Vitis vinifera extracts may reveal potential pharmacological applications of this plant.

10.
Toxics ; 11(10)2023 Oct 13.
Artículo en Inglés | MEDLINE | ID: mdl-37888706

RESUMEN

Dietary exposure to acrylamide (AA) has been linked with carcinogenicity in the gastrointestinal (GI) tract. However, epidemiologic data on AA intake in relation to cancer risk are limited and contradictory, while the potential cancer-inducing molecular pathways following AA exposure remain elusive. In this study, we collected mechanistic information regarding the induction of carcinogenesis by dietary AA in the colon, using an established animal model. Male Balb/c mice received AA orally (0.1 mg/kg/day) daily for 4 weeks. RNA was extracted from colon tissue samples, followed by RNA sequencing. Comparative transcriptomic analysis between AA and mock-treated groups revealed a set of differentially expressed genes (DEGs) that were further processed using different databases through the STRING-DB portal, to reveal deregulated protein-protein interaction networks. We found that genes implicated in RNA metabolism, processing and formation of the ribosomal subunits and protein translation and metabolism are upregulated in AA-exposed colon tissue; these genes were also overexpressed in human colon adenocarcinoma samples and were negatively correlated with patient overall survival (OS), based on publicly available datasets. Further investigation of the potential role of these genes during the early stages of colon carcinogenesis may shed light into the underlying mechanisms induced by dietary AA exposure.

11.
Front Pharmacol ; 13: 1013692, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36204233

RESUMEN

Amygdalin is a naturally occurring glycoside used in traditional Chinese medicine and is known to have anti-cancer properties. Even though the anti-cancer properties of amygdalin are well known, its effect on normal cells has not been thoroughly investigated. The aim of the present study was to investigate a possible chemo-protective role of amygdalin against the cytotoxic effects of chemotherapy for normal human cells. Specifically, it was tested in combination with a strong chemotherapeutic drug cisplatin. Human non-tumorigenic MCF12F epithelial cell line, human fibroblasts cells, human breast cancer MCF7 and MDA-MB-231 cells were treated with cisplatin in a dose- and time-depended manner in the absence or presence of amygdalin. When MCF12F cells and fibroblasts underwent pre-treatment with amygdalin followed by cisplatin treatment (24 h amygdalin + 24 h cisplatin), the cell viability was increased (22%, p < 0.001) as indicated using MTT assay. As attested by flow cytometry, combination treatment was associated with decreased the percentage of late apoptotic cells compared with monotherapy (fold-change of decrease = 1.6 and 4.5 for 15 and 20 µΜ, respectively). Also, the proteins expression of PUMA, p53, phospho-p53 and Bax decreased, when a combination treatment was used vs. cisplatin alone, while the proapoptotic proteins Bcl-2 and Bcl-xL exhibited an increased tendency in the presence of amygdalin. Moreover, the levels of pro-apoptotic genes PUMA, p53, and BAX mRNA were significantly downregulated (∼83%, ∼66%, and ∼44%, respectively) vs. cisplatin alone, while the mRNA levels of anti-apoptotic genes BCl-2 and Bcl-XL were upregulated (∼44.5% and ∼51%, respectively), vs. cisplatin alone after 24 h of combination treatment. The study on the Combination index (CI) assay indicated that amygdalin could be possibly considered as an antagonist to cisplatin (2.2 and 2.3) for MCF12F and fibroblast cells, respectively. In contrast, for the breast cancer MCF7 and MDA-MB-231 cells, amygdalin and cisplatin indicated a synergistic effect (0.8 and 0.65), respectively. Our present findings suggest that amygdalin has chemo-modulatory effect when used in co-treatment with cisplatin and is able to protect normal breast cells as well as the fibroblasts during chemotherapy treatment, indicating a strong selective chemoprotective ability and may contribute to a better quality of life for cancer patients.

12.
Toxics ; 10(8)2022 Aug 17.
Artículo en Inglés | MEDLINE | ID: mdl-36006159

RESUMEN

Polycyclic aromatic hydrocarbons (PAHs) are among the chemicals with proven impact on workers' health. The use of human biomonitoring (HBM) to assess occupational exposure to PAHs has become more common in recent years, but the data generated need an overall view to make them more usable by regulators and policymakers. This comprehensive review, developed under the Human Biomonitoring for Europe (HBM4EU) Initiative, was based on the literature available from 2008-2022, aiming to present and discuss the information on occupational exposure to PAHs, in order to identify the strengths and limitations of exposure and effect biomarkers and the knowledge needs for regulation in the workplace. The most frequently used exposure biomarker is urinary 1-hydroxypyrene (1-OH-PYR), a metabolite of pyrene. As effect biomarkers, those based on the measurement of oxidative stress (urinary 8-oxo-dG adducts) and genotoxicity (blood DNA strand-breaks) are the most common. Overall, a need to advance new harmonized approaches both in data and sample collection and in the use of appropriate biomarkers in occupational studies to obtain reliable and comparable data on PAH exposure in different industrial sectors, was noted. Moreover, the use of effect biomarkers can assist to identify work environments or activities of high risk, thus enabling preventive risk mitigation and management measures.

13.
Cancers (Basel) ; 13(17)2021 Aug 28.
Artículo en Inglés | MEDLINE | ID: mdl-34503172

RESUMEN

The ability of tumor cells to evade apoptosis is established as one of the hallmarks of cancer. The deregulation of apoptotic pathways conveys a survival advantage enabling cancer cells to develop multi-drug resistance (MDR), a complex tumor phenotype referring to concurrent resistance toward agents with different function and/or structure. Proteins implicated in the intrinsic pathway of apoptosis, including the Bcl-2 superfamily and Inhibitors of Apoptosis (IAP) family members, as well as their regulator, tumor suppressor p53, have been implicated in the development of MDR in many cancer types. The PI3K/AKT pathway is pivotal in promoting survival and proliferation and is often overactive in MDR tumors. In addition, the tumor microenvironment, particularly factors secreted by cancer-associated fibroblasts, can inhibit apoptosis in cancer cells and reduce the effectiveness of different anti-cancer drugs. In this review, we describe the main alterations that occur in apoptosis-and related pathways to promote MDR. We also summarize the main therapeutic approaches against resistant tumors, including agents targeting Bcl-2 family members, small molecule inhibitors against IAPs or AKT and agents of natural origin that may be used as monotherapy or in combination with conventional therapeutics. Finally, we highlight the potential of therapeutic exploitation of epigenetic modifications to reverse the MDR phenotype.

14.
Cancers (Basel) ; 13(9)2021 Apr 23.
Artículo en Inglés | MEDLINE | ID: mdl-33922795

RESUMEN

The tumor microenvironment (TME) regulates essential tumor survival and promotion functions. Interactions between the cellular and structural components of the TME allow cancer cells to become invasive and disseminate from the primary site to distant locations, through a complex and multistep metastatic cascade. Tumor-associated M2-type macrophages have growth-promoting and immunosuppressive functions; mesenchymal cells mass produce exosomes that increase the migratory ability of cancer cells; cancer associated fibroblasts (CAFs) reorganize the surrounding matrix creating migration-guiding tracks for cancer cells. In addition, the tumor extracellular matrix (ECM) exerts determinant roles in disease progression and cancer cell migration and regulates therapeutic responses. The hypoxic conditions generated at the primary tumor force cancer cells to genetically and/or epigenetically adapt in order to survive and metastasize. In the circulation, cancer cells encounter platelets, immune cells, and cytokines in the blood microenvironment that facilitate their survival and transit. This review discusses the roles of different cellular and structural tumor components in regulating the metastatic process, targeting approaches using small molecule inhibitors, nanoparticles, manipulated exosomes, and miRNAs to inhibit tumor invasion as well as current and future strategies to remodel the TME and enhance treatment efficacy to block the detrimental process of metastasis.

15.
Front Oncol ; 10: 899, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32656079

RESUMEN

Myeloid cells include various cellular subtypes that are distinguished into mononuclear and polymorphonuclear cells, derived from either common myeloid progenitor cells (CMPs) or myeloid stem cells. They play pivotal roles in innate immunity since, following invasion by pathogens, myeloid cells are recruited and initiate phagocytosis and secretion of inflammatory cytokines into local tissues. Moreover, mounting evidence suggests that myeloid cells may also regulate cancer development by infiltrating the tumor to directly interact with cancer cells or by affecting the tumor microenvironment. Importantly, mononuclear phagocytes, including macrophages and dendritic cells (DCs), can have either a positive or negative impact on the efficacy of chemotherapy, radiotherapy as well as targeted anti-cancer therapies. Tumor-associated macrophages (TAMs), profusely found in the tumor stroma, can promote resistance to chemotherapeutic drugs, such as Taxol and Paclitaxel, whereas the suppression of TAMs can lead to an improved radiotherapy outcome. On the contrary, the presence of TAMs may be beneficial for targeted therapies as they can facilitate the accumulation of large quantities of nanoparticles carrying therapeutic compounds. Tumor infiltrating DCs, however, are generally thought to enhance cytotoxic therapies, including those using anthracyclines. This review focuses on the role of tumor-infiltrating and stroma myeloid cells in modulating tumor responses to various treatments. We herein report the impact of myeloid cells in a number of therapeutic approaches across a wide range of malignancies, as well as the efforts toward the elimination of myeloid cells or the exploitation of their presence for the enhancement of therapeutic efficacy against cancer.

16.
Sci Rep ; 9(1): 14375, 2019 10 07.
Artículo en Inglés | MEDLINE | ID: mdl-31591437

RESUMEN

Breast cancer is the second in mortality rate malignancy among women. Despite the many advances in breast cancer treatment, there is still a need to improve drug efficacy and reduce non-specific effects. D-alpha-tocopheryl polyethylene glycol succinate (TPGS) is frequently used in the development of drug delivery systems to improve the pharmacokinetics of anti-cancer drugs and reduce multi-drug resistance. We have previously shown that TPGS not only acts as a carrier molecule but also exerts anti-cancer effects. As part of this study, we investigated the effect of TPGS with YM155, a small molecule suppressant of Survivin, in various breast cancer cell lines representing different subtypes of the disease. We aimed to evaluate the presumed synergistic effect of the TPGS-YM155 combination and reveal its mechanism of action. Our results show that the TPGS-YM155 combination acts synergistically to reduce specifically the viability of SKBR3 cells. The combination of these agents reduced activation of the AKT pathway, decreased Survivin and Bcl-2 levels, and induced caspase-dependent and independent apoptosis via the mitochondrial pathway. Importantly, the TPGS-YM155 combination did not significantly affect the viability of MCF-10A normal immortalized cells. In conclusion, the combination of YM155 and TPGS could be a promising approach against SKBR3-type breast cancer.


Asunto(s)
Neoplasias de la Mama/tratamiento farmacológico , Imidazoles/farmacología , Naftoquinonas/farmacología , Survivin/genética , Vitamina E/farmacología , Apoptosis/efectos de los fármacos , Neoplasias de la Mama/genética , Neoplasias de la Mama/patología , Sistemas de Liberación de Medicamentos/métodos , Sinergismo Farmacológico , Femenino , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Humanos , Células MCF-7 , Survivin/antagonistas & inhibidores
17.
Biomed Res Int ; 2015: 584862, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26137487

RESUMEN

Vitamin E isoforms have been extensively studied for their anticancer properties. Novel drug delivery systems (DDS) that include liposomes, nanoparticles, and micelles are actively being developed to improve Vitamin E delivery. Furthermore, several drug delivery systems that incorporate Vitamin E isoforms have been synthesized in order to increase the bioavailability of chemotherapeutic agents or to provide a synergistic effect. D-alpha-tocopheryl polyethylene glycol succinate (Vitamin E TPGS or TPGS) is a synthetic derivative of natural alpha-tocopherol which is gaining increasing interest in the development of drug delivery systems and has also shown promising anticancer effect as a single agent. This review provides a summary of the properties and anticancer effects of the most potent Vitamin E isoforms and an overview of the various formulations developed to improve their efficacy, with an emphasis on the use of TPGS in drug delivery approaches.


Asunto(s)
Antineoplásicos/administración & dosificación , Neoplasias/tratamiento farmacológico , Vitamina E/administración & dosificación , alfa-Tocoferol/administración & dosificación , Antineoplásicos/química , Línea Celular Tumoral , Sistemas de Liberación de Medicamentos , Humanos , Liposomas/administración & dosificación , Liposomas/química , Nanopartículas/administración & dosificación , Nanopartículas/química , Neoplasias/patología , Vitamina E/análogos & derivados , Vitamina E/química , alfa-Tocoferol/análogos & derivados , alfa-Tocoferol/química
18.
Comb Chem High Throughput Screen ; 18(3): 281-95, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-25747448

RESUMEN

Modern methods of drug discovery and development in recent years make a wide use of computational algorithms. These methods utilise Virtual Screening (VS), which is the computational counterpart of experimental screening. In this manner the in silico models and tools initial replace the wet lab methods saving time and resources. This paper presents the overall design and implementation of a web based scientific workflow system for virtual screening called, the Life Sciences Informatics (LiSIs) platform. The LiSIs platform consists of the following layers: the input layer covering the data file input; the pre-processing layer covering the descriptors calculation, and the docking preparation components; the processing layer covering the attribute filtering, compound similarity, substructure matching, docking prediction, predictive modelling and molecular clustering; post-processing layer covering the output reformatting and binary file merging components; output layer covering the storage component. The potential of LiSIs platform has been demonstrated through two case studies designed to illustrate the preparation of tools for the identification of promising chemical structures. The first case study involved the development of a Quantitative Structure Activity Relationship (QSAR) model on a literature dataset while the second case study implemented a docking-based virtual screening experiment. Our results show that VS workflows utilizing docking, predictive models and other in silico tools as implemented in the LiSIs platform can identify compounds in line with expert expectations. We anticipate that the deployment of LiSIs, as currently implemented and available for use, can enable drug discovery researchers to more easily use state of the art computational techniques in their search for promising chemical compounds. The LiSIs platform is freely accessible (i) under the GRANATUM platform at: http://www.granatum.org and (ii) directly at: http://lisis.cs.ucy.ac.cy.


Asunto(s)
Ensayos Analíticos de Alto Rendimiento , Internet , Informática Médica , Algoritmos , Disciplinas de las Ciencias Biológicas , Relación Estructura-Actividad Cuantitativa
19.
Biochem Pharmacol ; 89(1): 31-42, 2014 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-24560876

RESUMEN

D-alpha-tocopheryl polyethylene glycol succinate (TPGS) is a vitamin E derivative that has been intensively applied as a vehicle for drug delivery systems to enhance drug solubility and increase the oral bioavailability of anti-cancer drugs. Recently, it has been reported that TPGS acts as an anti-cancer agent alone or synergistically with chemotherapeutic drugs and increases the efficacy of nanoparticle formulations. In this study, we investigated the antitumor efficacy and the molecular mechanism of action of TPGS in breast cancer cell lines. Our results show that TPGS can induce G1/S cell cycle arrest and apoptosis in breast cancer cell lines (MCF-7 and MDA-MB-231) but not in "normal" (non-tumorigenic) immortalized cells (MCF-10A and MCF-12F). An investigation of the molecular mechanism of action of TPGS reveals that induction of G1/S phase cell cycle arrest is associated with upregulation of P21 and P27Kip1 proteins. Induction of apoptosis by TPGS involves the inhibition of phospho-AKT and the downregulation of the anti-apoptotic proteins Survivin and Bcl-2. Interestingly, our results also suggest that TPGS induces both caspase -dependent and -independent apoptotic signaling pathways and that this vitamin E derivative is selectively cytotoxic in breast cancer cell lines. When compared to the Survivin inhibitor YM155, TPGS was shown to be more selective for cancer cell growth inhibition. Overall our results suggest that TPGS may not only be useful as a carrier molecule for drug delivery, but may also exert intrinsic therapeutic effects suggesting that it may promote a synergistic interaction with formulated chemotherapeutic drugs.


Asunto(s)
Apoptosis/efectos de los fármacos , Neoplasias de la Mama/patología , Ciclo Celular/efectos de los fármacos , Proteínas Inhibidoras de la Apoptosis/metabolismo , Vitamina E/análogos & derivados , Secuencia de Bases , Western Blotting , Neoplasias de la Mama/metabolismo , Línea Celular Tumoral , Cartilla de ADN , Ensayo de Inmunoadsorción Enzimática , Femenino , Humanos , Polietilenglicoles/farmacología , Reacción en Cadena en Tiempo Real de la Polimerasa , Survivin , Vitamina E/farmacología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA