Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 57
Filtrar
Más filtros

Bases de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Cancer Metastasis Rev ; 40(3): 879-889, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-34611794

RESUMEN

Panc reatic ductal adenocarcinoma (PDAC) is a devastating malignancy. There have been few advances that have substantially improved overall survival in the past several years. On its current trajectory, the deaths from PDAC are expected to cross that from all gastrointestinal cancers combined by 2030. Radiation therapy is a technically very complex modality that bridges multiple different treatment strategies. It represents a hybrid among advanced diagnostic imaging, local (often ablative) intervention, and heterogeneous biological mechanisms contributing to normal and oncologic cell kill. In this article, we bring an overview of the several promising strategies that are currently being investigated to improve outcomes using radiation therapy for patients with PDAC.


Asunto(s)
Adenocarcinoma , Carcinoma Ductal Pancreático , Neoplasias Pancreáticas , Adenocarcinoma/radioterapia , Carcinoma Ductal Pancreático/radioterapia , Humanos , Neoplasias Pancreáticas/radioterapia , Tecnología
2.
J Magn Reson Imaging ; 55(6): 1745-1758, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-34767682

RESUMEN

BACKGROUND: Diffusion-weighted imaging (DWI) is commonly used to detect prostate cancer, and a major clinical challenge is differentiating aggressive from indolent disease. PURPOSE: To compare 14 site-specific parametric fitting implementations applied to the same dataset of whole-mount pathologically validated DWI to test the hypothesis that cancer differentiation varies with different fitting algorithms. STUDY TYPE: Prospective. POPULATION: Thirty-three patients prospectively imaged prior to prostatectomy. FIELD STRENGTH/SEQUENCE: 3 T, field-of-view optimized and constrained undistorted single-shot DWI sequence. ASSESSMENT: Datasets, including a noise-free digital reference object (DRO), were distributed to the 14 teams, where locally implemented DWI parameter maps were calculated, including mono-exponential apparent diffusion coefficient (MEADC), kurtosis (K), diffusion kurtosis (DK), bi-exponential diffusion (BID), pseudo-diffusion (BID*), and perfusion fraction (F). The resulting parametric maps were centrally analyzed, where differentiation of benign from cancerous tissue was compared between DWI parameters and the fitting algorithms with a receiver operating characteristic area under the curve (ROC AUC). STATISTICAL TEST: Levene's test, P < 0.05 corrected for multiple comparisons was considered statistically significant. RESULTS: The DRO results indicated minimal discordance between sites. Comparison across sites indicated that K, DK, and MEADC had significantly higher prostate cancer detection capability (AUC range = 0.72-0.76, 0.76-0.81, and 0.76-0.80 respectively) as compared to bi-exponential parameters (BID, BID*, F) which had lower AUC and greater between site variation (AUC range = 0.53-0.80, 0.51-0.81, and 0.52-0.80 respectively). Post-processing parameters also affected the resulting AUC, moving from, for example, 0.75 to 0.87 for MEADC varying cluster size. DATA CONCLUSION: We found that conventional diffusion models had consistent performance at differentiating prostate cancer from benign tissue. Our results also indicated that post-processing decisions on DWI data can affect sensitivity and specificity when applied to radiological-pathological studies in prostate cancer. LEVEL OF EVIDENCE: 1 TECHNICAL EFFICACY: Stage 3.


Asunto(s)
Imagen de Difusión por Resonancia Magnética , Neoplasias de la Próstata , Imagen de Difusión por Resonancia Magnética/métodos , Humanos , Masculino , Estudios Prospectivos , Neoplasias de la Próstata/diagnóstico por imagen , Curva ROC , Estudios Retrospectivos , Sensibilidad y Especificidad
3.
Am J Pathol ; 185(9): 2505-22, 2015 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-26362718

RESUMEN

Active Stat5a/b predicts early recurrence and disease-specific death in prostate cancer (PC), which both typically are caused by development of metastatic disease. Herein, we demonstrate that Stat5a/b induces epithelial-to-mesenchymal transition (EMT) of PC cells, as shown by Stat5a/b regulation of EMT marker expression (Twist1, E-cadherin, N-cadherin, vimentin, and fibronectin) in PC cell lines, xenograft tumors in vivo, and patient-derived PCs ex vivo using organ explant cultures. Jak2-Stat5a/b signaling induced functional end points of EMT as well, indicated by disruption of epithelial cell monolayers and increased migration and adhesion of PC cells to fibronectin. Knockdown of Twist1 suppressed Jak2-Stat5a/b-induced EMT properties of PC cells, which were rescued by re-introduction of Twist1, indicating that Twist1 mediates Stat5a/b-induced EMT in PC cells. While promoting EMT, Jak2-Stat5a/b signaling induced stem-like properties in PC cells, such as sphere formation and expression of cancer stem cell markers, including BMI1. Mechanistically, both Twist1 and BMI1 were critical for Stat5a/b induction of stem-like features, because genetic knockdown of Twist1 suppressed Stat5a/b-induced BMI1 expression and sphere formation in stem cell culture conditions, which were rescued by re-introduction of BMI1. By using human prolactin knock-in mice, we demonstrate that prolactin-Stat5a/b signaling promoted metastases formation of PC cells in vivo. In conclusion, our data support the concept that Jak2-Stat5a/b signaling promotes metastatic progression of PC by inducing EMT and stem cell properties in PC cells.


Asunto(s)
Transición Epitelial-Mesenquimal , Janus Quinasa 2/metabolismo , Neoplasias de la Próstata/metabolismo , Factor de Transcripción STAT5/metabolismo , Transducción de Señal , Proteínas Supresoras de Tumor/metabolismo , Animales , Cadherinas/metabolismo , Humanos , Masculino , Ratones , Células Madre Neoplásicas/patología , Proteínas Nucleares/metabolismo , Neoplasias de la Próstata/patología , Recurrencia , Transducción de Señal/fisiología , Proteína 1 Relacionada con Twist/metabolismo
4.
Am J Pathol ; 182(6): 2264-75, 2013 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-23660011

RESUMEN

The molecular mechanisms underlying progression of prostate cancer (PCa) to castrate-resistant (CR) and metastatic disease are poorly understood. Our previous mechanistic work shows that inhibition of transcription factor Stat5 by multiple alternative methods induces extensive rapid apoptotic death of Stat5-positive PCa cells in vitro and inhibits PCa xenograft tumor growth in nude mice. Furthermore, STAT5A/B induces invasive behavior of PCa cells in vitro and in vivo, suggesting involvement of STAT5A/B in PCa progression. Nuclear STAT5A/B protein levels are increased in high-grade PCas, CR PCas, and distant metastases, and high nuclear STAT5A/B expression predicts early disease recurrence and PCa-specific death in clinical PCas. Based on these findings, STAT5A/B represents a therapeutic target protein for advanced PCa. The mechanisms underlying increased Stat5 protein levels in PCa are unclear. Herein, we demonstrate amplification at the STAT5A/B gene locus in a significant fraction of clinical PCa specimens. STAT5A/B gene amplification was more frequently found in PCas of high histologic grades and in CR distant metastases. Quantitative in situ analysis revealed that STAT5A/B gene amplification was associated with increased STAT5A/B protein expression in PCa. Functional studies showed that increased STAT5A/B copy numbers conferred growth advantage in PCa cells in vitro and as xenograft tumors in vivo. The work presented herein provides the first evidence of somatic STAT5A/B gene amplification in clinical PCas.


Asunto(s)
Amplificación de Genes , Neoplasias de la Próstata/genética , Factor de Transcripción STAT5/genética , Proteínas Supresoras de Tumor/genética , Animales , Variaciones en el Número de Copia de ADN , ADN de Neoplasias/genética , Progresión de la Enfermedad , Regulación Neoplásica de la Expresión Génica/fisiología , Humanos , Hibridación Fluorescente in Situ , Masculino , Ratones , Ratones Desnudos , Clasificación del Tumor , Trasplante de Neoplasias , Neoplasias de la Próstata/metabolismo , Neoplasias de la Próstata/patología , Recurrencia , Factor de Transcripción STAT5/biosíntesis , Trasplante Heterólogo , Células Tumorales Cultivadas , Proteínas Supresoras de Tumor/biosíntesis
5.
Sci Adv ; 10(9): eadi2742, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38416822

RESUMEN

Androgen receptor (AR) drives prostate cancer (PC) growth and progression, and targeting AR signaling is the mainstay of pharmacological therapies for PC. Resistance develops relatively fast as a result of refueled AR activity. A major gap in the field is the lack of understanding of targetable mechanisms that induce persistent AR expression in castrate-resistant PC (CRPC). This study uncovers an unexpected function of active Stat5 signaling, a known promoter of PC growth and clinical progression, as a potent inducer of AR gene transcription. Stat5 suppression inhibited AR gene transcription in preclinical PC models and reduced the levels of wild-type, mutated, and truncated AR proteins. Pharmacological Stat5 inhibition by a specific small-molecule Stat5 inhibitor down-regulated Stat5-inducible genes as well as AR and AR-regulated genes and suppressed PC growth. This work introduces the concept of Stat5 as an inducer of AR gene transcription in PC. Pharmacological Stat5 inhibitors may represent a new strategy for suppressing AR and CRPC growth.


Asunto(s)
Neoplasias de la Próstata Resistentes a la Castración , Receptores Androgénicos , Masculino , Humanos , Receptores Androgénicos/genética , Receptores Androgénicos/metabolismo , Neoplasias de la Próstata Resistentes a la Castración/tratamiento farmacológico , Neoplasias de la Próstata Resistentes a la Castración/genética , Neoplasias de la Próstata Resistentes a la Castración/metabolismo , Transducción de Señal , Transcripción Genética , Línea Celular Tumoral , Regulación Neoplásica de la Expresión Génica
6.
Artículo en Inglés | MEDLINE | ID: mdl-38819340

RESUMEN

PURPOSE: Changes in quantitative magnetic resonance imaging (qMRI) are frequently observed during chemotherapy or radiation therapy (RT). It is hypothesized that qMRI features are reflective of underlying tissue responses. It's unknown what underlying genomic characteristics underly qMRI changes. We hypothesized that qMRI changes may correlate with DNA damage response (DDR) capacity within human tumors. Therefore, we designed the current study to correlate qMRI changes from daily RT treatment with underlying tumor transcriptomic profiles. METHODS AND MATERIALS: Study participants were prospectively enrolled (National Clinical Trial 03500081). RNA expression levels for 757 genes from pretreatment biopsies were obtained using a custom panel that included signatures of radiation sensitivity and DDR. Daily qMRI data were obtained from a 1.5 Tesla MR linear accelerator. Using these images, d-slow, d-star, perfusion, and apparent diffusion coefficient-mean values in tumors were plotted per-fraction, over time, and associated with genomic pathways. RESULTS: A total of 1022 qMRIs were obtained from 39 patients and both genomic data and qMRI data from 27 total patients. For 20 of those patients, we also generated normal tissue transcriptomic data. Radio sensitivity index values most closely associated with tissue of origin. Multiple genomic pathways including DNA repair, peroxisome, late estrogen receptor responses, KRAS signaling, and UV response were significantly associated with qMRI feature changes (P < .001). CONCLUSIONS: Genomic pathway associations across metabolic, RT sensitivity, and DDR pathways indicate common tumor biology that may correlate with qMRI changes during a course of treatment. Such data provide hypothesis-generating novel mechanistic insight into the biologic meaning of qMRI changes during treatment and enable optimal selection of imaging biomarkers for biologically MR-guided RT.

7.
J Biol Chem ; 287(20): 16835-48, 2012 May 11.
Artículo en Inglés | MEDLINE | ID: mdl-22378792

RESUMEN

In several neuronal cell types, the small GTPase Rac is essential for survival. We have shown previously that the Rho family GTPase inhibitor Clostridium difficile toxin B (ToxB) induces apoptosis in primary rat cerebellar granule neurons (CGNs) principally via inhibition of Rac GTPase function. In the present study, incubation with ToxB activated a proapoptotic Janus kinase (JAK)/signal transducer and activator of transcription (STAT) pathway, and a pan-JAK inhibitor protected CGNs from Rac inhibition. STAT1 expression was induced by ToxB; however, CGNs from STAT1 knock-out mice succumbed to ToxB-induced apoptosis as readily as wild-type CGNs. STAT3 displayed enhanced tyrosine phosphorylation following treatment with ToxB, and a reputed inhibitor of STAT3, cucurbitacin (JSI-124), reduced CGN apoptosis. Unexpectedly, JSI-124 failed to block STAT3 phosphorylation, and CGNs were not protected from ToxB by other known STAT3 inhibitors. In contrast, STAT5A tyrosine phosphorylation induced by ToxB was suppressed by JSI-124. In addition, roscovitine similarly inhibited STAT5A phosphorylation and protected CGNs from ToxB-induced apoptosis. Consistent with these results, adenoviral infection with a dominant negative STAT5 mutant, but not wild-type STAT5, significantly decreased ToxB-induced apoptosis of CGNs. Finally, chromatin immunoprecipitation with a STAT5 antibody revealed increased STAT5 binding to the promoter region of prosurvival Bcl-xL. STAT5 was recruited to the Bcl-xL promoter region in a ToxB-dependent manner, and this DNA binding preceded Bcl-xL down-regulation, suggesting transcriptional repression. These data indicate that a novel JAK/STAT5 proapoptotic pathway significantly contributes to neuronal apoptosis induced by the inhibition of Rac GTPase.


Asunto(s)
Apoptosis/efectos de los fármacos , Proteínas Bacterianas/farmacología , Toxinas Bacterianas/farmacología , Cerebelo/metabolismo , Neuronas/metabolismo , Factor de Transcripción STAT5/metabolismo , Transducción de Señal/efectos de los fármacos , Proteínas de Unión al GTP rac/antagonistas & inhibidores , Animales , Células Cultivadas , Cerebelo/citología , Ratones , Ratones Noqueados , Mutación , Neuronas/citología , Fosforilación/efectos de los fármacos , Ratas , Factor de Transcripción STAT1/genética , Factor de Transcripción STAT1/metabolismo , Factor de Transcripción STAT3/antagonistas & inhibidores , Factor de Transcripción STAT3/genética , Factor de Transcripción STAT3/metabolismo , Factor de Transcripción STAT5/genética , Transducción de Señal/genética , Triterpenos/farmacología , Proteína bcl-X/genética , Proteína bcl-X/metabolismo
8.
JCO Precis Oncol ; 7: e2100498, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36652667

RESUMEN

PURPOSE: T-cell-mediated cytotoxicity is suppressed when programmed cell death-1 (PD-1) is bound by PD-1 ligand-1 (PD-L1) or PD-L2. Although PD-1 inhibitors have been approved for triple-negative breast cancer, the lower response rates of 25%-30% in estrogen receptor-positive (ER+) breast cancer will require markers to identify likely responders. The focus of this study was to evaluate whether PD-L2, which has higher affinity than PD-L1 for PD-1, is a predictor of early recurrence in ER+ breast cancer. METHODS: PD-L2 protein levels in cancer cells and stromal cells of therapy-naive, localized or locoregional ER+ breast cancers were measured retrospectively by quantitative immunofluorescence histocytometry and correlated with progression-free survival (PFS) in the main study cohort (n = 684) and in an independent validation cohort (n = 273). All patients subsequently received standard-of-care adjuvant therapy without immune checkpoint inhibitors. RESULTS: Univariate analysis of the main cohort revealed that high PD-L2 expression in cancer cells was associated with shorter PFS (hazard ratio [HR], 1.8; 95% CI, 1.3 to 2.6; P = .001), which was validated in an independent cohort (HR, 2.3; 95% CI, 1.1 to 4.8; P = .026) and remained independently predictive after multivariable adjustment for common clinicopathological variables (HR, 2.0; 95% CI, 1.4 to 2.9; P < .001). Subanalysis of the ER+ breast cancer patients treated with adjuvant chemotherapy (n = 197) revealed that high PD-L2 levels in cancer cells associated with short PFS in univariate (HR, 2.5; 95% CI, 1.4 to 4.4; P = .003) and multivariable analyses (HR, 3.4; 95% CI, 1.9 to 6.2; P < .001). CONCLUSION: Up to one third of treatment-naive ER+ breast tumors expressed high PD-L2 levels, which independently predicted poor clinical outcome, with evidence of further elevated risk of progression in patients who received adjuvant chemotherapy. Collectively, these data warrant studies to gain a deeper understanding of PD-L2 in the progression of ER+ breast cancer and may provide rationale for immune checkpoint blockade for this patient group.


Asunto(s)
Antígeno B7-H1 , Neoplasias de la Mama Triple Negativas , Humanos , Receptor de Muerte Celular Programada 1 , Estudios Retrospectivos
9.
Cancers (Basel) ; 14(2)2022 Jan 08.
Artículo en Inglés | MEDLINE | ID: mdl-35053472

RESUMEN

Tumor-associated macrophages (TAMs) promote progression of breast cancer and other solid malignancies via immunosuppressive, pro-angiogenic and pro-metastatic effects. Tumor-promoting TAMs tend to express M2-like macrophage markers, including CD163. Histopathological assessments suggest that the density of CD163-positive TAMs within the tumor microenvironment is associated with reduced efficacy of chemotherapy and unfavorable prognosis. However, previous analyses have required research-oriented pathologists to visually enumerate CD163+ TAMs, which is both laborious and subjective and hampers clinical implementation. Objective, operator-independent image analysis methods to quantify TAM-associated information are needed. In addition, since M2-like TAMs exert local effects on cancer cells through direct juxtacrine cell-to-cell interactions, paracrine signaling, and metabolic factors, we hypothesized that spatial metrics of adjacency of M2-like TAMs to breast cancer cells will have further information value. Immunofluorescence histo-cytometry of CD163+ TAMs was performed retrospectively on tumor microarrays of 443 cases of invasive breast cancer from patients who subsequently received adjuvant chemotherapy. An objective and automated algorithm was developed to phenotype CD163+ TAMs and calculate their density within the tumor stroma and derive several spatial metrics of interaction with cancer cells. Shorter progression-free survival was associated with a high density of CD163+ TAMs, shorter median cancer-to-CD163+ nearest neighbor distance, and a high number of either directly adjacent CD163+ TAMs (within juxtacrine proximity <12 µm to cancer cells) or communicating CD163+ TAMs (within paracrine communication distance <250 µm to cancer cells) after multivariable adjustment for clinical and pathological risk factors and correction for optimistic bias due to dichotomization.

10.
Am J Pathol ; 176(4): 1959-72, 2010 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-20167868

RESUMEN

Identification of the molecular changes that promote viability and metastatic behavior of prostate cancer is critical for the development of improved therapeutic interventions. Stat5a/b and Stat3 are both constitutively active in locally-confined and advanced prostate cancer, and both transcription factors have been reported to be critical for the viability of prostate cancer cells. We recently showed that Stat3 promotes metastatic behavior of human prostate cancer cells not only in vitro but also in an in vivo experimental metastases model. In this work, we compare side-by-side Stat5a/b versus Stat3 in the promotion of prostate cancer cell viability, tumor growth, and induction of metastatic colonization in vivo. Inhibition of Stat5a/b induced massive death of prostate cancer cells in culture and reduced both subcutaneous and orthotopic prostate tumor growth, whereas Stat3 had a predominant role over Stat5a/b in promoting metastases formation of prostate cancer cells in vivo in nude mice. The molecular mechanisms underlying the differential biological effects induced by these two transcription factors involve largely different sets of genes regulated by Stat5a/b versus Stat3 in human prostate cancer model systems. Of the two Stat5 homologs, Stat5b was more important for supporting growth of prostate cancer cells than Stat5a. This work provides the first mechanistic comparison of the biological effects induced by transcription factors Stat5a/b versus Stat3 in prostate cancer.


Asunto(s)
Regulación Neoplásica de la Expresión Génica , Neoplasias de la Próstata/metabolismo , Factor de Transcripción STAT3/metabolismo , Factor de Transcripción STAT5/metabolismo , Animales , Línea Celular Tumoral , Supervivencia Celular , Perfilación de la Expresión Génica , Humanos , Masculino , Ratones , Metástasis de la Neoplasia , Trasplante de Neoplasias
11.
Cancers (Basel) ; 13(20)2021 Oct 17.
Artículo en Inglés | MEDLINE | ID: mdl-34680353

RESUMEN

Androgen deprivation therapy (ADT) for metastatic and high-risk prostate cancer (PC) inhibits growth pathways driven by the androgen receptor (AR). Over time, ADT leads to the emergence of lethal castrate-resistant PC (CRPC), which is consistently caused by an acquired ability of tumors to re-activate AR. This has led to the development of second-generation anti-androgens that more effectively antagonize AR, such as enzalutamide (ENZ). However, the resistance of CRPC to ENZ develops rapidly. Studies utilizing preclinical models of PC have established that inhibition of the Jak2-Stat5 signaling leads to extensive PC cell apoptosis and decreased tumor growth. In large clinical cohorts, Jak2-Stat5 activity predicts PC progression and recurrence. Recently, Jak2-Stat5 signaling was demonstrated to induce ENZ-resistant PC growth in preclinical PC models, further emphasizing the importance of Jak2-Stat5 for therapeutic targeting for advanced PC. The discovery of the Jak2V617F somatic mutation in myeloproliferative disorders triggered the rapid development of Jak1/2-specific inhibitors for a variety of myeloproliferative and auto-immune disorders as well as hematological malignancies. Here, we review Jak2 inhibitors targeting the mutated Jak2V617F vs. wild type (WT)-Jak2 that are currently in the development pipeline. Among these 35 compounds with documented Jak2 inhibitory activity, those with potency against WT-Jak2 hold strong potential for advanced PC therapy.

12.
Sci Adv ; 7(38): eabc8145, 2021 Sep 17.
Artículo en Inglés | MEDLINE | ID: mdl-34524841

RESUMEN

Most breast cancer deaths are caused by estrogen receptor-α­positive (ER+) disease. Preclinical progress is hampered by a shortage of therapy-naïve ER+ tumor models that recapitulate metastatic progression and clinically relevant therapy resistance. Human prolactin (hPRL) is a risk factor for primary and metastatic ER+ breast cancer. Because mouse prolactin fails to activate hPRL receptors, we developed a prolactin-humanized Nod-SCID-IL2Rγ (NSG) mouse (NSG-Pro) with physiological hPRL levels. Here, we show that NSG-Pro mice facilitate establishment of therapy-naïve, estrogen-dependent PDX tumors that progress to lethal metastatic disease. Preclinical trials provide first-in-mouse efficacy of pharmacological hPRL suppression on residual ER+ human breast cancer metastases and document divergent biology and drug responsiveness of tumors grown in NSG-Pro versus NSG mice. Oncogenomic analyses of PDX lines in NSG-Pro mice revealed clinically relevant therapy-resistance mechanisms and unexpected, potently actionable vulnerabilities such as DNA-repair aberrations. The NSG-Pro mouse unlocks previously inaccessible precision medicine approaches for ER+ breast cancers.

13.
Genome Inform ; 24: 139-53, 2010.
Artículo en Inglés | MEDLINE | ID: mdl-22081596

RESUMEN

We develop a general method to identify gene networks from pair-wise correlations between genes in a microarray data set and apply it to a public prostate cancer gene expression data from 69 primary prostate tumors. We define the degree of a node as the number of genes significantly associated with the node and identify hub genes as those with the highest degree. The correlation network was pruned using transcription factor binding information in VisANT (http://visant.bu.edu/) as a biological filter. The reliability of hub genes was determined using a strict permutation test. Separate networks for normal prostate samples, and prostate cancer samples from African Americans (AA) and European Americans (EA) were generated and compared. We found that the same hubs control disease progression in AA and EA networks. Combining AA and EA samples, we generated networks for low low (<7) and high (≥7) Gleason grade tumors. A comparison of their major hubs with those of the network for normal samples identified two types of changes associated with disease: (i) Some hub genes increased their degree in the tumor network compared to their degree in the normal network, suggesting that these genes are associated with gain of regulatory control in cancer (e.g. possible turning on of oncogenes). (ii) Some hubs reduced their degree in the tumor network compared to their degree in the normal network, suggesting that these genes are associated with loss of regulatory control in cancer (e.g. possible loss of tumor suppressor genes). A striking result was that for both AA and EA tumor samples, STAT5a, CEBPB and EGR1 are major hubs that gain neighbors compared to the normal prostate network. Conversely, HIF-lα is a major hub that loses connections in the prostate cancer network compared to the normal prostate network. We also find that the degree of these hubs changes progressively from normal to low grade to high grade disease, suggesting that these hubs are master regulators of prostate cancer and marks disease progression. STAT5a was identified as a central hub, with ~120 neighbors in the prostate cancer network and only 81 neighbors in the normal prostate network. Of the 120 neighbors of STAT5a, 57 are known cancer related genes, known to be involved in functional pathways associated with tumorigenesis. Our method is general and can easily be extended to identify and study networks associated with any two phenotypes.


Asunto(s)
Regulación Neoplásica de la Expresión Génica , Redes Reguladoras de Genes , Análisis de Secuencia por Matrices de Oligonucleótidos/métodos , Neoplasias de la Próstata/metabolismo , Factor de Transcripción STAT5/metabolismo , Proteínas Supresoras de Tumor/metabolismo , Negro o Afroamericano , Algoritmos , Biología Computacional/métodos , Perfilación de la Expresión Génica , Genes Supresores de Tumor , Humanos , Masculino , Neoplasias de la Próstata/etnología , Estados Unidos , Población Blanca
14.
Int J Biochem Cell Biol ; 127: 105827, 2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-32822847

RESUMEN

A number of solid tumors are treated with radiation therapy (RT) as a curative modality. At the same time, for certain types of cancers the applicable doses of RT are not high enough to result in a successful eradication of cancer cells. This is often caused by limited pharmacological tools and strategies to selectively sensitize tumors to RT while simultaneously sparing normal tissues from RT. We present an outline of a novel strategy for RT sensitization of solid tumors utilizing Jak inhibitors. Here, recently published pre-clinical data are reviewed which demonstrate the promising role of Jak inhibition in sensitization of tumors to RT. A wide number of currently approved Jak inhibitors for non-malignant conditions are summarized including Jak inhibitors currently in clinical development. Finally, intersection between Jak/Stat and the levels of serum cytokines are presented and discussed as they relate to susceptibility to RT.


Asunto(s)
Antineoplásicos/uso terapéutico , Citocinas/metabolismo , Reparación del ADN , Quinasas Janus/metabolismo , Neoplasias/radioterapia , Factores de Transcripción STAT/metabolismo , Animales , Ensayos Clínicos como Asunto , Humanos , Quinasas Janus/antagonistas & inhibidores , Neoplasias/tratamiento farmacológico , Neoplasias/genética , Neoplasias/metabolismo , Inhibidores de Proteínas Quinasas/uso terapéutico , Factores de Transcripción STAT/antagonistas & inhibidores , Transducción de Señal/efectos de los fármacos , Transducción de Señal/efectos de la radiación
15.
Mol Cancer Ther ; 19(1): 231-246, 2020 01.
Artículo en Inglés | MEDLINE | ID: mdl-31548294

RESUMEN

The second-generation antiandrogen, enzalutamide, is approved for castrate-resistant prostate cancer (CRPC) and targets androgen receptor (AR) activity in CRPC. Despite initial clinical activity, acquired resistance to enzalutamide arises rapidly and most patients develop terminal disease. Previous work has established Stat5 as a potent inducer of prostate cancer growth. Here, we investigated the significance of Jak2-Stat5 signaling in resistance of prostate cancer to enzalutamide. The levels of Jak2 and Stat5 mRNA, proteins and activation were evaluated in prostate cancer cells, xenograft tumors, and clinical prostate cancers before and after enzalutamide therapy. Jak2 and Stat5 were suppressed by genetic knockdown using lentiviral shRNA or pharmacologic inhibitors. Responsiveness of primary and enzalutamide-resistant prostate cancer to pharmacologic inhibitors of Jak2-Stat5 signaling was assessed in vivo in mice bearing prostate cancer xenograft tumors. Patient-derived prostate cancers were tested for responsiveness to Stat5 blockade as second-line treatment after enzalutamide ex vivo in tumor explant cultures. Enzalutamide-liganded AR induces sustained Jak2-Stat5 phosphorylation in prostate cancer leading to the formation of a positive feed-forward loop, where activated Stat5, in turn, induces Jak2 mRNA and protein levels contributing to further Jak2 activation. Mechanistically, enzalutamide-liganded AR induced Jak2 phosphorylation through a process involving Jak2-specific phosphatases. Stat5 promoted prostate cancer growth during enzalutamide treatment. Jak2-Stat5 inhibition induced death of prostate cancer cells and patient-derived prostate cancers surviving enzalutamide treatment and blocked enzalutamide-resistant tumor growth in mice. This work introduces a novel concept of a pivotal role of hyperactivated Jak2-Stat5 signaling in enzalutamide-resistant prostate cancer, which is readily targetable by Jak2 inhibitors in clinical development.


Asunto(s)
Janus Quinasa 2/antagonistas & inhibidores , Feniltiohidantoína/análogos & derivados , Neoplasias de la Próstata Resistentes a la Castración/tratamiento farmacológico , Animales , Benzamidas , Humanos , Masculino , Ratones , Ratones Desnudos , Nitrilos , Feniltiohidantoína/farmacología , Feniltiohidantoína/uso terapéutico , Neoplasias de la Próstata Resistentes a la Castración/patología , Transducción de Señal , Ensayos Antitumor por Modelo de Xenoinjerto
16.
Cancers (Basel) ; 12(11)2020 Nov 18.
Artículo en Inglés | MEDLINE | ID: mdl-33217941

RESUMEN

Stat5 is of significant interest in the search for new therapeutics for prostate cancer (PC) and hematopoietic disorders. We evaluated the transcriptomic specificity of the Stat5a/b inhibitor IST5-002 (IST5) in PC, defined more closely its mechanisms of action, and investigated the in vivo toxicity of IST5 for further optimization for clinical development. The transcriptomic specificity of IST5 vs. genetic Stat5 knockdown was evaluated by RNA-seq analysis, which showed high similarity with the Pearson correlation coefficient ranging from 0.98-0.99. The potency of IST5 vs. its derivative lacking the phosphate group in suppressing Stat5 was evaluated in two separate but complementary assays. The inhibitory activity of IST5 against kinases was investigated in cell-free assays followed by more focused evaluation in a cell-based assay. IST5 has no specific inhibitory activity against 54 kinases, while suppressing Stat5 phosphorylation and subsequent dimerization in PC cells. The phosphate group was not critical for the biological activity of IST5 in cells. The acute, sub-chronic and chronic toxicity studies of IST5 were carried out in mice. IST5 did not cause any significant toxic effects or changes in the blood profiles. The present work supports further optimization of IST5 for oral bioavailability for clinical development for therapies for solid tumors, hematological and myeloproliferative disorders.

17.
J Med Imaging (Bellingham) ; 7(5): 057501, 2020 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-33062803

RESUMEN

Purpose: Prostate cancer primarily arises from the glandular epithelium. Histomophometric techniques have been used to assess the glandular epithelium in automated detection and classification pipelines; however, they are often rigid in their implementation, and their performance suffers on large datasets where variation in staining, imaging, and preparation is difficult to control. The purpose of this study is to quantify performance of a pixelwise segmentation algorithm that was trained using different combinations of weak and strong stroma, epithelium, and lumen labels in a prostate histology dataset. Approach: We have combined weakly labeled datasets generated using simple morphometric techniques and high-quality labeled datasets from human observers in prostate biopsy cores to train a convolutional neural network for use in whole mount prostate labeling pipelines. With trained networks, we characterize pixelwise segmentation of stromal, epithelium, and lumen (SEL) regions on both biopsy core and whole-mount H&E-stained tissue. Results: We provide evidence that by simply training a deep learning algorithm on weakly labeled data generated from rigid morphometric methods, we can improve the robustness of classification over the morphometric methods used to train the classifier. Conclusions: We show that not only does our approach of combining weak and strong labels for training the CNN improve qualitative SEL labeling within tissue but also the deep learning generated labels are superior for cancer classification in a higher-order algorithm over the morphometrically derived labels it was trained on.

18.
Am J Pathol ; 172(6): 1717-28, 2008 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-18483213

RESUMEN

There are currently no effective therapies for metastatic prostate cancer because the molecular mechanisms that underlie the metastatic spread of primary prostate cancer are unclear. Transcription factor Stat3 is constitutively active in malignant prostate epithelium, and its activation is associated with high histological grade and advanced cancer stage. In this work, we hypothesized that Stat3 stimulates metastatic progression of prostate cancer. We show that Stat3 is active in 77% of lymph node and 67% of bone metastases of clinical human prostate cancers. Importantly, adenoviral gene delivery of wild-type Stat3 (AdWTStat3) to DU145 human prostate cancer cells increased the number of lung metastases by 33-fold in an experimental metastasis assay compared with controls. Using various methods to inhibit Stat3, we demonstrated that Stat3 promotes human prostate cancer cell migration. Stat3 induced the formation of lamellipodia in both DU145 and PC-3 cells, further supporting the concept that Stat3 promotes a migratory phenotype of human prostate cancer cells. Moreover, Stat3 caused the rearrangement of cytoplasmic actin stress fibers and microtubules in both DU145 and PC-3 cells. Finally, inhibition of the Jak2 tyrosine kinase decreased both activation of Stat3 and prostate cancer cell motility. Collectively, these data indicate that transcription factor Stat3 is involved in metastatic behavior of human prostate cancer cells and may provide a therapeutic target to prevent metastatic spread of primary prostate cancer.


Asunto(s)
Neoplasias Óseas/secundario , Neoplasias Pulmonares/secundario , Neoplasias de la Próstata/patología , Factor de Transcripción STAT3/fisiología , Citoesqueleto de Actina/fisiología , Animales , Neoplasias Óseas/metabolismo , Línea Celular Tumoral , Movimiento Celular , Humanos , Janus Quinasa 2/antagonistas & inhibidores , Janus Quinasa 2/metabolismo , Neoplasias Pulmonares/metabolismo , Metástasis Linfática , Masculino , Ratones , Ratones Desnudos , Recurrencia Local de Neoplasia , Trasplante de Neoplasias , Neoplasias de la Próstata/metabolismo , Seudópodos/patología , Factor de Transcripción STAT3/antagonistas & inhibidores , Transducción de Señal , Proteínas de Unión al GTP rho/metabolismo
19.
Clin Cancer Res ; 14(5): 1317-24, 2008 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-18316550

RESUMEN

PURPOSE: Signal transducer and activator of transcription 5a/b (Stat5a/b) is the key mediator of prolactin effects in prostate cancer cells via activation of Janus-activated kinase 2. Prolactin is a locally produced growth factor in human prostate cancer. Prolactin protein expression and constitutive activation of Stat5a/b are associated with high histologic grade of clinical prostate cancer. Moreover, activation of Stat5a/b in primary prostate cancer predicts early disease recurrence. Here, we inhibited Stat5a/b by several different methodologic approaches. Our goal was to establish a proof of principle that Stat5a/b is critical for prostate cancer cell viability in vitro and for prostate tumor growth in vivo. EXPERIMENTAL DESIGN: We inhibited Stat5a/b protein expression by antisense oligonucleotides or RNA interference and transcriptional activity of Stat5a/b by adenoviral expression of a dominant-negative mutant of Stat5a/b in prostate cancer cells in culture. Moreover, Stat5a/b activity was suppressed in human prostate cancer xenograft tumors in nude mice. Stat5a/b regulation of Bcl-X(L) and cyclin D1 protein levels was shown by antisense suppression of Stat5a/b protein expression followed by Western blotting. RESULTS AND CONCLUSIONS: We show here that inhibition of Stat5a/b by antisense oligonucleotides, RNA interference, or adenoviral expression of dominant-negative Stat5a/b effectively kills prostate cancer cells. Moreover, we show that Stat5a/b is critical for human prostate cancer xenograft growth in nude mice. The effects of Stat5a/b on the viability of prostate cancer cells involve Stat5a/b regulation of Bcl-X(L) and cyclin D1 protein levels but not the expression or activation of Stat3. This work establishes Stat5a/b as a therapeutic target protein for prostate cancer. Pharmacologic inhibition of Stat5a/b in prostate cancer can be achieved by small-molecule inhibitors of transactivation, dimerization, or DNA binding of Stat5a/b.


Asunto(s)
Regulación Neoplásica de la Expresión Génica , Regiones Promotoras Genéticas/genética , Neoplasias de la Próstata/genética , Neoplasias de la Próstata/patología , Factor de Transcripción STAT5/genética , Transcripción Genética , Adenoviridae/genética , Animales , Western Blotting , Supervivencia Celular , Ciclina D , Ciclinas/metabolismo , Ensayo de Inmunoadsorción Enzimática , Genes Dominantes , Humanos , Masculino , Ratones , Ratones Desnudos , Oligonucleótidos Antisentido/farmacología , Neoplasias de la Próstata/metabolismo , ARN Interferente Pequeño/farmacología , Factor de Transcripción STAT5/antagonistas & inhibidores , Factor de Transcripción STAT5/metabolismo , Transducción de Señal , Tasa de Supervivencia , Células Tumorales Cultivadas , Ensayo de Tumor de Célula Madre , Ensayos Antitumor por Modelo de Xenoinjerto , Proteína bcl-X/metabolismo
20.
Clin Cancer Res ; 14(19): 6062-72, 2008 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-18829484

RESUMEN

PURPOSE: One of the major obstacles in understanding the molecular mechanisms underlying the transition of prostate cancer growth from androgen dependency to a hormone-refractory state is the lack of androgen-regulated and tumorigenic human prostate cancer cell lines. EXPERIMENTAL DESIGN: We have established and characterized a new human prostate cancer cell line, CWR22Pc, derived from the primary CWR22 human prostate xenograft tumors. RESULTS: The growth of CWR22Pc cells is induced markedly by dihydrotestosterone, and CWR22Pc cells express high levels of androgen receptor (AR) and prostate-specific antigen (PSA). Importantly, PSA expression in CWR22Pc cells is regulated by androgens. Stat5a/b, Stat3, Akt, and mitogen-activated protein kinase were constitutively active or cytokine inducible in CWR22Pc cells. The AR in CWR22Pc cells contains the H874Y mutation, but not the exon 3 duplication or other mutations. When inoculated subcutaneously into dihydrotestosterone-supplemented castrated nude mice, large tumors formed rapidly in 20 of 20 mice, whereas no tumors developed in mice without circulating dihydrotestosterone. Moreover, the serum PSA levels correlated with the tumor volumes. When androgens were withdrawn from the CWR22Pc tumors grown in nude mice, the tumors initially shrank but regrew back as androgen-independent tumors. CONCLUSIONS: This androgen-regulated and tumorigenic human prostate cancer cell line provides a valuable tool for studies on androgen regulation of prostate cancer cells and on the molecular mechanisms taking place in growth promotion of prostate cancer when androgens are withdrawn from the growth environment. CWR22Pc cells also provide a model system for studies on the regulation of transcriptional activity of mutated H874YAR in a prostate cancer cell context.


Asunto(s)
Andrógenos/metabolismo , Regulación Neoplásica de la Expresión Génica , Neoplasias de la Próstata/genética , Neoplasias de la Próstata/metabolismo , Animales , Línea Celular Tumoral , Supervivencia Celular , Citogenética/métodos , Humanos , Masculino , Ratones , Ratones Desnudos , Mutación , Trasplante de Neoplasias , Hibridación de Ácido Nucleico , Antígeno Prostático Específico/biosíntesis , Transducción de Señal
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA