Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
1.
Cell ; 184(10): 2565-2586.e21, 2021 05 13.
Artículo en Inglés | MEDLINE | ID: mdl-33930288

RESUMEN

The Cycladic, the Minoan, and the Helladic (Mycenaean) cultures define the Bronze Age (BA) of Greece. Urbanism, complex social structures, craft and agricultural specialization, and the earliest forms of writing characterize this iconic period. We sequenced six Early to Middle BA whole genomes, along with 11 mitochondrial genomes, sampled from the three BA cultures of the Aegean Sea. The Early BA (EBA) genomes are homogeneous and derive most of their ancestry from Neolithic Aegeans, contrary to earlier hypotheses that the Neolithic-EBA cultural transition was due to massive population turnover. EBA Aegeans were shaped by relatively small-scale migration from East of the Aegean, as evidenced by the Caucasus-related ancestry also detected in Anatolians. In contrast, Middle BA (MBA) individuals of northern Greece differ from EBA populations in showing ∼50% Pontic-Caspian Steppe-related ancestry, dated at ca. 2,600-2,000 BCE. Such gene flow events during the MBA contributed toward shaping present-day Greek genomes.


Asunto(s)
Civilización/historia , Genoma Humano , Genoma Mitocondrial , Migración Humana/historia , ADN Antiguo , Antigua Grecia , Historia Antigua , Humanos
2.
Bioinformatics ; 39(2)2023 02 03.
Artículo en Inglés | MEDLINE | ID: mdl-36637197

RESUMEN

SUMMARY: We introduce mapache, a flexible, robust and scalable pipeline to map, quantify and impute ancient and present-day DNA in a reproducible way. Mapache is implemented in the workflow manager Snakemake and is optimized for low-space consumption, allowing to efficiently (re)map large datasets-such as reference panels and multiple extracts and libraries per sample - to one or several genomes. Mapache can easily be customized or combined with other Snakemake tools. AVAILABILITY AND IMPLEMENTATION: Mapache is freely available on GitHub (https://github.com/sneuensc/mapache). An extensive manual is provided at https://github.com/sneuensc/mapache/wiki. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Asunto(s)
ADN Antiguo , Programas Informáticos , Genoma , Flujo de Trabajo
3.
Bioinformatics ; 35(5): 886-888, 2019 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-30816926

RESUMEN

SUMMARY: QuantiNemo 2 is a stochastic simulation program for quantitative population genetics. It was developed to investigate the effects of selection, mutation, recombination and drift on quantitative traits and neutral markers in structured populations connected by migration and located in heterogeneous habitats. A specific feature is that it allows to switch between an individual-based full-featured mode and a population-based faster mode. Several demographic, genetic and selective parameters can be fine-tuned in QuantiNemo 2: population, selection, trait(s) architecture, genetic map for QTL and/or markers, environment, demography and mating system are the main features. AVAILABILITY AND IMPLEMENTATION: QuantiNemo 2 is a C++ program with a source code available under the GNU General Public License version 3. Executables are provided for Windows, MacOS and Linux platforms, together with a comprehensive manual and tutorials illustrating its flexibility. The executable, manual and tutorial can be found on the website www2.unil.ch/popgen/softwares/quantinemo/, while the source code and user support are given through GitHub: github.com/jgx65/quantinemo. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Asunto(s)
Genética de Población , Programas Informáticos , Demografía , Humanos , Fenotipo
4.
Biotechnol Bioeng ; 117(2): 466-485, 2020 02.
Artículo en Inglés | MEDLINE | ID: mdl-31631325

RESUMEN

The Chinese hamster ovary (CHO) cells used to produce biopharmaceutical proteins are known to contain type-C endogenous retrovirus (ERV) sequences in their genome and to release retroviral-like particles. Although evidence for their infectivity is missing, this has raised safety concerns. As the genomic origin of these particles remained unclear, we characterized type-C ERV elements at the genome, transcriptome, and viral particle RNA levels. We identified 173 type-C ERV sequences clustering into three functionally conserved groups. Transcripts from one type-C ERV group were full-length, with intact open reading frames, and cognate viral genome RNA was loaded into retroviral-like particles, suggesting that this ERV group may produce functional viruses. CRISPR-Cas9 genome editing was used to disrupt the gag gene of the expressed type-C ERV group. Comparison of CRISPR-derived mutations at the DNA and RNA level led to the identification of a single ERV as the main source of the release of RNA-loaded viral particles. Clones bearing a Gag loss-of-function mutation in this ERV showed a reduction of RNA-containing viral particle release down to detection limits, without compromising cell growth or therapeutic protein production. Overall, our study provides a strategy to mitigate potential viral particle contaminations resulting from ERVs during biopharmaceutical manufacturing.


Asunto(s)
Células CHO/virología , Retrovirus Endógenos , Mutagénesis Sitio-Dirigida/métodos , ARN Viral , Virión/genética , Animales , Sistemas CRISPR-Cas , Cricetinae , Cricetulus , Contaminación de Medicamentos/prevención & control , Retrovirus Endógenos/genética , Retrovirus Endógenos/metabolismo , Edición Génica , Genoma Viral/genética , Mutación con Pérdida de Función/genética , ARN Viral/genética , ARN Viral/metabolismo
5.
Heredity (Edinb) ; 123(3): 419-428, 2019 09.
Artículo en Inglés | MEDLINE | ID: mdl-31028370

RESUMEN

Deleterious mutations accumulating on non-recombining Y chromosomes can drive XY to XY turnovers, as they allow to replace the old mutation-loaded Y by a new mutation-free one. The same process is thought to prevent XY to ZW turnovers, because the latter requires fixation of the ancestral Y, assuming dominance of the emergent feminizing mutation. Using individual-based simulations, we explored whether and how an epistatically dominant W allele can spread in a young XY system that gradually accumulates deleterious mutations. We also investigated how sexually antagonistic (SA) polymorphism on the ancestral sex chromosomes and the mechanism controlling X-Y recombination suppression affect these transitions. In contrast with XY to XY turnovers, XY to ZW turnovers cannot be favored by Y chromosome mutation load. If the arrest of X-Y recombination depends on genotypic sex, transitions are strongly hindered by deleterious mutations, and totally suppressed by very small SA cost, because deleterious mutations and female-detrimental SA alleles would have to fix with the Y. If, however, the arrest of X-Y recombination depends on phenotypic sex, X and Y recombine in XY ZW females, allowing for the purge of Y-linked deleterious mutations and loss of the SA polymorphism, causing XY to ZW turnovers to occur at the same rate as in the absence of deleterious and sex-antagonistic mutations. We generalize our results to other types of turnovers (e.g., triggered by non-dominant sex-determining mutations) and discuss their empirical relevance.


Asunto(s)
Anuros/genética , Drosophila melanogaster/genética , Recombinación Genética , Procesos de Determinación del Sexo , Cromosoma X/metabolismo , Cromosoma Y/metabolismo , Alelos , Animales , Epistasis Genética , Femenino , Células Germinativas , Masculino , Modelos Genéticos , Mutación , Selección Genética
6.
J Evol Biol ; 31(9): 1413-1419, 2018 09.
Artículo en Inglés | MEDLINE | ID: mdl-29923246

RESUMEN

The recent advances of new genomic technologies have enabled the identification and characterization of sex chromosomes in an increasing number of nonmodel species, revealing that many plants and animals undergo frequent sex chromosome turnovers. What evolutionary forces drive these turnovers remains poorly understood, but it was recently proposed that drift might play a more important role than generally assumed. We analysed the dynamics of different types of turnovers using individual-based simulations and show that when mediated by genetic drift, turnovers are usually easier to achieve than substitutions at neutral markers, but that their dynamics and relative likelihoods vary with the type of the resident and emergent sex chromosome system (XY and/or ZW) and the dominance relationships among the sex-determining factors. Focusing on turnovers driven by epistatically dominant mutations, we find that drift-mediated turnovers that preserve the heterogamety pattern are 2-4× more likely than those along which the heterogametic sex changes. This ratio nevertheless decreases along with effective population size and can even reverse in case of extreme polygyny. This can be attributed to a 'drift-induced' selective force, known to influence transitions between male and female heterogamety, but which according to our study does not affect turnovers that preserve the heterogametic sex.


Asunto(s)
Flujo Genético , Modelos Genéticos , Cromosomas Sexuales/genética , Simulación por Computador , Epistasis Genética , Mutación
7.
Biotechnol Bioeng ; 114(2): 384-396, 2017 02.
Artículo en Inglés | MEDLINE | ID: mdl-27575535

RESUMEN

Untargeted plasmid integration into mammalian cell genomes remains a poorly understood and inefficient process. The formation of plasmid concatemers and their genomic integration has been ascribed either to non-homologous end-joining (NHEJ) or homologous recombination (HR) DNA repair pathways. However, a direct involvement of these pathways has remained unclear. Here, we show that the silencing of many HR factors enhanced plasmid concatemer formation and stable expression of the gene of interest in Chinese hamster ovary (CHO) cells, while the inhibition of NHEJ had no effect. However, genomic integration was decreased by the silencing of specific HR components, such as Rad51, and DNA synthesis-dependent microhomology-mediated end-joining (SD-MMEJ) activities. Genome-wide analysis of the integration loci and junction sequences validated the prevalent use of the SD-MMEJ pathway for transgene integration close to cellular genes, an effect shared with matrix attachment region (MAR) DNA elements that stimulate plasmid integration and expression. Overall, we conclude that SD-MMEJ is the main mechanism driving the illegitimate genomic integration of foreign DNA in CHO cells, and we provide a recombination engineering approach that increases transgene integration and recombinant protein expression in these cells. Biotechnol. Bioeng. 2017;114: 384-396. © 2016 The Authors. Biotechnology and Bioengineering published by Wiley Periodicals, Inc.


Asunto(s)
Cromatina/genética , Ingeniería Genética/métodos , Regiones de Fijación a la Matriz/genética , Proteínas Recombinantes/genética , Recombinación Genética/genética , Animales , Anticuerpos/química , Anticuerpos/genética , Anticuerpos/metabolismo , Células CHO , Cricetinae , Cricetulus , Técnicas de Silenciamiento del Gen , Humanos , Plásmidos/genética , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo , Transgenes/genética
8.
RNA Biol ; 14(1): 73-89, 2017 01 02.
Artículo en Inglés | MEDLINE | ID: mdl-27801632

RESUMEN

mRNA (mRNA) transport focuses the expression of encoded proteins to specific regions within cells providing them with the means to assume specific functions and even identities. BicD and the mRNA binding protein Egl interact with the microtubule motor dynein to localize mRNAs in Drosophila. Because relatively few mRNA cargos were known, we isolated and identified Egl::GFP associated mRNAs. The top candidates were validated by qPCR, in situ hybridization and genetically by showing that their localization requires BicD. In young embryos these Egl target mRNAs are preferentially localized apically, between the plasma membrane and the blastoderm nuclei, but also in the pole plasm at the posterior pole. Egl targets expressed in the ovary were mostly enriched in the oocyte and some were apically localized in follicle cells. The identification of a large group of novel mRNAs associated with BicD/Egl points to several novel developmental and physiological functions of this dynein dependent localization machinery. The verified dataset also allowed us to develop a tool that predicts conserved A'-form-like stem loops that serve as localization elements in 3'UTRs.


Asunto(s)
Proteínas de Drosophila/metabolismo , ARN Mensajero/genética , ARN Mensajero/metabolismo , Transcriptoma , Animales , Secuencia de Bases , Sitios de Unión , Biología Computacional , Drosophila melanogaster , Hibridación in Situ , Conformación de Ácido Nucleico , Transporte de Proteínas , Transporte de ARN , ARN Mensajero/química , Proteínas de Unión al ARN/metabolismo
9.
Am Nat ; 183(1): 140-6, 2014 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-24334743

RESUMEN

Sex-determining systems often undergo high rates of turnover but for reasons that remain largely obscure. Two recent evolutionary models assign key roles, respectively, to sex-antagonistic (SA) mutations occurring on autosomes and to deleterious mutations accumulating on sex chromosomes. These two models capture essential but distinct key features of sex-chromosome evolution; accordingly, they make different predictions and present distinct limitations. Here we show that a combination of features from the two models has the potential to generate endless cycles of sex-chromosome transitions: SA alleles accruing on a chromosome after it has been co-opted for sex induce an arrest of recombination; the ensuing accumulation of deleterious mutations will soon make a new transition ineluctable. The dynamics generated by these interactions share several important features with empirical data, namely, (i) that patterns of heterogamety tend to be conserved during transitions and (ii) that autosomes are not recruited randomly, with some chromosome pairs more likely than others to be co-opted for sex.


Asunto(s)
Modelos Genéticos , Cromosomas Sexuales , Animales , Femenino , Masculino , Mutación
10.
Mol Ecol ; 23(22): 5508-23, 2014 11.
Artículo en Inglés | MEDLINE | ID: mdl-25294501

RESUMEN

Gradients of variation--or clines--have always intrigued biologists. Classically, they have been interpreted as the outcomes of antagonistic interactions between selection and gene flow. Alternatively, clines may also establish neutrally with isolation by distance (IBD) or secondary contact between previously isolated populations. The relative importance of natural selection and these two neutral processes in the establishment of clinal variation can be tested by comparing genetic differentiation at neutral genetic markers and at the studied trait. A third neutral process, surfing of a newly arisen mutation during the colonization of a new habitat, is more difficult to test. Here, we designed a spatially explicit approximate Bayesian computation (ABC) simulation framework to evaluate whether the strong cline in the genetically based reddish coloration observed in the European barn owl (Tyto alba) arose as a by-product of a range expansion or whether selection has to be invoked to explain this colour cline, for which we have previously ruled out the actions of IBD or secondary contact. Using ABC simulations and genetic data on 390 individuals from 20 locations genotyped at 22 microsatellites loci, we first determined how barn owls colonized Europe after the last glaciation. Using these results in new simulations on the evolution of the colour phenotype, and assuming various genetic architectures for the colour trait, we demonstrate that the observed colour cline cannot be due to the surfing of a neutral mutation. Taking advantage of spatially explicit ABC, which proved to be a powerful method to disentangle the respective roles of selection and drift in range expansions, we conclude that the formation of the colour cline observed in the barn owl must be due to natural selection.


Asunto(s)
Evolución Biológica , Genética de Población , Pigmentación/genética , Selección Genética , Estrigiformes/genética , Animales , Teorema de Bayes , Simulación por Computador , Europa (Continente) , Repeticiones de Microsatélite , Modelos Biológicos , Análisis de Secuencia de ADN
11.
Mol Ecol ; 23(20): 5089-101, 2014 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-25223217

RESUMEN

Extensive gene flow between wheat (Triticum sp.) and several wild relatives of the genus Aegilops has recently been detected despite notoriously high levels of selfing in these species. Here, we assess and model the spread of wheat alleles into natural populations of the barbed goatgrass (Aegilops triuncialis), a wild wheat relative prevailing in the Mediterranean flora. Our sampling, based on an extensive survey of 31 Ae. triuncialis populations collected along a 60 km × 20 km area in southern Spain (Grazalema Mountain chain, Andalousia, totalling 458 specimens), is completed with 33 wheat cultivars representative of the European domesticated pool. All specimens were genotyped with amplified fragment length polymorphism with the aim of estimating wheat admixture levels in Ae. triuncialis populations. This survey first confirmed extensive hybridization and backcrossing of wheat into the wild species. We then used explicit modelling of populations and approximate Bayesian computation to estimate the selfing rate of Ae. triuncialis along with the magnitude, the tempo and the geographical distance over which wheat alleles introgress into Ae. triuncialis populations. These simulations confirmed that extensive introgression of wheat alleles (2.7 × 10(-4) wheat immigrants for each Ae. triuncialis resident, at each generation) into Ae. triuncialis occurs despite a high selfing rate (Fis ≈ 1 and selfing rate = 97%). These results are discussed in the light of risks associated with the release of genetically modified wheat cultivars in Mediterranean agrosystems.


Asunto(s)
Flujo Génico , Hibridación Genética , Poaceae/genética , Triticum/genética , Alelos , Análisis del Polimorfismo de Longitud de Fragmentos Amplificados , Teorema de Bayes , ADN de Plantas/genética , Genética de Población , Modelos Genéticos , España
12.
Am Nat ; 180(6): E174-83, 2012 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-23149410

RESUMEN

Balanced lethal systems are more than biological curiosities: as theory predicts, they should quickly be eliminated through the joint forces of recombination and selection. That such systems might become fixed in natural populations poses a challenge to evolutionary theory. Here we address the case of a balanced lethal system fixed in crested newts and related species, which makes 50% of offspring die early in development. All adults are heteromorphic for chromosome pair 1. The two homologues (1A and 1B) have different recessive deleterious alleles fixed on a nonrecombining segment, so that heterozygotes are viable, while homozygotes are lethal. Given such a strong segregation load, how could autosomes stop recombining? We propose a role for a sex-chromosome turnover from pair 1 (putative ancestral sex chromosome) to pair 4 (currently active sex chromosome). Accordingly, 1A and 1B represent two variants (Y(A) and Y(B)) of the Y chromosome from an ancestral male-heterogametic system. We formalize a scenario in which turnovers are driven by sex ratio selection stemming from gene-environment interactions on sex determination. Individual-based simulations show that a balanced lethal system can be fixed with significant likelihood, provided the masculinizing allele on chromosome 4 appears after the elimination of the feminizing allele on chromosome 1. Our study illustrates how strikingly maladaptive traits might evolve through natural selection.


Asunto(s)
Evolución Molecular , Cromosomas Sexuales/genética , Procesos de Determinación del Sexo , Triturus/genética , Alelos , Animales , Femenino , Interacción Gen-Ambiente , Masculino , Modelos Genéticos , Selección Genética
13.
PeerJ ; 10: e12784, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35356467

RESUMEN

Owing to technological advances in ancient DNA, it is now possible to sequence viruses from the past to track down their origin and evolution. However, ancient DNA data is considerably more degraded and contaminated than modern data making the identification of ancient viral genomes particularly challenging. Several methods to characterise the modern microbiome (and, within this, the virome) have been developed; in particular, tools that assign sequenced reads to specific taxa in order to characterise the organisms present in a sample of interest. While these existing tools are routinely used in modern data, their performance when applied to ancient microbiome data to screen for ancient viruses remains unknown. In this work, we conducted an extensive simulation study using public viral sequences to establish which tool is the most suitable to screen ancient samples for human DNA viruses. We compared the performance of four widely used classifiers, namely Centrifuge, Kraken2, DIAMOND and MetaPhlAn2, in correctly assigning sequencing reads to the corresponding viruses. To do so, we simulated reads by adding noise typical of ancient DNA to a set of publicly available human DNA viral sequences and to the human genome. We fragmented the DNA into different lengths, added sequencing error and C to T and G to A deamination substitutions at the read termini. Then we measured the resulting sensitivity and precision for all classifiers. Across most simulations, more than 228 out of the 233 simulated viruses were recovered by Centrifuge, Kraken2 and DIAMOND, in contrast to MetaPhlAn2 which recovered only around one third. Overall, Centrifuge and Kraken2 had the best performance with the highest values of sensitivity and precision. We found that deamination damage had little impact on the performance of the classifiers, less than the sequencing error and the length of the reads. Since Centrifuge can handle short reads (in contrast to DIAMOND and Kraken2 with default settings) and since it achieve the highest sensitivity and precision at the species level across all the simulations performed, it is our recommended tool. Regardless of the tool used, our simulations indicate that, for ancient human studies, users should use strict filters to remove all reads of potential human origin. Finally, we recommend that users verify which species are present in the database used, as it might happen that default databases lack sequences for viruses of interest.


Asunto(s)
ADN Viral , Virus , Humanos , ADN Viral/genética , ADN Antiguo , Análisis de Secuencia de ADN/métodos , Metagenómica/métodos , Benchmarking , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Virus/genética
14.
Am Nat ; 178(4): 515-24, 2011 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-21956029

RESUMEN

Complex sex determination systems are a priori unstable and require specific selective forces for their maintenance. Analytical derivations suggest that sex antagonistic selection may play such a role, but this assumes absence of recombination between the sex-determining and sex-antagonistic genes. Using individual-based simulations and focusing on the sex chromosome and coloration polymorphisms of platy fishes as a case study, we show that the conditions for polymorphism maintenance induce female biases in primary sex ratios, so that sex ratio selection makes the system collapse toward male or female heterogamety as soon as recombinant genotypes appear. However, a polymorphism can still be maintained under scenarios comprising strong sexual selection against dull males, mild natural selection against bright females, and low recombination rates. Though such conditions are plausibly met in natural populations of fishes harboring such polymorphisms, quantitative empirical evaluations are required to properly test whether sex antagonistic selection is a causal agent or whether other selective processes are required (such as local mate competition favoring female-biased sex ratios).


Asunto(s)
Ciprinodontiformes/genética , Genética de Población , Modelos Genéticos , Polimorfismo Genético/genética , Selección Genética , Cromosomas Sexuales/genética , Procesos de Determinación del Sexo/genética , Animales , Simulación por Computador , Femenino , Masculino , Pigmentación/genética , Factores Sexuales , Razón de Masculinidad
15.
BMC Bioinformatics ; 11: 116, 2010 Mar 04.
Artículo en Inglés | MEDLINE | ID: mdl-20202215

RESUMEN

BACKGROUND: The estimation of demographic parameters from genetic data often requires the computation of likelihoods. However, the likelihood function is computationally intractable for many realistic evolutionary models, and the use of Bayesian inference has therefore been limited to very simple models. The situation changed recently with the advent of Approximate Bayesian Computation (ABC) algorithms allowing one to obtain parameter posterior distributions based on simulations not requiring likelihood computations. RESULTS: Here we present ABCtoolbox, a series of open source programs to perform Approximate Bayesian Computations (ABC). It implements various ABC algorithms including rejection sampling, MCMC without likelihood, a Particle-based sampler and ABC-GLM. ABCtoolbox is bundled with, but not limited to, a program that allows parameter inference in a population genetics context and the simultaneous use of different types of markers with different ploidy levels. In addition, ABCtoolbox can also interact with most simulation and summary statistics computation programs. The usability of the ABCtoolbox is demonstrated by inferring the evolutionary history of two evolutionary lineages of Microtus arvalis. Using nuclear microsatellites and mitochondrial sequence data in the same estimation procedure enabled us to infer sex-specific population sizes and migration rates and to find that males show smaller population sizes but much higher levels of migration than females. CONCLUSION: ABCtoolbox allows a user to perform all the necessary steps of a full ABC analysis, from parameter sampling from prior distributions, data simulations, computation of summary statistics, estimation of posterior distributions, model choice, validation of the estimation procedure, and visualization of the results.


Asunto(s)
Teorema de Bayes , Genética de Población , Programas Informáticos , Animales , Arvicolinae/genética , Evolución Molecular , Femenino , Masculino , Repeticiones de Microsatélite/genética
16.
Mol Ecol Resour ; 20(5): 1191-1205, 2020 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-32304133

RESUMEN

Erosion of biodiversity generated by anthropogenic activities has been studied for decades and in many areas at the species level, using taxa monitoring. In contrast, genetic erosion within species has rarely been tracked, and is often studied by inferring past population dynamics from contemporaneous estimators. An alternative to such inferences is the direct examination of past genes, by analysing museum collection specimens. While providing direct access to genetic variation over time, historical DNA is usually not optimally preserved, and it is necessary to apply genotyping methods based on hybridization-capture to unravel past genetic variation. In this study, we apply such a method (i.e., HyRAD), to large time series of two butterfly species in Finland, and present a new bioinformatic pipeline, namely PopHyRAD, that standardizes and optimizes the analysis of HyRAD data at the within-species level. In the localities for which the data retrieved have sufficient power to accurately examine genetic dynamics through time, we show that genetic erosion has increased across the last 100 years, as revealed by signatures of allele extinctions and heterozygosity decreases, despite local variations. In one of the two butterflies (Erebia embla), isolation by distance also increased through time, revealing the effect of greater habitat fragmentation over time.


Asunto(s)
Mariposas Diurnas , Evolución Molecular , Animales , Biodiversidad , Mariposas Diurnas/clasificación , Mariposas Diurnas/genética , Ecosistema , Finlandia , Variación Genética , Museos , Dinámica Poblacional
17.
Ecol Evol ; 10(5): 2284-2298, 2020 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-32184981

RESUMEN

New genomic tools open doors to study ecology, evolution, and population genomics of wild animals. For the Barn owl species complex, a cosmopolitan nocturnal raptor, a very fragmented draft genome was assembled for the American species (Tyto furcata pratincola) (Jarvis et al. 2014). To improve the genome, we assembled de novo Illumina and Pacific Biosciences (PacBio) long reads sequences of its European counterpart (Tyto alba alba). This genome assembly of 1.219 Gbp comprises 21,509 scaffolds and results in a N50 of 4,615,526 bp. BUSCO (Universal Single-Copy Orthologs) analysis revealed an assembly completeness of 94.8% with only 1.8% of the genes missing out of 4,915 avian orthologs searched, a proportion similar to that found in the genomes of the zebra finch (Taeniopygia guttata) or the collared flycatcher (Ficedula albicollis). By mapping the reads of the female American barn owl to the male European barn owl reads, we detected several structural variants and identified 70 Mbp of the Z chromosome. The barn owl scaffolds were further mapped to the chromosomes of the zebra finch. In addition, the completeness of the European barn owl genome is demonstrated with 94 of 128 proteins missing in the chicken genome retrieved in the European barn owl transcripts. This improved genome will help future barn owl population genomic investigations.

18.
Bioinformatics ; 24(13): 1552-3, 2008 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-18450810

RESUMEN

UNLABELLED: quantiNemo is an individual-based, genetically explicit stochastic simulation program. It was developed to investigate the effects of selection, mutation, recombination and drift on quantitative traits with varying architectures in structured populations connected by migration and located in a heterogeneous habitat. quantiNemo is highly flexible at various levels: population, selection, trait(s) architecture, genetic map for QTL and/or markers, environment, demography, mating system, etc. quantiNemo is coded in C++ using an object-oriented approach and runs on any computer platform. AVAILABILITY: Executables for several platforms, user's manual, and source code are freely available under the GNU General Public License at http://www2.unil.ch/popgen/softwares/quantinemo.


Asunto(s)
Algoritmos , Mapeo Cromosómico/métodos , Genética de Población , Modelos Genéticos , Sitios de Carácter Cuantitativo/genética , Carácter Cuantitativo Heredable , Programas Informáticos , Animales , Simulación por Computador , Humanos
19.
Stem Cell Res ; 41: 101619, 2019 12.
Artículo en Inglés | MEDLINE | ID: mdl-31683098

RESUMEN

Duchenne muscular dystrophy (DMD) is a lethal muscle-wasting disease caused by the lack of dystrophin in muscle fibers that is currently without curative treatment. Mesoangioblasts (MABs) are multipotent progenitor cells that can differentiate to a myogenic lineage and that can be used to express Dystrophin upon transplantation into muscles, in autologous gene therapy approaches. However, their fate in the muscle environment remains poorly characterized. Here, we investigated the differentiation fate of MABs following their transplantation in DMD murine muscles using a mass cytometry strategy. This allowed the identification and isolation of a fraction of MAB-derived cells presenting common properties with satellite muscle stem cells. This analysis also indicated that most cells did not undergo a myogenic differentiation path once in the muscle environment, limiting their capacity to restore dystrophin expression in transplanted muscles. We therefore assessed whether MAB treatment with cytokines and growth factors prior to engraftment may improve their myogenic fate. We identified a combination of such signals that ameliorates MABs capacity to undergo myogenic differentiation in vivo and to restore dystrophin expression upon engraftment in myopathic murine muscles.


Asunto(s)
Diferenciación Celular , Células Madre Multipotentes , Distrofia Muscular de Duchenne , Células Satélite del Músculo Esquelético , Animales , Modelos Animales de Enfermedad , Ratones , Ratones Endogámicos mdx , Ratones SCID , Células Madre Multipotentes/metabolismo , Células Madre Multipotentes/patología , Distrofia Muscular de Duchenne/genética , Distrofia Muscular de Duchenne/metabolismo , Distrofia Muscular de Duchenne/patología , Distrofia Muscular de Duchenne/terapia , Células Satélite del Músculo Esquelético/metabolismo , Células Satélite del Músculo Esquelético/patología , Células Satélite del Músculo Esquelético/trasplante
20.
Mol Ecol ; 17(3): 757-72, 2008 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-18194169

RESUMEN

The present distribution of freshwater fish in the Alpine region has been strongly affected by colonization events occurring after the last glacial maximum (LGM), some 20,000 years ago. We use here a spatially explicit simulation framework to model and better understand their colonization dynamics in the Swiss Rhine basin. This approach is applied to the European bullhead (Cottus gobio), which is an ideal model organism to study fish past demographic processes since it has not been managed by humans. The molecular diversity of eight sampled populations is simulated and compared to observed data at six microsatellite loci under an approximate Bayesian computation framework to estimate the parameters of the colonization process. Our demographic estimates fit well with current knowledge about the biology of this species, but they suggest that the Swiss Rhine basin was colonized very recently, after the Younger Dryas some 6600 years ago. We discuss the implication of this result, as well as the strengths and limits of the spatially explicit approach coupled to the approximate Bayesian computation framework.


Asunto(s)
Migración Animal , Ictaluridae/genética , Animales , Teorema de Bayes , Simulación por Computador , Ecosistema , Variación Genética , Modelos Genéticos , Ríos , Suiza
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA