Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
1.
J Neurosci ; 36(34): 8936-46, 2016 08 24.
Artículo en Inglés | MEDLINE | ID: mdl-27559174

RESUMEN

UNLABELLED: Alterations in cAMP signaling are thought to contribute to neurocognitive and neuropsychiatric disorders. Members of the cAMP-specific phosphodiesterase 4 (PDE4) family, which contains >25 different isoforms, play a key role in determining spatial cAMP degradation so as to orchestrate compartmentalized cAMP signaling in cells. Each isoform binds to a different set of protein complexes through its unique N-terminal domain, thereby leading to targeted degradation of cAMP in specific intracellular compartments. However, the functional role of specific compartmentalized PDE4 isoforms has not been examined in vivo Here, we show that increasing protein levels of the PDE4A5 isoform in mouse hippocampal excitatory neurons impairs a long-lasting form of hippocampal synaptic plasticity and attenuates hippocampus-dependent long-term memories without affecting anxiety. In contrast, viral expression of a truncated version of PDE4A5, which lacks the unique N-terminal targeting domain, does not affect long-term memory. Further, overexpression of the PDE4A1 isoform, which targets a different subset of signalosomes, leaves memory undisturbed. Fluorescence resonance energy transfer sensor-based cAMP measurements reveal that the full-length PDE4A5, in contrast to the truncated form, hampers forskolin-mediated increases in neuronal cAMP levels. Our study indicates that the unique N-terminal localization domain of PDE4A5 is essential for the targeting of specific cAMP-dependent signaling underlying synaptic plasticity and memory. The development of compounds to disrupt the compartmentalization of individual PDE4 isoforms by targeting their unique N-terminal domains may provide a fruitful approach to prevent cognitive deficits in neuropsychiatric and neurocognitive disorders that are associated with alterations in cAMP signaling. SIGNIFICANCE STATEMENT: Neurons exhibit localized signaling processes that enable biochemical cascades to be activated selectively in specific subcellular compartments. The phosphodiesterase 4 (PDE4) family coordinates the degradation of cAMP, leading to the local attenuation of cAMP-dependent signaling pathways. Sleep deprivation leads to increased hippocampal expression of the PDE4A5 isoform. Here, we explored whether PDE4A5 overexpression mimics behavioral and synaptic plasticity phenotypes associated with sleep deprivation. Viral expression of PDE4A5 in hippocampal neurons impairs long-term potentiation and attenuates the formation of hippocampus-dependent long-term memories. Our findings suggest that PDE4A5 is a molecular constraint on cognitive processes and may contribute to the development of novel therapeutic approaches to prevent cognitive deficits in neuropsychiatric and neurocognitive disorders that are associated with alterations in cAMP signaling.


Asunto(s)
Fosfodiesterasas de Nucleótidos Cíclicos Tipo 4/metabolismo , Hipocampo/citología , Hipocampo/fisiología , Memoria a Largo Plazo/fisiología , Plasticidad Neuronal/fisiología , Neuronas/fisiología , Análisis de Varianza , Animales , Proteína Quinasa Tipo 2 Dependiente de Calcio Calmodulina/genética , Proteína Quinasa Tipo 2 Dependiente de Calcio Calmodulina/metabolismo , Células Cultivadas , Colforsina/farmacología , Condicionamiento Clásico/fisiología , AMP Cíclico/metabolismo , Fosfodiesterasas de Nucleótidos Cíclicos Tipo 4/genética , Estimulación Eléctrica , Ensayo de Inmunoadsorción Enzimática , Miedo , Transferencia Resonante de Energía de Fluorescencia , Proteína Ácida Fibrilar de la Glía/metabolismo , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Plasticidad Neuronal/genética , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Ratas , Reconocimiento en Psicología/fisiología , Transducción de Señal/genética , Transducción Genética , Vasodilatadores/farmacología
2.
J Biol Chem ; 291(44): 23257-23267, 2016 10 28.
Artículo en Inglés | MEDLINE | ID: mdl-27605670

RESUMEN

Dopamine, a key striatal neuromodulator, increases synaptic strength by promoting surface insertion and/or retention of AMPA receptors (AMPARs). This process is mediated by the phosphorylation of the GluA1 subunit of AMPAR by cyclic nucleotide-dependent kinases, making cyclic nucleotide phosphodiesterases (PDEs) potential regulators of synaptic strength. In this study, we examined the role of phosphodiesterase 2 (PDE2), a medium spiny neuron-enriched and cGMP-activated PDE, in AMPAR trafficking. We found that inhibiting PDE2 resulted in enhancement of dopamine-induced surface GluA1 expression in dopamine receptor 1-expressing medium spiny neurons. Using pharmacological and genetic approaches, we found that inhibition of PDE1 resulted in a decrease in surface AMPAR levels because of the allosteric activation of PDE2. The cross-regulation of PDE1 and PDE2 activities results in counterintuitive control of surface AMPAR expression, making it possible to regulate the directionality and magnitude of AMPAR trafficking.


Asunto(s)
Cuerpo Estriado/metabolismo , Fosfodiesterasas de Nucleótidos Cíclicos Tipo 1/genética , Fosfodiesterasas de Nucleótidos Cíclicos Tipo 2/genética , Dopamina/metabolismo , Receptores AMPA/metabolismo , Ácido alfa-Amino-3-hidroxi-5-metil-4-isoxazol Propiónico/metabolismo , Regulación Alostérica , Animales , Fosfodiesterasas de Nucleótidos Cíclicos Tipo 1/metabolismo , Fosfodiesterasas de Nucleótidos Cíclicos Tipo 2/metabolismo , Humanos , Ratones , Ratones Endogámicos C57BL , Transporte de Proteínas , Receptores AMPA/genética
3.
Adv Neurobiol ; 17: 3-14, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28956327

RESUMEN

A large number of neuromodulators activate G-protein coupled receptors (GPCRs) and mediate their cellular actions via the regulation of intracellular cAMP, the small highly diffusible second messenger. In fact, in the same neuron several different GPCRs can regulate cAMP with seemingly identical timecourses that give rise to distinct signaling outcomes, suggesting that cAMP does not have equivalent access to all its downstream effectors and may exist within defined intracellular pools or domains. cAMP compartmentalization is the process that allows the neuron to differentially interpret these various intracellular cAMP signals into cellular response. The molecular mechanisms that give rise to cAMP compartmentalization are not fully understood, but it is thought that phosphodiesterases (PDEs), the enzymes that degrade cAMP, significantly contribute to this process. PDEs, as the sole mechanism of signal termination for cAMP, hold great promise as therapeutic targets for pathologies that are due to the dysregulation of intracellular cAMP signaling. Due to their diverse catalytic activity, regulation and localization each PDE subtype expressed in a given neuron may have a distinct role on downstream signaling.


Asunto(s)
AMP Cíclico/metabolismo , Neuronas/metabolismo , Hidrolasas Diéster Fosfóricas/metabolismo , Sistemas de Mensajero Secundario , Humanos , Transducción de Señal
4.
Nat Commun ; 8(1): 2145, 2017 12 15.
Artículo en Inglés | MEDLINE | ID: mdl-29247198

RESUMEN

The shape of a cell within tissues can represent the history of chemical and physical signals that it encounters, but can information from cell shape regulate cellular phenotype independently? Using optimal control theory to constrain reaction-diffusion schemes that are dependent on different surface-to-volume relationships, we find that information from cell shape can be resolved from mechanical signals. We used microfabricated 3-D biomimetic chips to validate predictions that shape-sensing occurs in a tension-independent manner through integrin ß3 signaling pathway in human kidney podocytes and smooth muscle cells. Differential proteomics and functional ablation assays indicate that integrin ß3 is critical in transduction of shape signals through ezrin-radixin-moesin (ERM) family. We used experimentally determined diffusion coefficients and experimentally validated simulations to show that shape sensing is an emergent cellular property enabled by multiple molecular characteristics of integrin ß3. We conclude that 3-D cell shape information, transduced through tension-independent mechanisms, can regulate phenotype.


Asunto(s)
Forma de la Célula/fisiología , Mecanotransducción Celular/fisiología , Miocitos del Músculo Liso/fisiología , Podocitos/fisiología , Estrés Mecánico , Animales , Animales Recién Nacidos , Células COS , Forma de la Célula/genética , Células Cultivadas , Chlorocebus aethiops , Proteínas del Citoesqueleto/metabolismo , Fibroblastos/citología , Fibroblastos/metabolismo , Fibroblastos/fisiología , Humanos , Integrina beta3/genética , Integrina beta3/metabolismo , Mecanotransducción Celular/genética , Proteínas de la Membrana/metabolismo , Proteínas de Microfilamentos/metabolismo , Miocitos del Músculo Liso/citología , Miocitos del Músculo Liso/metabolismo , Podocitos/citología , Podocitos/metabolismo , Proteómica/métodos , Ratas
5.
Methods Mol Biol ; 1294: 203-17, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-25783888

RESUMEN

Despite the growing evidence defining the cAMP signaling network as a master regulator of cellular function in a number of tissues, regulatory feedback loops, signal compartmentalization, as well as cross-talk with other signaling pathways make understanding the emergent properties of cAMP cellular action a daunting task. Dynamical models of signaling that combine quantitative rigor with molecular details can contribute valuable mechanistic insight into the complexity of intracellular cAMP signaling by complementing and guiding experimental efforts. In this chapter, we review the development of cAMP computational models. We describe how features of the cAMP network can be represented and review the types of experimental data useful in modeling cAMP signaling. We also compile a list of published cAMP models that can aid in the development of novel dynamical models of cAMP signaling.


Asunto(s)
Biología Computacional/métodos , AMP Cíclico/metabolismo , Modelos Biológicos , Transducción de Señal
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA