Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 38
Filtrar
1.
Ecol Lett ; 25(2): 466-482, 2022 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-34866301

RESUMEN

Species turnover is ubiquitous. However, it remains unknown whether certain types of species are consistently gained or lost across different habitats. Here, we analysed the trajectories of 1827 plant species over time intervals of up to 78 years at 141 sites across mountain summits, forests, and lowland grasslands in Europe. We found, albeit with relatively small effect sizes, displacements of smaller- by larger-ranged species across habitats. Communities shifted in parallel towards more nutrient-demanding species, with species from nutrient-rich habitats having larger ranges. Because these species are typically strong competitors, declines of smaller-ranged species could reflect not only abiotic drivers of global change, but also biotic pressure from increased competition. The ubiquitous component of turnover based on species range size we found here may partially reconcile findings of no net loss in local diversity with global species loss, and link community-scale turnover to macroecological processes such as biotic homogenisation.


Asunto(s)
Biodiversidad , Pradera , Ecosistema , Bosques , Plantas
2.
Ann Bot ; 126(2): 289-300, 2020 07 24.
Artículo en Inglés | MEDLINE | ID: mdl-32333775

RESUMEN

BACKGROUND AND AIMS: Manganese (Mn) deficiency in barley is a global problem. It is difficult to detect in the early stages of symptom development and is commonly pre-emptively corrected by Mn foliar sprays that can be costly. Landraces adapted to marginal lands around the world represent a genetic resource for potential sustainability traits including mineral use efficiency. This research aims to confirm novel Mn use efficiency traits from the Scottish landrace Bere and use an association mapping approach to identify genetic loci associated with the trait. METHODS: A hydroponic system was developed to identify and characterize the Mn deficiency tolerance traits in a collection of landraces, including a large number of Scottish Bere barleys, a group of six-rowed heritage landraces grown in the highlands and islands of Scotland. Measuring chlorophyll fluorescence, the effect of Mn deficiency was identified in the early stages of development. Genotypic data, generated using the 50k Illumina iSelect genotyping array, were coupled with the Mn phenotypic data to create a genome-wide association study (GWAS) identifying candidate loci associated with Mn use efficiency. KEY RESULTS: The Bere lines generally had good Mn use efficiency traits. Individual Bere lines showed large efficiencies, with some Bere lines recording almost double chlorophyll fluorescence readings in limited Mn conditions compared with the elite cultivar Scholar. The Mn-efficient Bere lines had increased accumulation of Mn in their shoot biomass compared with elite cultivars, which was highly correlated to the chlorophyll fluorescence. Several candidate genes were identified as being associated with Mn use efficiency in the GWAS. CONCLUSIONS: Several genomic regions for Mn use efficiency traits originating from the Bere lines were identified. Further examination and validation of these regions should be undertaken to identify candidate genes for future breeding for marginal lands.


Asunto(s)
Hordeum/genética , Manganeso , Estudio de Asociación del Genoma Completo , Fenotipo , Escocia
3.
Plant Cell Environ ; 41(10): 2357-2372, 2018 10.
Artículo en Inglés | MEDLINE | ID: mdl-29851096

RESUMEN

Understanding the interactions between mineral nutrition and disease is essential for crop management. Our previous studies with Arabidopsis thaliana demonstrated that potassium (K) deprivation induced the biosynthesis of jasmonic acid (JA) and increased the plant's resistance to herbivorous insects. Here, we addressed the question of how tissue K affects the development of fungal pathogens and whether sensitivity of the pathogens to JA could play a role for the K-disease relationship in barley (Hordeum vulgare cv. Optic). We report that K-deprived barley plants showed increased leaf concentrations of JA and other oxylipins. Furthermore, a natural tip-to-base K-concentration gradient within leaves of K-sufficient plants was quantitatively mirrored by the transcript levels of JA-responsive genes. The local leaf tissue K concentrations affected the development of two economically important fungi in opposite ways, showing a positive correlation with powdery mildew (Blumeria graminis) and a negative correlation with leaf scald (Rhynchosporium commune) disease symptoms. B. graminis induced a JA response in the plant and was sensitive to methyl-JA treatment whereas R. commune initiated no JA response and was JA insensitive. Our study challenges the view that high K generally improves plant health and suggests that JA sensitivity of pathogens could be an important factor in determining the exact K-disease relationship.


Asunto(s)
Ascomicetos/metabolismo , Ciclopentanos/metabolismo , Hordeum/inmunología , Oxilipinas/metabolismo , Enfermedades de las Plantas/microbiología , Reguladores del Crecimiento de las Plantas/metabolismo , Hojas de la Planta/metabolismo , Potasio/metabolismo , Regulación de la Expresión Génica de las Plantas , Hordeum/metabolismo , Hordeum/microbiología , Hojas de la Planta/microbiología , Reacción en Cadena de la Polimerasa
4.
Ecology ; 98(4): 1026-1035, 2017 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-28036096

RESUMEN

Invasive plants can alter ecosystem properties, leading to changes in the ecosystem services on which humans depend. However, generalizing about these effects is difficult because invasive plants represent a wide range of life forms, and invaded ecosystems differ in their plant communities and abiotic conditions. We hypothesize that differences in traits between the invader and native species can be used to predict impacts and so aid generalization. We further hypothesize that environmental conditions at invaded sites modify the effect of trait differences and so combine with traits to predict invasion impacts. To test these hypotheses, we used systematic review to compile data on changes in aboveground and soil carbon pools following non-native plant invasion from studies across the World. Maximum potential height (Hmax ) of each species was drawn from trait databases and other sources. We used meta-regression to assess which of invasive species' Hmax , differences in this height trait between native and invasive plants, and climatic water deficit, a measure of water stress, were good predictors of changes in carbon pools following invasion. We found that aboveground biomass in invaded ecosystems relative to uninvaded ones increased as the value of Hmax of invasive relative to native species increased, but that this effect was reduced in more water stressed ecosystems. Changes in soil carbon pools were also positively correlated with the relative Hmax of invasive species, but were not altered by water stress. This study is one of the first to show quantitatively that the impact of invasive species on an ecosystem may depend on differences in invasive and native species' traits, rather than solely the traits of invasive species. Our study is also the first to show that the influence of trait differences can be altered by climate. Further developing our understanding of the impacts of invasive species using this framework could help researchers to identify not only potentially dangerous invasive species, but also the ecosystems where impacts are likely to be greatest.


Asunto(s)
Ciclo del Carbono , Clima , Ecosistema , Especies Introducidas , Plantas , Carbono , Secuestro de Carbono , Humanos , Suelo
5.
Biol Conserv ; 194: 71-79, 2016 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-26917858

RESUMEN

Setting aside overmature planted forests is currently seen as an option for preserving species associated with old-growth forests, such as those with dispersal limitation. Few data exist, however, on the utility of set-aside plantations for this purpose, or the value of this habitat type for biodiversity relative to old-growth semi-natural ecosystems. Here, we evaluate the contribution of forest type relative to habitat characteristics in determining species richness and composition in seven forest blocks, each containing an ancient old-growth stand (> 1000 yrs) paired with a set-aside even-aged planted stand (ca. 180 yrs). We investigated the functionally important yet relatively neglected ectomycorrhizal fungi (EMF), a group for which the importance of forest age has not been assessed in broadleaved forests. We found that forest type was not an important determinant of EMF species richness or composition, demonstrating that set-aside can be an effective option for conserving ancient EMF communities. Species richness of above-ground EMF fruiting bodies was principally related to the basal area of the stand (a correlate of canopy cover) and tree species diversity, whilst richness of below-ground ectomycorrhizae was driven only by tree diversity. Our results suggest that overmature planted forest stands, particularly those that are mixed-woods with high basal area, are an effective means to connect and expand ecological networks of ancient old-growth forests in historically deforested and fragmented landscapes for ectomycorrhizal fungi.

6.
For Ecol Manage ; 359: 300-308, 2016 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-26865748

RESUMEN

Functional diversity (FD) is increasingly used as a metric to evaluate the impact of forest management strategies on ecosystem functioning. Management interventions that aim to maximise FD require knowledge of multiple environmental drivers of FD, which have not been studied to date in temperate coniferous production forests. We quantified the relative importance of abiotic (forest management) and biotic (ground vegetation community) drivers of carabid FD and trait distribution in 44 coniferous plantation forest stands across the UK. Carabid FD declined with canopy cover and carabid body length correlated negatively with the percentage of open semi-natural area surrounding a plot. We conclude that forest management could enhance carabid FD through initiatives that emulate natural disturbance regimes through gap creation. We found that neither functional nor taxonomic metrics of vegetation diversity correlated with carabid FD, suggesting that restoration of plant communities, a major goal of forest restoration efforts, will not necessarily enhance carabid FD in coniferous plantations.

7.
New Phytol ; 205(2): 720-30, 2015 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-25250812

RESUMEN

Biodiversity regulates ecosystem functions such as productivity, and experimental studies of species mixtures have revealed selection and complementarity effects driving these responses. However, the impacts of intraspecific genotypic diversity in these studies are unknown, despite it forming a substantial part of the biodiversity. In a glasshouse experiment we constructed plant communities with different levels of barley (Hordeum vulgare) genotype and weed species diversity and assessed their relative biodiversity effects through additive partitioning into selection and complementarity effects. Barley genotype diversity had weak positive effects on aboveground biomass through complementarity effects, whereas weed species diversity increased biomass predominantly through selection effects. When combined, increasing genotype diversity of barley tended to dilute the selection effect of weeds. We interpret these different effects of barley genotype and weed species diversity as the consequence of small vs large trait variation associated with intraspecific barley diversity and interspecific weed diversity, respectively. The different effects of intra- vs interspecific diversity highlight the underestimated and overlooked role of genetic diversity for ecosystem functioning.


Asunto(s)
Biodiversidad , Variación Genética , Hordeum/genética , Biomasa , Malezas , Carácter Cuantitativo Heredable
8.
Conserv Biol ; 29(6): 1695-703, 2015 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-26040756

RESUMEN

Both active and passive forest restoration schemes are used in degraded landscapes across the world to enhance biodiversity and ecosystem service provision. Restoration is increasingly also being implemented in biodiversity offset schemes as compensation for loss of natural habitat to anthropogenic development. This has raised concerns about the value of replacing old-growth forest with plantations, motivating research on biodiversity recovery as forest stands age. Functional diversity is now advocated as a key metric for restoration success, yet it has received little analytical attention to date. We conducted a meta-analysis of 90 studies that measured differences in species richness for functional groups of fungi, lichens, and beetles between old-growth control and planted or secondary treatment forests in temperate, boreal, and Mediterranean regions. We identified functional-group-specific relationships in the response of species richness to stand age after forest disturbance. Ectomycorrhizal fungi averaged 90 years for recovery to old-growth values (between 45 years and unrecoverable at 95% prediction limits), and epiphytic lichens took 180 years to reach 90% of old-growth values (between 140 years and never for recovery to old-growth values at 95% prediction limits). Non-saproxylic beetle richness, in contrast, decreased as stand age of broadleaved forests increased. The slow recovery by some functional groups essential to ecosystem functioning makes old-growth forest an effectively irreplaceable biodiversity resource that should be exempt from biodiversity offsetting initiatives.


Asunto(s)
Biodiversidad , Escarabajos/fisiología , Conservación de los Recursos Naturales , Bosques , Hongos/fisiología , Líquenes/fisiología , Animales
9.
New Phytol ; 203(1): 195-205, 2014 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-24684319

RESUMEN

There is an urgent need for simple rapid screens of root traits that improve the acquisition of nutrients and water. Temperate cereals produce rhizosheaths of variable weight, a trait first noted on desert species sampled by Tansley over 100 yr ago. This trait is almost certainly important in tolerance to abiotic stress. Here, we screened association genetics populations of barley for rhizosheath weight and derived quantitative trait loci (QTLs) and candidate genes. We assessed whether rhizosheath weight was correlated with plant performance and phosphate uptake under combined drought and phosphorus deficiency. Rhizosheath weight was investigated in relation to root hair length, and under both laboratory and field conditions. Our data demonstrated that rhizosheath weight was correlated with phosphate uptake under dry conditions and that the differences in rhizosheath weight between genotypes were maintained in the field. Rhizosheath weight also varied significantly within barley populations, was correlated with root hair length and was associated with a genetic locus (QTL) on chromosome 2H. Putative candidate genes were identified. Rhizosheath weight is easy and rapid to measure, and is associated with relatively high heritability. The breeding of cereal genotypes for beneficial rhizosheath characteristics is achievable and could contribute to agricultural sustainability in nutrient- and water-stressed environments.


Asunto(s)
Hordeum/genética , Raíces de Plantas/fisiología , Sitios de Carácter Cuantitativo , Mapeo Cromosómico , Sequías , Marcadores Genéticos , Genética de Población , Genotipo , Hordeum/fisiología , Modelos Genéticos , Fenotipo , Fósforo/metabolismo , Raíces de Plantas/genética , Agua/fisiología
10.
Proc Biol Sci ; 280(1773): 20132236, 2013 Dec 22.
Artículo en Inglés | MEDLINE | ID: mdl-24197410

RESUMEN

Although increasing efforts are being made to restore tropical forests, little information is available regarding the time scales required for carbon and plant biodiversity to recover to the values associated with undisturbed forests. To address this knowledge gap, we carried out a meta-analysis comparing data from more than 600 secondary tropical forest sites with nearby undisturbed reference forests. Above-ground biomass approached equivalence to reference values within 80 years since last disturbance, whereas below-ground biomass took longer to recover. Soil carbon content showed little relationship with time since disturbance. Tree species richness recovered after about 50 years. By contrast, epiphyte richness did not reach equivalence to undisturbed forests. The proportion of undisturbed forest trees and epiphyte species found in secondary forests was low and changed little over time. Our results indicate that carbon pools and biodiversity show different recovery rates under passive, secondary succession and that colonization by undisturbed forest plant species is slow. Initiatives such as the Convention on Biological Diversity and REDD+ should therefore encourage active management to help to achieve their aims of restoring both carbon and biodiversity in tropical forests.


Asunto(s)
Biodiversidad , Carbono/metabolismo , Fenómenos Fisiológicos de las Plantas , Árboles , Conservación de los Recursos Naturales , Clima Tropical
11.
Proc Natl Acad Sci U S A ; 107(50): 21925-30, 2010 Dec 14.
Artículo en Inglés | MEDLINE | ID: mdl-21106761

RESUMEN

Although ecological restoration is widely used to combat environmental degradation, very few studies have evaluated the cost-effectiveness of this approach. We examine the potential impact of forest restoration on the value of multiple ecosystem services across four dryland areas in Latin America, by estimating the net value of ecosystem service benefits under different reforestation scenarios. The values of selected ecosystem services were mapped under each scenario, supported by the use of a spatially explicit model of forest dynamics. We explored the economic potential of a change in land use from livestock grazing to restored native forest using different discount rates and performed a cost-benefit analysis of three restoration scenarios. Results show that passive restoration is cost-effective for all study areas on the basis of the services analyzed, whereas the benefits from active restoration are generally outweighed by the relatively high costs involved. These findings were found to be relatively insensitive to discount rate but were sensitive to the market value of carbon. Substantial variation in values was recorded between study areas, demonstrating that ecosystem service values are strongly context specific. However, spatial analysis enabled localized areas of net benefits to be identified, indicating the value of this approach for identifying the relative costs and benefits of restoration interventions across a landscape.


Asunto(s)
Conservación de los Recursos Naturales/economía , Conservación de los Recursos Naturales/métodos , Análisis Costo-Beneficio/economía , Ecosistema , Árboles , Animales , Carbono/metabolismo , Humanos , América Latina , Ganado , Modelos Biológicos
12.
Sci Rep ; 13(1): 4091, 2023 03 11.
Artículo en Inglés | MEDLINE | ID: mdl-36906626

RESUMEN

A field experiment was carried out to determine the importance of component cultivar proportions to spring barley mixture efficacy against rhynchosporium or scald symptoms caused by the splash-dispersed pathogen Rhynchosporium commune. A larger effect than expected was observed of small amounts of one component on another for reducing disease overall, but relative insensitivity to proportion as amounts of each component become more similar. An established theoretical framework, the 'Dispersal scaling hypothesis', was used to model the expected effect of mixing proportions on the spatiotemporal spread of disease. The model captured the unequal effect of mixing different proportions on disease spread and there was good agreement between predictions and observations. The dispersal scaling hypothesis therefore provides a conceptual framework to explain the observed phenomenon, and a tool to predict the proportion of mixing at which mixture performance is maximized.


Asunto(s)
Resistencia a la Enfermedad , Grano Comestible , Enfermedades de las Plantas
13.
Adv Appl Microbiol ; 81: 89-132, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-22958528

RESUMEN

Most reviews of climate change are epidemiological, focusing on impact assessment and risk mapping. However, there are many reports of the effects of environmental stress factors on defense mechanisms in plants against pathogens. We review those representative of key climate change-related stresses to determine whether there are any patterns or trends in adaptation responses. We recognize the complexity of climate change itself and the multitrophic nature of the complex biological interactions of plants, microbes, soil, and the environment and, therefore, the difficulty of reductionist dissection approaches to resolving the problems. We review host defense genes, germplasm, and environmental interactions in different types of organisms but find no significant group-specific trends. Similarly, we review by host defense mechanism type and by host-pathogen trophic relationship but identify no dominating mechanism for stress response. However, we do identify core stress response mechanisms playing key roles in multiple response pathways whether to biotic or abiotic stress. We suggest that these should be central to mechanistic climate change plant defense research. We also recognize biodiversity, heterogeneity, and the need for understanding stress in a true systems biology approach as being essential components of progressing our understanding of and response to climate change.


Asunto(s)
Cambio Climático , Plantas , Biodiversidad , Clima , Ecosistema , Plantas/metabolismo , Suelo
14.
Front Plant Sci ; 13: 863069, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35783948

RESUMEN

Ongoing climate change is resulting in increasing areas of salinity affected soils, rising saline groundwater and droughts resulting in irrigation with brackish water. This leads to increased salinity stress in crops that are already grown on marginal agricultural lands, such as barley. Tolerance to salinity stress is limited in the elite barley cultivar pools, but landraces of barley hold potential sources of tolerance due to their continuous selection on marginal lands. This study analyzed 140 heritage cultivars and landrace lines of barley, including 37 Scottish Bere lines that were selected from coastal regions, to screen for tolerance to salinity stress. Tolerance to salinity stress was screened by looking at the germination speed and the early root growth during germination, and the pre-maturity biomass accumulation during early growth stages. Results showed that most lines increased germination time, and decreased shoot biomass and early root growth with greater salinity stress. Elite cultivars showed increased response to the salinity, compared to the landrace lines. Individual Bere and landrace lines showed little to no effect of increased salinity in one or more experiments, one line showed high salinity tolerance in all experiments-Bere 49 A 27 Shetland. A Genome Wide Association Screening identified a number of genomic regions associated with increased tolerance to salinity stress. Two chromosomal regions were found, one associated with shoot biomass on 5HL, and another associated with early root growth, in each of the salinities, on 3HS. Within these regions a number of promising candidate genes were identified. Further analysis of these new regions and candidate genes should be undertaken, along with field trials, to identify targets for future breeding for salinity tolerance.

15.
Pest Manag Sci ; 77(9): 3900-3909, 2021 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-33729685

RESUMEN

Since the discovery that the plant immune system could be augmented for improved deployment against biotic stressors through the exogenous application of chemicals that lead to induced resistance (IR), many such IR-eliciting agents have been identified. Initially it was hoped that these chemical IR agents would be a benign alternative to traditional chemical biocides. However, owing to low efficacy and/or a realization that their benefits sometimes come at the cost of growth and yield penalties, chemical IR agents fell out of favour and were seldom used as crop protection products. Despite the lack of interest in agricultural use, researchers have continued to explore the efficacy and mechanisms of chemical IR. Moreover, as we move away from the approach of 'zero tolerance' toward plant pests and pathogens toward integrated pest management, chemical IR agents could have a place in the plant protection product list. In this review, we chart the rise and fall of chemical IR agents, and then explore a variety of strategies used to improve their efficacy and remediate their negative adverse effects. © 2021 The Authors. Pest Management Science published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.


Asunto(s)
Protección de Cultivos , Control de Plagas , Agricultura , Plantas
16.
PLoS One ; 16(3): e0247850, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33667265

RESUMEN

Given the negative environmental impacts of intensive agriculture, there is an urgent need to reduce the impact of food production on biodiversity. Ecological restoration of farmland could potentially contribute to this goal. While the positive impacts of ecological restoration on biodiversity are well established, less evidence is available regarding impacts on economic development and employment. Potentially, prospects for economic development could be enhanced by ecological restoration though increased provision of ecosystem services, on which some economic activity depends. Here we examined this issue through the development of contrasting land use scenarios for the county of Dorset, southern England. Two scenarios of future agricultural expansion were compared with two scenarios of landscape-scale ecological restoration and the current situation. Impacts on provision of multiple ecosystem services (ES) were explored using InVEST models and proxy values for different land cover types. Impacts on economic employment were examined using an economic input-output model, which was adjusted for variation in ES flows using empirically determined ES dependency values for different economic sectors. Using the unadjusted input-output model, the scenarios had only a slight economic impact (≤ 0.3% Gross Value Added, GVA). Conversely, when the input-output model was adjusted to take account of ES flows, GVA increased by up to 5.4% in the restoration scenarios, whereas under the scenario with greatest agricultural expansion, GVA was reduced by -4.5%. Similarly, employment increased by up to 6.7% following restoration, compared to declines of up to -5.6% following maximum agricultural expansion. These results show that the economic contribution of rural land is far greater than that attributable to agricultural production alone. Landscape-scale restoration of agricultural land can potentially increase the contribution of farmland to economic development and employment, by increasing flows of multiple ES to the many economic sectors that depend on them.


Asunto(s)
Agricultura/economía , Conservación de los Recursos Naturales/economía , Desarrollo Económico , Modelos Económicos , Inglaterra , Humanos
17.
Front Plant Sci ; 12: 747661, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34745181

RESUMEN

Ramularia collo-cygni is the causal agent of Ramularia leaf spot disease (RLS) on barley and became, during the recent decades, an increasing threat for farmers across the world. Here, we analyze morphological, transcriptional, and metabolic responses of two barley cultivars having contrasting tolerance to RLS, when infected by an aggressive or mild R. collo-cygni isolate. We found that fungal biomass in leaves of the two cultivars does not correlate with their tolerance to RLS, and both cultivars displayed cell wall reinforcement at the point of contact with the fungal hyphae. Comparative transcriptome analysis identified that the largest transcriptional differences between cultivars are at the early stages of fungal colonization with differential expression of kinases, calmodulins, and defense proteins. Weighted gene co-expression network analysis identified modules of co-expressed genes, and hub genes important for cultivar responses to the two R. collo-cygni isolates. Metabolite analyses of the same leaves identified defense compounds such as p-CHDA and serotonin, correlating with responses observed at transcriptome and morphological level. Together these all-round responses of barley to R. collo-cygni provide molecular tools for further development of genetic and physiological markers that may be tested for improving tolerance of barley to this fungal pathogen.

18.
Ecol Evol ; 10(24): 13913-13925, 2020 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-33391690

RESUMEN

Mires are characterized by plant communities of high conservation and societal value, which have experienced a major decline in area in many parts of the world, particularly Europe. Evidence suggests that they may be particularly vulnerable to changes in climate and nutrient addition. Although they have been the focus of extensive paleoecological research, few attempts have been made to examine the dynamics of mire vegetation during the current era of anthropogenic environmental change.To assess long-term change in the spatial structure and composition of a lowland mire community, in 2016 we resurveyed plots first surveyed in 1951. Measures of species richness and composition were compared between the two surveys, and changes in community composition were related to plant traits.Overall, mean species richness declined by 26%. The area of occupancy declined in 37% of species, which were primarily oligotrophic species typical of nutrient-poor bog communities. Conversely, occupancy increased in 21% of species, especially those that were more tolerant of higher nutrient availability. These changes were associated with variation in plant functional traits, as indicated by an increase mean Ellenberg trait values for nitrogen and mean temperature, and a decline in values for precipitation. These results suggest that eutrophication and climate change have been key drivers of floristic change on this site. Synthesis. This investigation provides a rare assessment of the dynamics of a mire community over a multi-decadal interval. Results indicate that substantial change has occurred in the composition of the community, and the distribution of species within it. The investigation provides evidence of the impact of environmental change on the composition and structure of a lowland mire community, and highlights challenges for its future conservation.

19.
Proc Biol Sci ; 276(1672): 3539-44, 2009 Oct 07.
Artículo en Inglés | MEDLINE | ID: mdl-19625318

RESUMEN

Taxonomic homogenization (TH) is the increasing similarity of the species composition of ecological communities over time. Such homogenization represents a form of biodiversity loss and can result from local species turnover. Evidence for TH is limited, reflecting a lack of suitable historical datasets, and previous analyses have generated contrasting conclusions. We present an analysis of woodland patches across a southern English county (Dorset) in which we quantified 70 years of change in the composition of vascular plant communities. We tested the hypotheses that over this time patches decreased in species richness, homogenized, or shifted towards novel communities. Although mean species richness at the patch scale did not change, we found increased similarity in species composition among woodlands over time. We concluded that the woodlands have undergone TH without experiencing declines in local diversity or shifts towards novel communities. Analysis of species characteristics suggested that these changes were not driven by non-native species invasions or climate change, but instead reflected reorganization of the native plant communities in response to eutrophication and increasingly shaded conditions. These analyses provide, to our knowledge, the first direct evidence of TH in the UK and highlight the potential importance of this phenomenon as a contributor to biodiversity loss.


Asunto(s)
Ecosistema , Plantas/clasificación , Inglaterra , Dinámica Poblacional , Tiempo
20.
J Exp Bot ; 60(10): 2827-38, 2009.
Artículo en Inglés | MEDLINE | ID: mdl-19380424

RESUMEN

While many studies have demonstrated the sensitivities of plants and of crop yield to a changing climate, a major challenge for the agricultural research community is to relate these findings to the broader societal concern with food security. This paper reviews the direct effects of climate on both crop growth and yield and on plant pests and pathogens and the interactions that may occur between crops, pests, and pathogens under changed climate. Finally, we consider the contribution that better understanding of the roles of pests and pathogens in crop production systems might make to enhanced food security. Evidence for the measured climate change on crops and their associated pests and pathogens is starting to be documented. Globally atmospheric [CO(2)] has increased, and in northern latitudes mean temperature at many locations has increased by about 1.0-1.4 degrees C with accompanying changes in pest and pathogen incidence and to farming practices. Many pests and pathogens exhibit considerable capacity for generating, recombining, and selecting fit combinations of variants in key pathogenicity, fitness, and aggressiveness traits that there is little doubt that any new opportunities resulting from climate change will be exploited by them. However, the interactions between crops and pests and pathogens are complex and poorly understood in the context of climate change. More mechanistic inclusion of pests and pathogen effects in crop models would lead to more realistic predictions of crop production on a regional scale and thereby assist in the development of more robust regional food security policies.


Asunto(s)
Productos Agrícolas/parasitología , Ecosistema , Abastecimiento de Alimentos , Interacciones Huésped-Parásitos , Enfermedades de las Plantas/parasitología , Animales , Clima , Productos Agrícolas/crecimiento & desarrollo , Eucariontes/fisiología , Insectos/fisiología , Control de Plagas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA