Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 48
Filtrar
1.
Cell ; 181(4): 922-935.e21, 2020 05 14.
Artículo en Inglés | MEDLINE | ID: mdl-32315617

RESUMEN

Single-cell RNA sequencing (scRNA-seq) provides a leap forward in resolving cellular diversity and developmental trajectories but fails to comprehensively delineate the spatial organization and precise cellular makeup of individual embryos. Here, we reconstruct from scRNA-seq and light sheet imaging data a canonical digital embryo that captures the genome-wide gene expression trajectory of every single cell at every cell division in the 18 lineages up to gastrulation in the ascidian Phallusia mammillata. By using high-coverage scRNA-seq, we devise a computational framework that stratifies single cells of individual embryos into cell types without prior knowledge. Unbiased transcriptome data analysis mapped each cell's physical position and lineage history, yielding the complete history of gene expression at the genome-wide level for every single cell in a developing embryo. A comparison of individual embryos reveals both extensive reproducibility between symmetric embryo sides and a large inter-embryonic variability due to small differences in embryogenesis timing.


Asunto(s)
Perfilación de la Expresión Génica/métodos , Análisis de Secuencia de ARN/métodos , Análisis de la Célula Individual/métodos , Animales , Linaje de la Célula/genética , Cordados/genética , Biología Computacional/métodos , Gastrulación/genética , Regulación del Desarrollo de la Expresión Génica/genética , Reproducibilidad de los Resultados , Transcriptoma/genética , Urocordados/genética
2.
Mol Cell ; 82(14): 2666-2680.e11, 2022 07 21.
Artículo en Inglés | MEDLINE | ID: mdl-35709751

RESUMEN

Differentiating stem cells must coordinate their metabolism and fate trajectories. Here, we report that the catalytic activity of the glycolytic enzyme Enolase 1 (ENO1) is directly regulated by RNAs leading to metabolic rewiring in mouse embryonic stem cells (mESCs). We identify RNA ligands that specifically inhibit ENO1's enzymatic activity in vitro and diminish glycolysis in cultured human cells and mESCs. Pharmacological inhibition or RNAi-mediated depletion of the protein deacetylase SIRT2 increases ENO1's acetylation and enhances its RNA binding. Similarly, induction of mESC differentiation leads to increased ENO1 acetylation, enhanced RNA binding, and inhibition of glycolysis. Stem cells expressing mutant forms of ENO1 that escape or hyper-activate this regulation display impaired germ layer differentiation. Our findings uncover acetylation-driven riboregulation of ENO1 as a physiological mechanism of glycolytic control and of the regulation of stem cell differentiation. Riboregulation may represent a more widespread principle of biological control.


Asunto(s)
Glucólisis , Fosfopiruvato Hidratasa , Animales , Diferenciación Celular , Células Madre Embrionarias/metabolismo , Glucólisis/fisiología , Humanos , Ratones , Células Madre Embrionarias de Ratones/metabolismo , Fosfopiruvato Hidratasa/genética , Fosfopiruvato Hidratasa/metabolismo , ARN/metabolismo
3.
EMBO Rep ; 20(12): e47999, 2019 12 05.
Artículo en Inglés | MEDLINE | ID: mdl-31668010

RESUMEN

Spatio-temporal regulation of signalling pathways plays a key role in generating diverse responses during the development of multicellular organisms. The role of signal dynamics in transferring signalling information in vivo is incompletely understood. Here, we employ genome engineering in Drosophila melanogaster to generate a functional optogenetic allele of the Notch ligand Delta (opto-Delta), which replaces both copies of the endogenous wild-type locus. Using clonal analysis, we show that optogenetic activation blocks Notch activation through cis-inhibition in signal-receiving cells. Signal perturbation in combination with quantitative analysis of a live transcriptional reporter of Notch pathway activity reveals differential tissue- and cell-scale regulatory modes. While at the tissue-level the duration of Notch signalling determines the probability with which a cellular response will occur, in individual cells Notch activation acts through a switch-like mechanism. Thus, time confers regulatory properties to Notch signalling that exhibit integrative digital behaviours during tissue differentiation.


Asunto(s)
Proteínas de Drosophila/metabolismo , Drosophila melanogaster/metabolismo , Péptidos y Proteínas de Señalización Intracelular/antagonistas & inhibidores , Proteínas de la Membrana/antagonistas & inhibidores , Receptores Notch/metabolismo , Animales , Animales Modificados Genéticamente , Diferenciación Celular , Proteínas de Drosophila/genética , Drosophila melanogaster/genética , Drosophila melanogaster/crecimiento & desarrollo , Genes de Insecto , Péptidos y Proteínas de Señalización Intracelular/genética , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Mutación , Optogenética , Fenotipo , Receptores Notch/genética , Transducción de Señal , Análisis Espacio-Temporal
4.
Mol Syst Biol ; 15(12): e9043, 2019 12.
Artículo en Inglés | MEDLINE | ID: mdl-31885203

RESUMEN

During embryogenesis, differentiation of pluripotent cells into somatic cell types depends both on signaling cues and intrinsic gene expression programs. While the molecular underpinnings of pluripotency are well mapped, much less is known on how mouse embryonic stem cells (mESCs) differentiate. Using RNA-Seq profiling during specification to the three germ layers, we showed that mESCs switched on condition-specific gene expression programs from the onset of the differentiation procedure and that primed pluripotency did not constitute an obligatory intermediate state. After inferring the gene network controlling mESC differentiation, we tested the role of the highly connected nodes by deleting them in a triple knock-in Sox1-Brachyury-Eomes mESC line reporting on ectoderm, mesoderm, and endoderm fates. This led to the identification of regulators of mESC differentiation that acted at several levels: Sp1 as a global break on differentiation, Nr5a2 controlling ectoderm specification, and notably Fos:Jun and Zfp354c as opposite switches between ectoderm and mesendoderm fate.


Asunto(s)
Ectodermo/crecimiento & desarrollo , Perfilación de la Expresión Génica/métodos , Redes Reguladoras de Genes , Mesodermo/crecimiento & desarrollo , Células Madre Embrionarias de Ratones/citología , Animales , Diferenciación Celular , Células Cultivadas , Ectodermo/química , Desarrollo Embrionario , Proteínas Fetales/genética , Regulación del Desarrollo de la Expresión Génica , Técnicas de Inactivación de Genes , Mesodermo/química , Ratones , Células Madre Embrionarias de Ratones/química , Factores de Transcripción SOXB1/genética , Análisis de Secuencia de ARN , Proteínas de Dominio T Box/genética
5.
Hum Mol Genet ; 25(11): 2168-2181, 2016 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-27005422

RESUMEN

Spinal muscular atrophy (SMA) is an autosomal-recessive pediatric neurodegenerative disease characterized by selective loss of spinal motor neurons. It is caused by mutation in the survival of motor neuron 1, SMN1, gene and leads to loss of function of the full-length SMN protein. microRNAs (miRNAs) are small RNAs that are involved in post-transcriptional regulation of gene expression. Prior studies have implicated miRNAs in the pathogenesis of motor neuron disease. We hypothesized that motor neuron-specific miRNA expression changes are involved in their selective vulnerability in SMA. Therefore, we sought to determine the effect of SMN loss on miRNAs and their target mRNAs in spinal motor neurons. We used microarray and RNAseq to profile both miRNA and mRNA expression in primary spinal motor neuron cultures after acute SMN knockdown. By integrating the miRNA:mRNA profiles, a number of dysregulated miRNAs were identified with enrichment in differentially expressed putative mRNA targets. miR-431 expression was highly increased, and a number of its putative mRNA targets were significantly downregulated in motor neurons after SMN loss. Further, we found that miR-431 regulates motor neuron neurite length by targeting several molecules previously identified to play a role in motor neuron axon outgrowth, including chondrolectin. Together, our findings indicate that cell-type-specific dysregulation of miR-431 plays a role in the SMA motor neuron phenotype.


Asunto(s)
MicroARNs/genética , Atrofia Muscular Espinal/genética , Proteína 1 para la Supervivencia de la Neurona Motora/genética , Animales , Modelos Animales de Enfermedad , Regulación de la Expresión Génica , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , Ratones , Ratones Noqueados , MicroARNs/biosíntesis , Análisis por Micromatrices , Neuronas Motoras/metabolismo , Neuronas Motoras/patología , Atrofia Muscular Espinal/fisiopatología , Neuritas/metabolismo , Neuritas/patología
6.
Hum Mol Genet ; 23(23): 6318-31, 2014 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-25055867

RESUMEN

Reduced expression of SMN protein causes spinal muscular atrophy (SMA), a neurodegenerative disorder leading to motor neuron dysfunction and loss. However, the molecular mechanisms by which SMN regulates neuronal dysfunction are not fully understood. Here, we report that reduced SMN protein level alters miRNA expression and distribution in neurons. In particular, miR-183 levels are increased in neurites of SMN-deficient neurons. We demonstrate that miR-183 regulates translation of mTor via direct binding to its 3' UTR. Interestingly, local axonal translation of mTor is reduced in SMN-deficient neurons, and this can be recovered by miR-183 inhibition. Finally, inhibition of miR-183 expression in the spinal cord of an SMA mouse model prolongs survival and improves motor function of Smn-mutant mice. Together, these observations suggest that axonal miRNAs and the mTOR pathway are previously unidentified molecular mechanisms contributing to SMA pathology.


Asunto(s)
Axones/metabolismo , MicroARNs/metabolismo , Biosíntesis de Proteínas , Proteína 1 para la Supervivencia de la Neurona Motora/metabolismo , Serina-Treonina Quinasas TOR/biosíntesis , Regiones no Traducidas 3' , Animales , MicroARNs/genética , Atrofia Muscular Espinal/metabolismo , Atrofia Muscular Espinal/patología , Neuronas/metabolismo , Cultivo Primario de Células , ARN Mensajero/metabolismo , Ratas Sprague-Dawley , Proteína 1 para la Supervivencia de la Neurona Motora/genética , Serina-Treonina Quinasas TOR/genética
7.
Mol Syst Biol ; 11(12): 850, 2015 Dec 21.
Artículo en Inglés | MEDLINE | ID: mdl-26690966

RESUMEN

A stem cell's decision to self-renew or differentiate is thought to critically depend on signaling cues provided by its environment. It is unclear whether stem cells have the intrinsic capacity to control their responsiveness to environmental signals that can be fluctuating and noisy. Using a novel single-cell microRNA activity reporter, we show that miR-142 is bimodally expressed in embryonic stem cells, creating two states indistinguishable by pluripotency markers. A combination of modeling and quantitative experimental data revealed that mESCs switch stochastically between the two miR-142 states. We find that cells with high miR-142 expression are irresponsive to differentiation signals while cells with low miR-142 expression can respond to differentiation cues. We elucidate the molecular mechanism underpinning the bimodal regulation of miR-142 as a double-negative feedback loop between miR-142 and KRAS/ERK signaling and derive a quantitative description of this bistable system. miR-142 switches the activation status of key intracellular signaling pathways thereby locking cells in an undifferentiated state. This reveals a novel mechanism to maintain a stem cell reservoir buffered against fluctuating signaling environments.


Asunto(s)
MicroARNs/genética , MicroARNs/metabolismo , Células Madre Embrionarias de Ratones/citología , Proteínas Proto-Oncogénicas p21(ras)/metabolismo , Animales , Diferenciación Celular , Células Cultivadas , Retroalimentación Fisiológica , Regulación del Desarrollo de la Expresión Génica , Sistema de Señalización de MAP Quinasas , Ratones , Modelos Genéticos , Células Madre Embrionarias de Ratones/metabolismo , Análisis de la Célula Individual
8.
Proc Natl Acad Sci U S A ; 109(3): 739-44, 2012 Jan 17.
Artículo en Inglés | MEDLINE | ID: mdl-22228306

RESUMEN

Control of cell proliferation is a fundamental aspect of tissue physiology central to morphogenesis, wound healing, and cancer. Although many of the molecular genetic factors are now known, the system level regulation of growth is still poorly understood. A simple form of inhibition of cell proliferation is encountered in vitro in normally differentiating epithelial cell cultures and is known as "contact inhibition." The study presented here provides a quantitative characterization of contact inhibition dynamics on tissue-wide and single cell levels. Using long-term tracking of cultured Madin-Darby canine kidney cells we demonstrate that inhibition of cell division in a confluent monolayer follows inhibition of cell motility and sets in when mechanical constraint on local expansion causes divisions to reduce cell area. We quantify cell motility and cell cycle statistics in the low density confluent regime and their change across the transition to epithelial morphology which occurs with increasing cell density. We then study the dynamics of cell area distribution arising through reductive division, determine the average mitotic rate as a function of cell size, and demonstrate that complete arrest of mitosis occurs when cell area falls below a critical value. We also present a simple computational model of growth mechanics which captures all aspects of the observed behavior. Our measurements and analysis show that contact inhibition is a consequence of mechanical interaction and constraint rather than interfacial contact alone, and define quantitative phenotypes that can guide future studies of molecular mechanisms underlying contact inhibition.


Asunto(s)
Inhibición de Contacto , Células Epiteliales/citología , Análisis de la Célula Individual/métodos , Animales , Adhesión Celular , Movimiento Celular , Proliferación Celular , Ensayo de Unidades Formadoras de Colonias , Simulación por Computador , Perros , Modelos Biológicos
9.
Life Sci Alliance ; 7(5)2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38418090

RESUMEN

During development, different tissues acquire distinct lipotypes that are coupled to tissue function and homeostasis. In the brain, where complex membrane trafficking systems are required for neural function, specific glycerophospholipids, sphingolipids, and cholesterol are highly abundant, and defective lipid metabolism is associated with abnormal neural development and neurodegenerative disease. Notably, the production of specific lipotypes requires appropriate programming of the underlying lipid metabolic machinery during development, but when and how this occurs is unclear. To address this, we used high-resolution MSALL lipidomics to generate an extensive time-resolved resource of mouse brain development covering early embryonic and postnatal stages. This revealed a distinct bifurcation in the establishment of the neural lipotype, whereby the canonical lipid biomarkers 22:6-glycerophospholipids and 18:0-sphingolipids begin to be produced in utero, whereas cholesterol attains its characteristic high levels after birth. Using the resource as a reference, we next examined to which extent this can be recapitulated by commonly used protocols for in vitro neuronal differentiation of stem cells. Here, we found that the programming of the lipid metabolic machinery is incomplete and that stem cell-derived cells can only partially acquire a neural lipotype when the cell culture media is supplemented with brain-specific lipid precursors. Altogether, our work provides an extensive lipidomic resource for early mouse brain development and highlights a potential caveat when using stem cell-derived neuronal progenitors for mechanistic studies of lipid biochemistry, membrane biology and biophysics, which nonetheless can be mitigated by further optimizing in vitro differentiation protocols.


Asunto(s)
Enfermedades Neurodegenerativas , Ratones , Animales , Células Madre/metabolismo , Neuronas/metabolismo , Esfingolípidos/metabolismo , Colesterol , Glicerofosfolípidos/metabolismo
10.
BMC Genomics ; 13: 209, 2012 May 30.
Artículo en Inglés | MEDLINE | ID: mdl-22646746

RESUMEN

BACKGROUND: The biphasic life cycle with pelagic larva and benthic adult stages is widely observed in the animal kingdom, including the Porifera (sponges), which are the earliest branching metazoans. The demosponge, Amphimedon queenslandica, undergoes metamorphosis from a free-swimming larva into a sessile adult that bears no morphological resemblance to other animals. While the genome of A. queenslandica contains an extensive repertoire of genes very similar to that of complex bilaterians, it is as yet unclear how this is drawn upon to coordinate changing morphological features and ecological demands throughout the sponge life cycle. RESULTS: To identify genome-wide events that accompany the pelagobenthic transition in A. queenslandica, we compared global gene expression profiles at four key developmental stages by sequencing the poly(A) transcriptome using SOLiD technology. Large-scale changes in transcription were observed as sponge larvae settled on the benthos and began metamorphosis. Although previous systematics suggest that the only clear homology between Porifera and other animals is in the embryonic and larval stages, we observed extensive use of genes involved in metazoan-associated cellular processes throughout the sponge life cycle. Sponge-specific transcripts are not over-represented in the morphologically distinct adult; rather, many genes that encode typical metazoan features, such as cell adhesion and immunity, are upregulated. Our analysis further revealed gene families with candidate roles in competence, settlement, and metamorphosis in the sponge, including transcription factors, G-protein coupled receptors and other signaling molecules. CONCLUSIONS: This first genome-wide study of the developmental transcriptome in an early branching metazoan highlights major transcriptional events that accompany the pelagobenthic transition and point to a network of regulatory mechanisms that coordinate changes in morphology with shifting environmental demands. Metazoan developmental and structural gene orthologs are well-integrated into the expression profiles at every stage of sponge development, including the adult. The utilization of genes involved in metazoan-associated processes throughout sponge development emphasizes the potential of the genome of the last common ancestor of animals to generate phenotypic complexity.


Asunto(s)
Perfilación de la Expresión Génica , Genoma , Poríferos/genética , Animales , Estudio de Asociación del Genoma Completo , Larva/genética , Larva/metabolismo , Poríferos/crecimiento & desarrollo , Poríferos/metabolismo , Proteínas Quinasas/genética , Proteínas Quinasas/metabolismo , ARN/metabolismo , Receptores Acoplados a Proteínas G/genética , Receptores Acoplados a Proteínas G/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
11.
Stem Cell Reports ; 17(2): 231-244, 2022 02 08.
Artículo en Inglés | MEDLINE | ID: mdl-35063128

RESUMEN

The formation of the primitive streak (PS) and the subsequent induction of neuroectoderm are hallmarks of gastrulation. Combining an in vitro reconstitution of this process based on mouse embryonic stem cells (mESCs) with a collection of knockouts in reporter mESC lines, we identified retinoic acid (RA) as a critical mediator of early neural induction triggered by TGFß or Wnt signaling inhibition. Single-cell RNA sequencing analysis captured the temporal unfolding of cell type diversification, up to the emergence of somite and neural fates. In the absence of the RA-synthesizing enzyme Aldh1a2, a sensitive RA reporter revealed a hitherto unidentified residual RA signaling that specified neural fate. Genetic evidence showed that the RA-degrading enzyme Cyp26a1 protected PS-like cells from neural induction, even in the absence of TGFß and Wnt antagonists. Overall, we characterized a multi-layered control of RA levels that regulates early neural differentiation in an in vitro PS-like system.


Asunto(s)
Diferenciación Celular/efectos de los fármacos , Neuronas/metabolismo , Tretinoina/farmacología , Familia de Aldehído Deshidrogenasa 1/deficiencia , Familia de Aldehído Deshidrogenasa 1/genética , Animales , Benzamidas/farmacología , Dioxoles/farmacología , Ectodermo/citología , Ectodermo/metabolismo , Ratones , Células Madre Embrionarias de Ratones/citología , Células Madre Embrionarias de Ratones/efectos de los fármacos , Células Madre Embrionarias de Ratones/metabolismo , Neuronas/citología , Línea Primitiva/citología , Línea Primitiva/metabolismo , Retinal-Deshidrogenasa/deficiencia , Retinal-Deshidrogenasa/genética , Ácido Retinoico 4-Hidroxilasa/metabolismo , Transducción de Señal/efectos de los fármacos , Tretinoina/metabolismo
12.
J Neurosci ; 30(45): 14931-6, 2010 Nov 10.
Artículo en Inglés | MEDLINE | ID: mdl-21068294

RESUMEN

MicroRNAs are a class of small RNA regulators that are involved in numerous cellular processes, including development, proliferation, differentiation, and plasticity. The emerging concept is that microRNAs play a central role in controlling the balance between stem cell self-renewal and fate determination by regulating the expression of stem cell regulators. This review will highlight recent advances in the regulation of neural stem cell self-renewal and neurogenesis by microRNAs. It will cover microRNA functions during the entire process of neurogenesis, from neural stem cell self-renewal and fate determination to neuronal maturation, synaptic formation, and plasticity. The interplay between microRNAs and both cell-intrinsic and -extrinsic stem cell players, including transcription factors, epigenetic regulators, and extrinsic signaling molecules will be discussed. This is a summary of the topics covered in the mini-symposium on microRNA regulation of neural stem cells and neurogenesis in SFN 2010 and is not meant to be a comprehensive review of the subject.


Asunto(s)
MicroARNs/fisiología , Células-Madre Neurales/fisiología , Neurogénesis/fisiología , Animales , Epigénesis Genética/fisiología , Sinapsis/fisiología
13.
PLoS Comput Biol ; 6(11): e1000997, 2010 Nov 11.
Artículo en Inglés | MEDLINE | ID: mdl-21085645

RESUMEN

The multifactorial nature of disease motivates the use of systems-level analyses to understand their pathology. We used a systems biology approach to study tau aggregation, one of the hallmark features of Alzheimer's disease. A mathematical model was constructed to capture the current state of knowledge concerning tau's behavior and interactions in cells. The model was implemented in silico in the form of ordinary differential equations. The identifiability of the model was assessed and parameters were estimated to generate two cellular states: a population of solutions that corresponds to normal tau homeostasis and a population of solutions that displays aggregation-prone behavior. The model of normal tau homeostasis was robust to perturbations, and disturbances in multiple processes were required to achieve an aggregation-prone state. The aggregation-prone state was ultrasensitive to perturbations in diverse subsets of networks. Tau aggregation requires that multiple cellular parameters are set coordinately to a set of values that drive pathological assembly of tau. This model provides a foundation on which to build and increase our understanding of the series of events that lead to tau aggregation and may ultimately be used to identify critical intervention points that can direct the cell away from tau aggregation to aid in the treatment of tau-mediated (or related) aggregation diseases including Alzheimer's.


Asunto(s)
Modelos Biológicos , Biología de Sistemas/métodos , Proteínas tau/fisiología , Enfermedad de Alzheimer/metabolismo , Animales , Química Encefálica , Células COS , Chlorocebus aethiops , Simulación por Computador , Humanos , Conformación Proteica , Reproducibilidad de los Resultados , Transducción de Señal , Proteínas tau/química , Proteínas tau/metabolismo
14.
Cell Stem Cell ; 28(2): 209-216.e4, 2021 02 04.
Artículo en Inglés | MEDLINE | ID: mdl-33207217

RESUMEN

Cell differentiation typically occurs with concomitant shape transitions to enable specialized functions. To adopt a different shape, cells need to change the mechanical properties of their surface. However, whether cell surface mechanics control the process of differentiation has been relatively unexplored. Here we show that membrane mechanics gate exit from naive pluripotency of mouse embryonic stem cells. By measuring membrane tension during early differentiation, we find that naive stem cells release their plasma membrane from the underlying actin cortex when transitioning to a primed state. By mechanically tethering the plasma membrane to the cortex by enhancing Ezrin activity or expressing a synthetic signaling-inert linker, we demonstrate that preventing this detachment forces stem cells to retain their naive pluripotent identity. We thus identify a decrease in membrane-to-cortex attachment as a new cell-intrinsic mechanism that is essential for stem cells to exit pluripotency.


Asunto(s)
Células Madre Embrionarias , Células Madre Embrionarias de Ratones , Animales , Diferenciación Celular , Membrana Celular , Ratones , Transducción de Señal
15.
J Neurosci ; 29(7): 2151-61, 2009 Feb 18.
Artículo en Inglés | MEDLINE | ID: mdl-19228967

RESUMEN

Tau inclusions are a prominent feature of many neurodegenerative diseases including Alzheimer's disease. Their accumulation in neurons as ubiquitinated filaments suggests a failure in the degradation limb of the Tau pathway. The components of a Tau protein triage system consisting of CHIP/Hsp70 and other chaperones have begun to emerge. However, the site of triage and the master regulatory elements are unknown. Here, we report an elegant mechanism of Tau degradation involving the cochaperone BAG2. The BAG2/Hsp70 complex is tethered to the microtubule and this complex can capture and deliver Tau to the proteasome for ubiquitin-independent degradation. This complex preferentially degrades Sarkosyl insoluble Tau and phosphorylated Tau. BAG2 levels in cells are under the physiological control of the microRNA miR-128a, which can tune paired helical filament Tau levels in neurons. Thus, we propose that ubiquitinated Tau inclusions arise due to shunting of Tau degradation toward a less efficient ubiquitin-dependent pathway.


Asunto(s)
Encéfalo/metabolismo , Proteínas HSP70 de Choque Térmico/metabolismo , Microtúbulos/metabolismo , Neuronas/metabolismo , Proteínas tau/metabolismo , Enfermedad de Alzheimer/genética , Enfermedad de Alzheimer/metabolismo , Enfermedad de Alzheimer/patología , Animales , Encéfalo/ultraestructura , Células COS , Chlorocebus aethiops , Proteínas HSP70 de Choque Térmico/genética , Humanos , Cuerpos de Inclusión/genética , Cuerpos de Inclusión/metabolismo , Cuerpos de Inclusión/patología , Sustancias Macromoleculares/metabolismo , Ratones , MicroARNs/genética , Microtúbulos/ultraestructura , Chaperonas Moleculares , Neuronas/ultraestructura , Complejo de la Endopetidasa Proteasomal/metabolismo , Ratas , Ratas Sprague-Dawley , Ubiquitinación/genética , Proteínas tau/genética
16.
Chembiochem ; 11(5): 653-63, 2010 Mar 22.
Artículo en Inglés | MEDLINE | ID: mdl-20187057

RESUMEN

We have implemented a noninvasive optical method for the fast control of protein activity in a live zebrafish embryo. It relies on releasing a protein fused to a modified estrogen receptor ligand binding domain from its complex with cytoplasmic chaperones, upon the local photoactivation of a nonendogenous caged inducer. Molecular dynamics simulations were used to design cyclofen-OH, a photochemically stable inducer of the receptor specific for 4-hydroxy-tamoxifen (ER(T2)). Cyclofen-OH was easily synthesized in two steps with good yields. At submicromolar concentrations, it activates proteins fused to the ER(T2) receptor. This was shown in cultured cells and in zebrafish embryos through emission properties and subcellular localization of properly engineered fluorescent proteins. Cyclofen-OH was successfully caged with various photolabile protecting groups. One particular caged compound was efficient in photoinducing the nuclear translocation of fluorescent proteins either globally (with 365 nm UV illumination) or locally (with a focused UV laser or with two-photon illumination at 750 nm). The present method for photocontrol of protein activity could be used more generally to investigate important physiological processes (e.g., in embryogenesis, organ regeneration and carcinogenesis) with high spatiotemporal resolution.


Asunto(s)
Receptores de Estrógenos/metabolismo , Proteínas Recombinantes de Fusión/metabolismo , Pez Cebra/genética , Animales , Línea Celular , Chlorocebus aethiops , Ciclofenil/química , Embrión no Mamífero/metabolismo , Proteínas Fluorescentes Verdes/análisis , Proteínas Fluorescentes Verdes/metabolismo , Chaperonas Moleculares/metabolismo , Simulación de Dinámica Molecular , Procesos Fotoquímicos , Fotones , Receptores de Estrógenos/genética , Proteínas Recombinantes de Fusión/análisis , Tamoxifeno/análogos & derivados , Tamoxifeno/química , Tamoxifeno/farmacología , Rayos Ultravioleta , Pez Cebra/embriología , Pez Cebra/metabolismo
17.
J Am Chem Soc ; 131(41): 14738-46, 2009 Oct 21.
Artículo en Inglés | MEDLINE | ID: mdl-19788248

RESUMEN

The use of the semiconductor quantum dots (QD) as biolabels for both ensemble and single-molecule tracking requires the development of simple and versatile methods to target individual proteins in a controlled manner, ideally in living cells. To address this challenge, we have prepared small and stable QDs (QD-ND) using a surface coating based on a peptide sequence containing a tricysteine, poly(ethylene glycol) (PEG), and an aspartic acid ligand. These QDs, with a hydrodynamic diameter of 9 +/- 1.5 nm, can selectively bind to polyhistidine-tagged (histag) proteins in vitro or in living cells. We show that the small and monodisperse size of QD-ND allows for the formation of QD-ND/histag protein complexes of well-defined stoichiometry and that the 1:1 QD/protein complex can be isolated and purified by gel electrophoresis without any destabilization in the nanomolar concentration range. We also demonstrate that QD-ND can be used to specifically label a membrane receptor with an extracellular histag expressed in living HeLa cells. Here, cytotoxicity tests reveal that cell viability remains high under the conditions required for cellular labeling with QD-ND. Finally, we apply QD-ND complexed with histag end binding protein-1 (EB1), a microtubule associated protein, to single-molecule tracking in Xenopus extracts. Specific colocalization of QD-ND/EB1 with microtubules during the mitotic spindle formation demonstrates that QD-ND and our labeling strategy provide an efficient approach to monitor the dynamic behavior of proteins involved in complex biological functions.


Asunto(s)
Histidina/metabolismo , Sondas Moleculares/química , Péptidos/química , Polietilenglicoles/química , Proteínas/metabolismo , Puntos Cuánticos , Animales , Supervivencia Celular , Espacio Extracelular/metabolismo , Células HeLa , Humanos , Luz , Proteínas Asociadas a Microtúbulos/metabolismo , Microtúbulos/metabolismo , Sondas Moleculares/metabolismo , Movimiento , Estabilidad Proteica , Transporte de Proteínas , Proteínas/análisis , Proteínas/química , Dispersión de Radiación , Espectrometría de Fluorescencia , Huso Acromático/metabolismo , Coloración y Etiquetado , Especificidad por Sustrato
18.
Org Lett ; 10(12): 2341-4, 2008 Jun 19.
Artículo en Inglés | MEDLINE | ID: mdl-18503281

RESUMEN

This paper evaluates a series of photolabile protecting groups with built-in fluorescence reporting. They rely on readily available o-acetoxyphenyl methyloxazolones as activated precursors. Alcohol substrates are easily caged. The resulting photoactivable esters exhibit large one- and two-photon uncaging cross sections. The alcohol substrates are quantitatively released in a 1:1 molar ratio with a strongly fluorescent coumarin coproduct that serves as a reporter to quantify substrate delivery.


Asunto(s)
Alcoholes/química , Modelos Moleculares , Oxazolona/análogos & derivados , Oxazolona/química , Catálisis , Cumarinas/síntesis química , Cumarinas/química , Fluorescencia , Estructura Molecular , Fotoquímica , Estereoisomerismo
19.
Curr Stem Cell Rep ; 3(3): 248-252, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28845388

RESUMEN

PURPOSE OF REVIEW: Stem cells have to balance self-renewal and differentiation. The dynamic nature of these fate decisions has made stem cell study by traditional methods particularly challenging. Here we highlight recent advances in the field that draw on combining quantitative experiments and modeling to illuminate the biology of stem cells both in vitro and in vivo. RECENT FINDINGS: Recent studies have shown that seemingly complex processes such as the fate decision-making of stem cells or the self-organization of developing tissues obey remarkably simple mathematical models. Negative feedback loops appear to stabilize cellular states hereby ensuring robust fate decision-making and reproducible outcomes. Stochastic fate decisions can account for the great variability observed in biological systems. SUMMARY: The study of stem cells is hampered by the necessity to track the fate of a cell's progeny over time. Confronting experiments with simple predictive models has allowed to circumvent this problem and gain insights from stem cell heterogeneity in vitro to organ morphogenesis.

20.
Chem Sci ; 8(8): 5598-5605, 2017 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-28970939

RESUMEN

Yellow Fluorescence-Activating and absorption-Shifting Tag (Y-FAST, hereafter called FAST) is a 14 kDa protein tag giving a bright green-yellow fluorescent complex upon interaction with the fluorogenic dye 4-hydroxy-3-methylbenzylidene rhodanine (HMBR). Here, we report a collection of fluorogens enabling tuning of the fluorescence color of FAST from green-yellow to orange and red. Beyond allowing the multicolor imaging of FAST-tagged proteins in live cells, these fluorogens enable dynamic color switching because of FAST's reversible labeling. This unprecedented behavior allows for selective detection of FAST-tagged proteins in cells expressing both green and red fluorescent species through two-color cross-correlation, opening up exciting prospects to overcome spectral crowding and push the frontiers of multiplexed imaging.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA