RESUMEN
Reproducible in vitro studies of bioaccessibility, intestinal absorption, and bioavailability are key to the successful development of novel food ingredients or drugs intended for oral administration. There is currently a lack of methods that offer the finesse required to study these parameters for valuable molecules typically found in small volumes - as is the case of nanomaterials, which are often used to carry and protect bioactives. Here, we describe a modular microfluidic-based platform for total simulation of the human gastro-intestinal tract. Digestion-chips and cell-based gut-chips were fabricated from PDMS by soft lithography. On-chip digestion was validated using a fluorescently labelled casein derivative, which followed typical Michaelis-Menten kinetics and showed temporal resolution and good agreement with well-established bench-top protocols. Irreversible inhibition of serine proteases using Pefabloc® SC and a 1 : 6 dilution was sufficient to mitigate the cytotoxicity of simulated digestion fluids. Caco-2/HT29-MTX co-cultures were grown on-chip under a continuous flow for 7 days to obtain a differentiated cell monolayer forming a 3D villi-like epithelium with clear tight junction formation, and with an apparent permeability (Papp) of Lucifer Yellow closely approximating values reported ex vivo (3.7 × 10-6 ± 1.4 × 10-6vs. 4.0 × 10-6 ± 2.2 × 10-6). Digesta from the digestion-chips were flowed through the gut-chip, demonstrating the capacity to study sample digestion and intestinal permeability in a single microfluidic platform holding great promise for use in pharmacokinetic studies.
Asunto(s)
Mucosa Intestinal , Microfluídica , Humanos , Células CACO-2 , Boca , Digestión , PermeabilidadRESUMEN
Hydroxypropyl methylcellulose (HPMC)-based microparticles and modified starch emulsions (OSA-MS) were loaded with resveratrol and characterized regarding their physicochemical and thermal properties. Both delivery systems were subject to an in vitro gastrointestinal digestion to assess the bioaccessibility of resveratrol. In addition, cell-based studies were conducted after in vitro digestion and cytotoxicity and oxidative stress were assessed. HPMC-based microparticles displayed higher average sizes (d) and lower polydispersity index (PDI) (d = 948 nm, PDI < 0.2) when compared to OSA-MS-based emulsions (d = 217 nm, PDI < 0.3). Both proved to protect resveratrol under digestive conditions, leading to an increase in bioaccessibility. Resveratrol-loaded HPMC-microparticles showed a higher bioaccessibility (56.7 %) than resveratrol-loaded emulsions (19.7 %). Digested samples were tested in differentiated co-cultures of Caco-2 and HT29-MTX, aiming at assessing cytotoxicity and oxidative stress, and a lack of cytotoxicity was observed for all samples. Results displayed an increasing antioxidant activity, with 1.6-fold and 1.4-fold increases over the antioxidant activity of free resveratrol, for HPMC-microparticles and OSA-MS nanoemulsions, respectively. Our results offer insight into physiological relevancy due to assessment post-digestion and highlight the protection that the use of micro-nano delivery systems can confer to resveratrol and their potential to be used as functional food ingredients capable of providing antioxidant benefits upon consumption.
Asunto(s)
Antioxidantes , Anhídridos Succínicos , Humanos , Emulsiones/química , Antioxidantes/farmacología , Resveratrol , Derivados de la Hipromelosa , Anhídridos Succínicos/química , Células CACO-2 , Almidón/química , DigestiónRESUMEN
Grape marc (GM) is an agri-food residue from the wine industry valuable for its high content of phenolic compounds. This study aimed to develop an encapsulation system for GM extract (GME) using food-grade biopolymers resistant to gastric conditions for its potential use as a nutraceutical. For this purpose, a hydroalcoholic GME was prepared with a total phenolics content of 219.62 ± 11.50 mg gallic acid equivalents (GAE)/g dry extract and 1389.71 ± 97.33 µmol Trolox equivalents/g dry extract antioxidant capacity, assessed through ABTS (2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) assay. Moreover, the extract effectively neutralized reactive oxygen species in Caco-2 cells, demonstrating an intracellular antioxidant capacity comparable to Trolox. The GME was encapsulated using whey protein isolate and pectin through nano spray drying (73% yield), resulting in spherical microparticles with an average size of 1 ± 0.5 µm and a polydispersity of 0.717. The encapsulation system protected the microcapsules from simulated gastrointestinal digestion (GID), where at the end of the intestinal phase, 82% of the initial phenolics were bioaccessible compared to 54% in the free GME. Besides, the encapsulated GME displayed a higher antioxidant activity by the ferric reducing antioxidant power assay than the free extract after GID. These results show the potential of this encapsulation system for applying GME as a nutraceutical with a high antioxidant capacity and protective effect against cellular oxidation.
Asunto(s)
Antioxidantes , Vitis , Humanos , Antioxidantes/química , Vitis/química , Pectinas , Proteína de Suero de Leche , Suero Lácteo/química , Cápsulas , Células CACO-2 , Fenoles/análisis , DigestiónRESUMEN
Obesity is associated with metabolic and physiological effects in the gut. In this study, we evaluated the anti-inflammatory effect of trypsin inhibitor isolated from tamarind seeds (TTI) in vitro (interaction with lipopolysaccharide (LPS) and inhibitory activity against human neutrophil elastase (HNE)), and using intestinal co-cultures of Caco-2:HT29-MTX cell lines inflamed with TNF-α (50 ng/mL) and a Wistar rat model of diet-induced obesity (n = 15). TTI was administered to animals by gavage (10 days), and the treated group (25 mg/kg/day) was compared to animals without treatment or treated with a nutritionally adequate diet. In the in vitro study, it showed inhibitory activity against HNE (93%). In co-cultures, there was no protection or recovery of the integrity of inflamed cell monolayers treated with TTI (1.0 mg/mL). In animals, TTI led to lower plasma concentrations of TNF-α and IL-6, total leukocytes, fasting glucose, and LDL-c (p < 0.05). The intestines demonstrated a lower degree of chronic enteritis, greater preservation of the submucosa, and greater intestinal wall thickness than the other groups (p = 0.042). Therefore, the better appearance of the intestine not reflected in the intestinal permeability added to the in vitro activity against HNE point to possibilities for new studies and applications related to this activity.
Asunto(s)
Tamarindus , Ratas , Animales , Humanos , Células CACO-2 , Factor de Necrosis Tumoral alfa/metabolismo , Mucosa Intestinal/metabolismo , Ratas Wistar , Permeabilidad , Obesidad/tratamiento farmacológico , Obesidad/etiología , Obesidad/metabolismo , Dieta , Intestinos , Antiinflamatorios/farmacología , Antiinflamatorios/metabolismoRESUMEN
The ability to fabricate materials with ultrathin architectures enables the breakthrough of low-dimensional structures with high surface area that showcase distinctive properties from their bulk counterparts. They are exploited in a wide range of fields, including energy harvesting, catalysis, and biomedicine. Despite such versatility, the fine tuning of the lateral dimensions and geometry of these structures remains challenging. Prepatterned platforms gain significant attention as enabling technologies to process materials with highly controlled shapes and dimensions. Herein, different nanometer-thick particles of various lateral sizes and geometries (e.g., squares, circles, triangles, hexagons) are processed with high precision and definition, taking advantage of the wettability contrast of oleophilic-oleophobic patterned surfaces. Quasi-2D polymeric microparticles with high shape- and size-fidelity can be retrieved as freestanding objects in a single step. These structures show cell-mediated pliability, and their integration in gravity-enforced human adipose-derived stem cell spheroids leads to an enhanced metabolic activity and a modulated secretion of proangiogenic factors.
RESUMEN
For several decades microparticles have been exclusively and extensively explored as spherical drug delivery vehicles and large-scale cell expansion carriers. More recently, microparticulate structures gained interest in broader bioengineering fields, integrating myriad strategies that include bottom-up tissue engineering, 3D bioprinting, and the development of tissue/disease models. The concept of bulk spherical micrometric particles as adequate supports for cell cultivation has been challenged, and systems with finely tuned geometric designs and (bio)chemical/physical features are current key players in impacting technologies. Herein, we critically review the state of the art and future trends of biomaterial microparticles in contact with cells and tissues, excluding internalization studies, and with emphasis on innovative particle design and applications.