Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 181
Filtrar
Más filtros

Bases de datos
Tipo del documento
Intervalo de año de publicación
1.
Nat Methods ; 19(9): 1137-1146, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-36050489

RESUMEN

Antibodies have diverse applications due to their high reaction specificities but are sensitive to denaturation when a higher working temperature is required. We have developed a simple, highly scalable and generalizable chemical approach for stabilizing off-the-shelf antibodies against thermal and chemical denaturation. We demonstrate that the stabilized antibodies (termed SPEARs) can withstand up to 4 weeks of continuous heating at 55 °C and harsh denaturants, and apply our method to 33 tested antibodies. SPEARs enable flexible applications of thermocycling and denaturants to dynamically modulate their binding kinetics, reaction equilibrium, macromolecular diffusivity and aggregation propensity. In particular, we show that SPEARs permit the use of a thermally facilitated three-dimensional immunolabeling strategy (termed ThICK staining), achieving whole mouse brain immunolabeling within 72 h, as well as nearly fourfold deeper penetration with threefold less antibodies in human brain tissue. With faster deep-tissue immunolabeling and broad compatibility with tissue processing and clearing methods without the need for any specialized equipment, we anticipate the wide applicability of ThICK staining with SPEARs for deep immunostaining.


Asunto(s)
Anticuerpos , Encéfalo , Animales , Anticuerpos/metabolismo , Encéfalo/metabolismo , Humanos , Ratones
2.
Nature ; 574(7780): 707-711, 2019 10.
Artículo en Inglés | MEDLINE | ID: mdl-31664194

RESUMEN

In cancer, recurrent somatic single-nucleotide variants-which are rare in most paediatric cancers-are confined largely to protein-coding genes1-3. Here we report highly recurrent hotspot mutations (r.3A>G) of U1 spliceosomal small nuclear RNAs (snRNAs) in about 50% of Sonic hedgehog (SHH) medulloblastomas. These mutations were not present across other subgroups of medulloblastoma, and we identified these hotspot mutations in U1 snRNA in only <0.1% of 2,442 cancers, across 36 other tumour types. The mutations occur in 97% of adults (subtype SHHδ) and 25% of adolescents (subtype SHHα) with SHH medulloblastoma, but are largely absent from SHH medulloblastoma in infants. The U1 snRNA mutations occur in the 5' splice-site binding region, and snRNA-mutant tumours have significantly disrupted RNA splicing and an excess of 5' cryptic splicing events. Alternative splicing mediated by mutant U1 snRNA inactivates tumour-suppressor genes (PTCH1) and activates oncogenes (GLI2 and CCND2), and represents a target for therapy. These U1 snRNA mutations provide an example of highly recurrent and tissue-specific mutations of a non-protein-coding gene in cancer.


Asunto(s)
Neoplasias Cerebelosas/genética , Proteínas Hedgehog/genética , Meduloblastoma/genética , ARN Nuclear Pequeño/genética , Adolescente , Adulto , Empalme Alternativo , Proteínas Hedgehog/metabolismo , Humanos , Mutación , Sitios de Empalme de ARN , Empalme del ARN
3.
Acta Neuropathol ; 145(5): 667-680, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-36933012

RESUMEN

Glioneuronal tumors are a heterogenous group of CNS neoplasms that can be challenging to accurately diagnose. Molecular methods are highly useful in classifying these tumors-distinguishing precise classes from their histological mimics and identifying previously unrecognized types of tumors. Using an unsupervised visualization approach of DNA methylation data, we identified a novel group of tumors (n = 20) that formed a cluster separate from all established CNS tumor types. Molecular analyses revealed ATRX alterations (in 16/16 cases by DNA sequencing and/or immunohistochemistry) as well as potentially targetable gene fusions involving receptor tyrosine-kinases (RTK; mostly NTRK1-3) in all of these tumors (16/16; 100%). In addition, copy number profiling showed homozygous deletions of CDKN2A/B in 55% of cases. Histological and immunohistochemical investigations revealed glioneuronal tumors with isomorphic, round and often condensed nuclei, perinuclear clearing, high mitotic activity and microvascular proliferation. Tumors were mainly located supratentorially (84%) and occurred in patients with a median age of 19 years. Survival data were limited (n = 18) but point towards a more aggressive biology as compared to other glioneuronal tumors (median progression-free survival 12.5 months). Given their molecular characteristics in addition to anaplastic features, we suggest the term glioneuronal tumor with ATRX alteration, kinase fusion and anaplastic features (GTAKA) to describe these tumors. In summary, our findings highlight a novel type of glioneuronal tumor driven by different RTK fusions accompanied by recurrent alterations in ATRX and homozygous deletions of CDKN2A/B. Targeted approaches such as NTRK inhibition might represent a therapeutic option for patients suffering from these tumors.


Asunto(s)
Neoplasias Encefálicas , Neoplasias del Sistema Nervioso Central , Neoplasias Neuroepiteliales , Humanos , Adulto Joven , Biomarcadores de Tumor/genética , Encéfalo/patología , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/patología , Fusión Génica , Neoplasias Neuroepiteliales/genética , Neoplasias Neuroepiteliales/patología , Proteínas Tirosina Quinasas Receptoras/genética , Proteína Nuclear Ligada al Cromosoma X/genética
4.
Lab Invest ; 102(7): 731-740, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35332262

RESUMEN

The WHO (2021) Classification classified a group of pediatric-type high-grade gliomas as IDH wildtype, H3 wildtype but as of currently, they are characterized only by negative molecular features of IDH and H3. We recruited 35 cases of pediatric IDH wildtype and H3 wildtype hemispheric glioblastomas. We evaluated them with genome-wide methylation profiling, targeted sequencing, RNAseq, TERT promoter sequencing, and FISH. The median survival of the cohort was 27.6 months. With Capper et al.'s36 methylation groups as a map, the cases were found to be epigenetically heterogeneous and were clustered in proximity or overlay of methylation groups PXA-like (n = 8), LGG-like (n = 10), GBM_MYCN (n = 9), GBM_midline (n = 5), and GBM_RTKIII (n = 3). Histology of the tumors in these groups was not different from regular glioblastomas. Methylation groups were not associated with OS. We were unable to identify groups specifically characterized by EGFR or PDGFRA amplification as proposed by other authors. EGFR, PDGFRA, and MYCN amplifications were not correlated with OS. 4/9 cases of the GBM_MYCN cluster did not show MYCN amplification; the group was also enriched for EGFR amplification (4/9 cases) and the two biomarkers overlapped in two cases. Overall, PDGFRA amplification was found in only four cases and they were not restricted to any groups. Cases in proximity to GBM_midline were all hemispheric and showed loss of H3K27me3 staining. Fusion genes ALK/NTRK/ROS1/MET characteristic of infantile glioblastomas were not identified in 17 cases successfully sequenced. BRAF V600E was only found in the PXA group but CDKN2A deletion could be found in other methylation groups. PXA-like cases did not show PXA histological features similar to findings by other authors. No case showed TERT promoter mutation. Mutations of mismatch repair (MMR) genes were poor prognosticators in single (p ≤ 0.001) but not in multivariate analyses (p = 0.229). MGMT had no survival significance in this cohort. Of the other common biomarkers, only TP53 and ATRX mutations were significant poor prognosticators and only TP53 mutation was significant after multivariate analyses (p = 0.024). We conclude that IDH wildtype, H3 wildtype pediatric hemispheric glioblastomas are molecularly heterogeneous and in routine practice, TP53, ATRX, and MMR status could profitably be screened for risk stratification in laboratories without ready access to methylation profiling.


Asunto(s)
Neoplasias Encefálicas , Glioblastoma , Neoplasias Encefálicas/patología , Niño , Receptores ErbB/genética , Humanos , Mutación , Proteína Proto-Oncogénica N-Myc/genética , Proteínas Tirosina Quinasas/genética , Proteínas Proto-Oncogénicas/genética
5.
Neuropathol Appl Neurobiol ; 48(4): e12802, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35191072

RESUMEN

OBJECTIVE: We aimed to characterise glioblastomas of adolescents and young adults (AYAs) that were isocitrate dehydrogenase (IDH) wild type (wt) and H3wt. MATERIALS AND METHODS: Fifty such patients (aged 16-32) were studied by methylation profiling, targeted sequencing and targeted RNA-seq. RESULTS: Tumours predominantly clustered into three methylation classes according to the terminology of Capper et al. (2018): (anaplastic) pleomorphic xanthoastrocytoma (PXA) (21 cases), GBM_midline (15 cases) and glioblastoma RTK/mesenchymal (seven cases). Two cases clustered with ANA_PA, four cases with LGG classes and one with GBM_MYCN. Only fifteen cases reached a calibrated score >0.84 when the cases were uploaded to DKFZ Classifier. GBM_midline-clustered tumours had a poorer overall survival (OS) compared with the PXA-clustered tumours (p = 0.030). LGG-clustered cases had a significantly better survival than GBM_midline-clustered tumours and glioblastoma RTK/mesenchymal-clustered tumours. Only 13/21 (62%) of PXA-clustered cases were BRAF V600E mutated. Most GBM_midline-clustered cases were not located in the midline. GBM_midline-clustered cases were characterised by PDGFRA amplification/mutation (73.3%), mutations of mismatch repair genes (40.0%), and all showed H3K27me3 and EZH1P loss, and an unmethylated MGMT promoter. Across the whole cohort, MGMT promoter methylation and wt TERT promoter were favourable prognosticators. Mismatch repair gene mutations were poor prognosticators and together with methylation class and MGMT methylation, maintained their significance in multivariate analyses. BRAF mutation was a good prognosticator in the PXA-clustered tumours. CONCLUSION: Methylation profiling is a useful tool in the diagnosis and prognostication of AYA glioblastomas, and the methylation classes have distinct molecular characteristics. The usual molecular diagnostic criteria for adult IDHwt glioblastoma should be applied with caution within the AYA age group.


Asunto(s)
Astrocitoma , Neoplasias Encefálicas , Glioblastoma , Adolescente , Astrocitoma/patología , Neoplasias Encefálicas/patología , Metilación de ADN , Metilasas de Modificación del ADN/genética , Enzimas Reparadoras del ADN/genética , Glioblastoma/patología , Humanos , Isocitrato Deshidrogenasa/genética , Mutación , Proteínas Proto-Oncogénicas B-raf/genética , Adulto Joven
6.
Mod Pathol ; 34(7): 1245-1260, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-33692446

RESUMEN

WHO 2016 classified glioblastomas into IDH-mutant and IDH-wildtype with the former having a better prognosis but there was no study on IDH-mutant primary glioblastomas only, as previous series included secondary glioblastomas. We recruited a series of 67 IDH-mutant primary glioblastomas/astrocytoma IV without a prior low-grade astrocytoma and examined them using DNA-methylation profiling, targeted sequencing, RNA sequencing and TERT promoter sequencing, and correlated the molecular findings with clinical parameters. The median OS of 39.4 months of 64 cases and PFS of 25.9 months of 57 cases were better than the survival data of IDH-wildtype glioblastomas and IDH-mutant secondary glioblastomas retrieved from datasets. The molecular features often seen in glioblastomas, such as EGFR amplification, combined +7/-10, and TERT promoter mutations were only observed in 6/53 (11.3%), 4/53 (7.5%), and 2/67 (3.0%) cases, respectively, and gene fusions were found only in two cases. The main mechanism for telomere maintenance appeared to be alternative lengthening of telomeres as ATRX mutation was found in 34/53 (64.2%) cases. In t-SNE analyses of DNA-methylation profiles, with an exceptional of one case, a majority of our cases clustered to IDH-mutant high-grade astrocytoma subclass (40/53; 75.5%) and the rest to IDH-mutant astrocytoma subclass (12/53; 22.6%). The latter was also enriched with G-CIMP high cases (12/12; 100%). G-CIMP-high status and MGMT promoter methylation were independent good prognosticators for OS (p = 0.022 and p = 0.002, respectively) and TP53 mutation was an independent poor prognosticator (p = 0.013) when correlated with other clinical parameters. Homozygous deletion of CDKN2A/B was not correlated with OS (p = 0.197) and PFS (p = 0.278). PDGFRA amplification or mutation was found in 16/59 (27.1%) of cases and was correlated with G-CIMP-low status (p = 0.010). Aside from the three well-known pathways of pathogenesis in glioblastomas, chromatin modifying and mismatch repair pathways were common aberrations (88.7% and 20.8%, respectively), the former due to high frequency of ATRX involvement. We conclude that IDH-mutant primary glioblastomas have better prognosis than secondary glioblastomas and have major molecular differences from other commoner glioblastomas. G-CIMP subgroups, MGMT promoter methylation, and TP53 mutation are useful prognostic adjuncts.


Asunto(s)
Astrocitoma/genética , Neoplasias Encefálicas/genética , Glioblastoma/genética , Adulto , Astrocitoma/mortalidad , Astrocitoma/patología , Neoplasias Encefálicas/mortalidad , Neoplasias Encefálicas/patología , Análisis Mutacional de ADN , Femenino , Glioblastoma/mortalidad , Glioblastoma/patología , Humanos , Isocitrato Deshidrogenasa/genética , Masculino , Persona de Mediana Edad , Mutación , Pronóstico
7.
Acta Neuropathol ; 141(5): 771-785, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-33619588

RESUMEN

Recent genomic studies have shed light on the biology and inter-tumoral heterogeneity underlying pineal parenchymal tumors, in particular pineoblastomas (PBs) and pineal parenchymal tumors of intermediate differentiation (PPTIDs). Previous reports, however, had modest sample sizes and lacked the power to integrate molecular and clinical findings. The different proposed molecular group structures also highlighted a need to reach consensus on a robust and relevant classification system. We performed a meta-analysis on 221 patients with molecularly characterized PBs and PPTIDs. DNA methylation profiles were analyzed through complementary bioinformatic approaches and molecular subgrouping was harmonized. Demographic, clinical, and genomic features of patients and samples from these pineal tumor groups were annotated. Four clinically and biologically relevant consensus PB groups were defined: PB-miRNA1 (n = 96), PB-miRNA2 (n = 23), PB-MYC/FOXR2 (n = 34), and PB-RB1 (n = 25). A final molecularly distinct group, designated PPTID (n = 43), comprised histological PPTID and PBs. Genomic and transcriptomic profiling allowed the characterization of oncogenic drivers for individual tumor groups, specifically, alterations in the microRNA processing pathway in PB-miRNA1/2, MYC amplification and FOXR2 overexpression in PB-MYC/FOXR2, RB1 alteration in PB-RB1, and KBTBD4 insertion in PPTID. Age at diagnosis, sex predilection, and metastatic status varied significantly among tumor groups. While patients with PB-miRNA2 and PPTID had superior outcome, survival was intermediate for patients with PB-miRNA1, and dismal for those with PB-MYC/FOXR2 or PB-RB1. Reduced-dose CSI was adequate for patients with average-risk, PB-miRNA1/2 disease. We systematically interrogated the clinical and molecular heterogeneity within pineal parenchymal tumors and proposed a consensus nomenclature for disease groups, laying the groundwork for future studies as well as routine use in tumor diagnostic classification and clinical trial stratification.


Asunto(s)
Neoplasias Encefálicas/genética , Neoplasias Encefálicas/patología , Glándula Pineal/patología , Pinealoma/genética , Pinealoma/patología , Adolescente , Adulto , Niño , Preescolar , Estudios de Cohortes , Metilación de ADN , Femenino , Estudio de Asociación del Genoma Completo , Humanos , Lactante , Recién Nacido , Masculino , Persona de Mediana Edad , Transcriptoma , Adulto Joven
8.
Int J Cancer ; 147(8): 2159-2175, 2020 10 15.
Artículo en Inglés | MEDLINE | ID: mdl-32239677

RESUMEN

Reports on pediatric low-grade diffuse glioma WHO-grade II (DG2) suggest an impaired survival rate, but lack conclusive results for genetically defined DG2-entities. We analyzed the natural history, treatment and prognosis of DG2 and investigated which genetically defined sub-entities proved unfavorable for survival. Within the prospectively registered, population-based German/Swiss SIOP-LGG 2004 cohort 100 patients (age 0.8-17.8 years, 4% neurofibromatosis [NF1]) were diagnosed with a DG2. Following biopsy (41%) or variable extent of resection (59%), 65 patients received no adjuvant treatment. Radiologic progression or severe neurologic symptoms prompted chemotherapy (n = 18) or radiotherapy (n = 17). Multiple lines of salvage treatment were necessary for 19/35 patients. Five years event-free survival dropped to 0.44, while 5 years overall survival was 0.90 (median observation time 8.3 years). Extensive genetic profiling of 65/100 DG2 identified Histone3-K27M-mutation in 4, IDH1-mutation in 11, BRAF-V600-mutation in 12, KIAA1549-BRAF-fusions in 6 patients, while the remaining 32 tumor tissues did not show alterations of these genes. Progression to malignant glioma occurred in 12 cases of all genetically defined subgroups within a range of 0.5 to 10.8 years, except for tumors carrying KIAA1549-BRAF-fusions. Histone3-K27M-mutant tumors proved uniformly fatal within 0.6 to 2.4 years. The current LGG treatment strategy seems appropriate for all DG2-entities, with the exemption of Histone3-K27M-mutant tumors that require a HGG-related treatment strategy. Our data confirm the importance to genetically define pediatric low-grade diffuse gliomas for proper treatment decisions and risk assessment.


Asunto(s)
Neoplasias Encefálicas/patología , Glioma/patología , Adolescente , Neoplasias Encefálicas/genética , Niño , Preescolar , Estudios de Cohortes , Femenino , Alemania , Glioma/genética , Humanos , Lactante , Masculino , Mutación/genética , Clasificación del Tumor/métodos , Pronóstico , Supervivencia sin Progresión , Estudios Prospectivos , Terapia Recuperativa/métodos , Suiza , Organización Mundial de la Salud
9.
Nature ; 511(7508): 241-5, 2014 Jul 10.
Artículo en Inglés | MEDLINE | ID: mdl-24896186

RESUMEN

Intracranial germ cell tumours (IGCTs) are a group of rare heterogeneous brain tumours that are clinically and histologically similar to the more common gonadal GCTs. IGCTs show great variation in their geographical and gender distribution, histological composition and treatment outcomes. The incidence of IGCTs is historically five- to eightfold greater in Japan and other East Asian countries than in Western countries, with peak incidence near the time of puberty. About half of the tumours are located in the pineal region. The male-to-female incidence ratio is approximately 3-4:1 overall, but is even higher for tumours located in the pineal region. Owing to the scarcity of tumour specimens available for research, little is currently known about this rare disease. Here we report the analysis of 62 cases by next-generation sequencing, single nucleotide polymorphism array and expression array. We find the KIT/RAS signalling pathway frequently mutated in more than 50% of IGCTs, including novel recurrent somatic mutations in KIT, its downstream mediators KRAS and NRAS, and its negative regulator CBL. Novel somatic alterations in the AKT/mTOR pathway included copy number gains of the AKT1 locus at 14q32.33 in 19% of patients, with corresponding upregulation of AKT1 expression. We identified loss-of-function mutations in BCORL1, a transcriptional co-repressor and tumour suppressor. We report significant enrichment of novel and rare germline variants in JMJD1C, which codes for a histone demethylase and is a coactivator of the androgen receptor, among Japanese IGCT patients. This study establishes a molecular foundation for understanding the biology of IGCTs and suggests potentially promising therapeutic strategies focusing on the inhibition of KIT/RAS activation and the AKT1/mTOR pathway.


Asunto(s)
Neoplasias Encefálicas/genética , Mutación de Línea Germinal/genética , Mutación/genética , Neoplasias de Células Germinales y Embrionarias/genética , Adulto , Neoplasias Encefálicas/patología , Niño , Femenino , Humanos , Japón , Masculino , Neoplasias de Células Germinales y Embrionarias/patología , Proteína Oncogénica v-akt/genética , Proteínas Proto-Oncogénicas c-kit/genética , Reproducibilidad de los Resultados , Transducción de Señal/genética , Serina-Treonina Quinasas TOR/genética , Adulto Joven , Proteínas ras/genética
10.
Lab Invest ; 99(4): 588-598, 2019 04.
Artículo en Inglés | MEDLINE | ID: mdl-30573870

RESUMEN

The metabolic genes encoding isocitrate dehydrogenase (IDH1, 2) are frequently mutated in gliomas. Mutation of IDH defines a distinct subtype of glioma and predicts therapeutic response. IDH mutation has a remarkable neomorphic activity of converting α-ketoglutarate (α-KG) to 2-hydroxyglutarate (2-HG), which is now commonly referred to as an oncometabolite and biomarker for gliomas. PCR-sequencing (n = 220), immunohistochemistry staining (IHC, n = 220), and gas chromatography mass spectrometry (GC-MS, n = 87) were applied to identify IDH mutation in gliomas, and the sensitivity and specificity of these strategies were compared. PCR-sequencing and IHC staining are reliable for retrospective assessment of IDH1 mutation in gliomas, but both methods usually take 1-2 days, which hinders their application for rapid diagnosis. GC-MS-based methods can detect 2-HG qualitatively and quantitatively, offering information on the IDH1 mutation status in gliomas with the sensitivity and specificity being 100%. Further optimization of the GC-MS based methodology (so called as the mini-column method) enabled us to determine 2-HG within 40 min in glioma samples without complex or time-consuming preparation. Most importantly, the ratio of 2-HG/glutamic acid was shown to be a reliable parameter for determination of mutation status. The mini-column method enables rapid identification of 2-HG, providing a promising strategy for intraoperative diagnosis of IDH1-mutated gliomas in the future.


Asunto(s)
Neoplasias Encefálicas , Cromatografía de Gases y Espectrometría de Masas/métodos , Glioma , Glutaratos/análisis , Isocitrato Deshidrogenasa/genética , Adulto , Neoplasias Encefálicas/química , Neoplasias Encefálicas/diagnóstico , Neoplasias Encefálicas/genética , Glioma/química , Glioma/diagnóstico , Glioma/genética , Humanos , Inmunohistoquímica , Persona de Mediana Edad , Mutación/genética
11.
Lancet Oncol ; 19(6): 785-798, 2018 06.
Artículo en Inglés | MEDLINE | ID: mdl-29753700

RESUMEN

BACKGROUND: Medulloblastoma is associated with rare hereditary cancer predisposition syndromes; however, consensus medulloblastoma predisposition genes have not been defined and screening guidelines for genetic counselling and testing for paediatric patients are not available. We aimed to assess and define these genes to provide evidence for future screening guidelines. METHODS: In this international, multicentre study, we analysed patients with medulloblastoma from retrospective cohorts (International Cancer Genome Consortium [ICGC] PedBrain, Medulloblastoma Advanced Genomics International Consortium [MAGIC], and the CEFALO series) and from prospective cohorts from four clinical studies (SJMB03, SJMB12, SJYC07, and I-HIT-MED). Whole-genome sequences and exome sequences from blood and tumour samples were analysed for rare damaging germline mutations in cancer predisposition genes. DNA methylation profiling was done to determine consensus molecular subgroups: WNT (MBWNT), SHH (MBSHH), group 3 (MBGroup3), and group 4 (MBGroup4). Medulloblastoma predisposition genes were predicted on the basis of rare variant burden tests against controls without a cancer diagnosis from the Exome Aggregation Consortium (ExAC). Previously defined somatic mutational signatures were used to further classify medulloblastoma genomes into two groups, a clock-like group (signatures 1 and 5) and a homologous recombination repair deficiency-like group (signatures 3 and 8), and chromothripsis was investigated using previously established criteria. Progression-free survival and overall survival were modelled for patients with a genetic predisposition to medulloblastoma. FINDINGS: We included a total of 1022 patients with medulloblastoma from the retrospective cohorts (n=673) and the four prospective studies (n=349), from whom blood samples (n=1022) and tumour samples (n=800) were analysed for germline mutations in 110 cancer predisposition genes. In our rare variant burden analysis, we compared these against 53 105 sequenced controls from ExAC and identified APC, BRCA2, PALB2, PTCH1, SUFU, and TP53 as consensus medulloblastoma predisposition genes according to our rare variant burden analysis and estimated that germline mutations accounted for 6% of medulloblastoma diagnoses in the retrospective cohort. The prevalence of genetic predispositions differed between molecular subgroups in the retrospective cohort and was highest for patients in the MBSHH subgroup (20% in the retrospective cohort). These estimates were replicated in the prospective clinical cohort (germline mutations accounted for 5% of medulloblastoma diagnoses, with the highest prevalence [14%] in the MBSHH subgroup). Patients with germline APC mutations developed MBWNT and accounted for most (five [71%] of seven) cases of MBWNT that had no somatic CTNNB1 exon 3 mutations. Patients with germline mutations in SUFU and PTCH1 mostly developed infant MBSHH. Germline TP53 mutations presented only in childhood patients in the MBSHH subgroup and explained more than half (eight [57%] of 14) of all chromothripsis events in this subgroup. Germline mutations in PALB2 and BRCA2 were observed across the MBSHH, MBGroup3, and MBGroup4 molecular subgroups and were associated with mutational signatures typical of homologous recombination repair deficiency. In patients with a genetic predisposition to medulloblastoma, 5-year progression-free survival was 52% (95% CI 40-69) and 5-year overall survival was 65% (95% CI 52-81); these survival estimates differed significantly across patients with germline mutations in different medulloblastoma predisposition genes. INTERPRETATION: Genetic counselling and testing should be used as a standard-of-care procedure in patients with MBWNT and MBSHH because these patients have the highest prevalence of damaging germline mutations in known cancer predisposition genes. We propose criteria for routine genetic screening for patients with medulloblastoma based on clinical and molecular tumour characteristics. FUNDING: German Cancer Aid; German Federal Ministry of Education and Research; German Childhood Cancer Foundation (Deutsche Kinderkrebsstiftung); European Research Council; National Institutes of Health; Canadian Institutes for Health Research; German Cancer Research Center; St Jude Comprehensive Cancer Center; American Lebanese Syrian Associated Charities; Swiss National Science Foundation; European Molecular Biology Organization; Cancer Research UK; Hertie Foundation; Alexander and Margaret Stewart Trust; V Foundation for Cancer Research; Sontag Foundation; Musicians Against Childhood Cancer; BC Cancer Foundation; Swedish Council for Health, Working Life and Welfare; Swedish Research Council; Swedish Cancer Society; the Swedish Radiation Protection Authority; Danish Strategic Research Council; Swiss Federal Office of Public Health; Swiss Research Foundation on Mobile Communication; Masaryk University; Ministry of Health of the Czech Republic; Research Council of Norway; Genome Canada; Genome BC; Terry Fox Research Institute; Ontario Institute for Cancer Research; Pediatric Oncology Group of Ontario; The Family of Kathleen Lorette and the Clark H Smith Brain Tumour Centre; Montreal Children's Hospital Foundation; The Hospital for Sick Children: Sonia and Arthur Labatt Brain Tumour Research Centre, Chief of Research Fund, Cancer Genetics Program, Garron Family Cancer Centre, MDT's Garron Family Endowment; BC Childhood Cancer Parents Association; Cure Search Foundation; Pediatric Brain Tumor Foundation; Brainchild; and the Government of Ontario.


Asunto(s)
Biomarcadores de Tumor/genética , Neoplasias Cerebelosas/genética , Metilación de ADN , Pruebas Genéticas/métodos , Mutación de Línea Germinal , Meduloblastoma/genética , Modelos Genéticos , Adolescente , Adulto , Neoplasias Cerebelosas/mortalidad , Neoplasias Cerebelosas/patología , Neoplasias Cerebelosas/terapia , Niño , Preescolar , Análisis Mutacional de ADN , Femenino , Perfilación de la Expresión Génica , Predisposición Genética a la Enfermedad , Herencia , Humanos , Lactante , Masculino , Meduloblastoma/mortalidad , Meduloblastoma/patología , Meduloblastoma/terapia , Linaje , Fenotipo , Valor Predictivo de las Pruebas , Supervivencia sin Progresión , Estudios Prospectivos , Reproducibilidad de los Resultados , Estudios Retrospectivos , Factores de Riesgo , Transcriptoma , Secuenciación del Exoma , Adulto Joven
12.
Acta Neuropathol ; 136(4): 641-655, 2018 10.
Artículo en Inglés | MEDLINE | ID: mdl-29948154

RESUMEN

Pediatric low-grade gliomas (PLGGs) consist of a number of entities with overlapping histological features. PLGGs have much better prognosis than the adult counterparts, but a significant proportion of PLGGs suffers from tumor progression and recurrence. It has been shown that pediatric and adult low-grade gliomas are molecularly distinct. Yet the clinical significance of some of newer biomarkers discovered by genomic studies has not been fully investigated. In this study, we evaluated in a large cohort of 289 PLGGs a list of biomarkers and examined their clinical relevance. TERT promoter (TERTp), H3F3A and BRAF V600E mutations were detected by direct sequencing. ATRX nuclear loss was examined by immunohistochemistry. CDKN2A deletion, KIAA1549-BRAF fusion, and MYB amplification were determined by fluorescence in situ hybridization (FISH). TERTp, H3F3A, and BRAF V600E mutations were identified in 2.5, 6.4, and 7.4% of PLGGs, respectively. ATRX loss was found in 4.9% of PLGGs. CDKN2A deletion, KIAA1549-BRAF fusion and MYB amplification were detected in 8.8, 32.0 and 10.6% of PLGGs, respectively. Survival analysis revealed that TERTp mutation, H3F3A mutation, and ATRX loss were significantly associated with poor PFS (p < 0.0001, p < 0.0001, and p = 0.0002) and OS (p < 0.0001, p < 0.0001, and p < 0.0001). BRAF V600E was associated with shorter PFS (p = 0.011) and OS (p = 0.032) in a subset of PLGGs. KIAA1549-BRAF fusion was a good prognostic marker for longer PFS (p = 0.0017) and OS (p = 0.0029). MYB amplification was also a favorable marker for a longer PFS (p = 0.040). Importantly, we showed that these molecular biomarkers can be used to stratify PLGGs into low- (KIAA1549-BRAF fusion or MYB amplification), intermediate-I (BRAF V600E and/or CDKN2A deletion), intermediate-II (no biomarker), and high-risk (TERTp or H3F3A mutation or ATRX loss) groups with distinct PFS (p < 0.0001) and OS (p < 0.0001). This scheme should aid in clinical decision-making.


Asunto(s)
Neoplasias Encefálicas/patología , Glioma/patología , Clasificación del Tumor/métodos , Adolescente , Biomarcadores de Tumor , Niño , Preescolar , Estudios de Cohortes , Femenino , Humanos , Inmunohistoquímica , Lactante , Recién Nacido , Masculino , Mutación/genética , Patología Molecular , Pediatría , Pronóstico , Supervivencia sin Progresión , Medición de Riesgo , Análisis de Supervivencia , Resultado del Tratamiento
13.
J Neurooncol ; 139(2): 307-322, 2018 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-29761369

RESUMEN

Although oligodendrogliomas appear histologically similar in adult and pediatric patients, the latter have only been rarely studied and most of those studies did not have long follow-up. We examined 55 oligodendroglial tumors from pediatric and teenage patients for their biomarkers with formalin-fixed paraffin-embedded tissues and studied their survival status. None of the tumors harbored 1p/19q codeletion or IDH mutation. Mutations in TERTp (4%), BRAF (11%), FGFR1 (3%) and H3F3A (5%), fusions of BRAF (8%) and FGFR1 (8%) were found sparingly and almost all in a mutually exclusive manner. Molecular events were exclusively found in tumors with classic oligodendroglial histology. Survival analysis showed remarkably excellent prognosis compared to the adult counterparts. 5-year overall survival was 95% in our cohort with median follow-up of 8.1 years and in nine patients with follow-up more than 10 years, the 10-year overall survival was 100%. The 5-year and 10-year progression-free survivals of our cohort were 89 and 77%, respectively. FGFR1 fusion seemed to confer a poor prognosis in pediatric oligodendrogliomas. Patients receiving adjuvant chemotherapy (p = 0.046) or harboring Grade II histology (p < 0.001) had longer interval to recurrence. Our study demonstrated the distinct indolent clinical course of pediatric and teenage oligodendrogliomas compared to the adult tumors. Molecular markers commonly seen in adult oligodendrogliomas and other pediatric low-grade gliomas were only rarely seen. Since there is no clinical or molecular evidence suggesting that pediatric "oligodendrogliomas" are the same as adult oligodendrogliomas albeit histologic similarity, a case can be made for their separation from adult oligodendrogliomas in the next WHO classification.


Asunto(s)
Protocolos de Quimioterapia Combinada Antineoplásica/uso terapéutico , Biomarcadores de Tumor/genética , Neoplasias Encefálicas/mortalidad , Recurrencia Local de Neoplasia/mortalidad , Oligodendroglioma/mortalidad , Adolescente , Adulto , Neoplasias Encefálicas/tratamiento farmacológico , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/patología , Niño , Preescolar , Estudios de Cohortes , Femenino , Estudios de Seguimiento , Humanos , Masculino , Recurrencia Local de Neoplasia/tratamiento farmacológico , Recurrencia Local de Neoplasia/genética , Recurrencia Local de Neoplasia/patología , Oligodendroglioma/tratamiento farmacológico , Oligodendroglioma/genética , Oligodendroglioma/patología , Pronóstico , Tasa de Supervivencia , Adulto Joven
14.
Lab Invest ; 97(8): 946-961, 2017 08.
Artículo en Inglés | MEDLINE | ID: mdl-28504687

RESUMEN

Medulloblastoma (MB) is the most common malignant brain tumor in childhood. At present, there is no well-established targeted drug for majority of patients. The kinesin family member 14 (KIF14) is a novel oncogene located on chromosome 1q and is dysregulated in multiple cancers. The objectives of this study were to evaluate KIF14 expression and chromosome 1q copy number in MB, and to delineate its biological functions in MB pathogenesis. By quantitative RT-PCR and immunohistochemistry, we found KIF14 was overexpressed in MB. Increased KIF14 expression at protein level was strongly associated with shorter progression-free survival (P=0.0063) and overall survival (P=0.0083). Fluorescence in situ hybridization (FISH) analysis confirmed genomic gain of chromosome 1q in 17/93 (18.3%) of MB. Combined genetic and immunohistochemical analyses revealed that 76.5% of MB with 1q gain showed consistent overexpression of KIF14, and a tight link between chromosome 1q gain and KIF14 overexpression (P=0.03). Transient, siRNAs-mediated downregulation of KIF14 suppressed cell proliferation and induced apoptosis in two MB cell lines. Stably KIF14 knockdown by shRNAs inhibited cell viability, colony formation, migration and invasion, and tumor sphere formation in MB cells. We conclude that KIF14 is dysregulated in MB and is an adverse prognostic factor for survival. Furthermore, KIF14 is part of MB biology and is a potential therapeutic target for MB.


Asunto(s)
Apoptosis/genética , Regulación hacia Abajo/genética , Cinesinas/genética , Cinesinas/metabolismo , Meduloblastoma/metabolismo , Proteínas Oncogénicas/genética , Proteínas Oncogénicas/metabolismo , Adolescente , Adulto , Línea Celular Tumoral , Movimiento Celular/genética , Proliferación Celular/genética , Supervivencia sin Enfermedad , Femenino , Regulación Neoplásica de la Expresión Génica , Técnicas de Silenciamiento del Gen , Humanos , Inmunohistoquímica , Cinesinas/análisis , Masculino , Meduloblastoma/química , Proteínas Oncogénicas/análisis , ARN Interferente Pequeño/genética , ARN Interferente Pequeño/metabolismo , Adulto Joven
16.
Lancet Oncol ; 17(4): 484-495, 2016 04.
Artículo en Inglés | MEDLINE | ID: mdl-26976201

RESUMEN

BACKGROUND: Patients with incomplete surgical resection of medulloblastoma are controversially regarded as having a marker of high-risk disease, which leads to patients undergoing aggressive surgical resections, so-called second-look surgeries, and intensified chemoradiotherapy. All previous studies assessing the clinical importance of extent of resection have not accounted for molecular subgroup. We analysed the prognostic value of extent of resection in a subgroup-specific manner. METHODS: We retrospectively identified patients who had a histological diagnosis of medulloblastoma and complete data about extent of resection and survival from centres participating in the Medulloblastoma Advanced Genomics International Consortium. We collected from resections done between April, 1997, and February, 2013, at 35 international institutions. We established medulloblastoma subgroup affiliation by gene expression profiling on frozen or formalin-fixed paraffin-embedded tissues. We classified extent of resection on the basis of postoperative imaging as gross total resection (no residual tumour), near-total resection (<1·5 cm(2) tumour remaining), or sub-total resection (≥1·5 cm(2) tumour remaining). We did multivariable analyses of overall survival and progression-free survival using the variables molecular subgroup (WNT, SHH, group 4, and group 3), age (<3 vs ≥3 years old), metastatic status (metastases vs no metastases), geographical location of therapy (North America/Australia vs rest of the world), receipt of chemotherapy (yes vs no) and receipt of craniospinal irradiation (<30 Gy or >30 Gy vs no craniospinal irradiation). The primary analysis outcome was the effect of extent of resection by molecular subgroup and the effects of other clinical variables on overall and progression-free survival. FINDINGS: We included 787 patients with medulloblastoma (86 with WNT tumours, 242 with SHH tumours, 163 with group 3 tumours, and 296 with group 4 tumours) in our multivariable Cox models of progression-free and overall survival. We found that the prognostic benefit of increased extent of resection for patients with medulloblastoma is attenuated after molecular subgroup affiliation is taken into account. We identified a progression-free survival benefit for gross total resection over sub-total resection (hazard ratio [HR] 1·45, 95% CI 1·07-1·96, p=0·16) but no overall survival benefit (HR 1·23, 0·87-1·72, p=0·24). We saw no progression-free survival or overall survival benefit for gross total resection compared with near-total resection (HR 1·05, 0·71-1·53, p=0·8158 for progression-free survival and HR 1·14, 0·75-1·72, p=0·55 for overall survival). No significant survival benefit existed for greater extent of resection for patients with WNT, SHH, or group 3 tumours (HR 1·03, 0·67-1·58, p=0·89 for sub-total resection vs gross total resection). For patients with group 4 tumours, gross total resection conferred a benefit to progression-free survival compared with sub-total resection (HR 1·97, 1·22-3·17, p=0·0056), especially for those with metastatic disease (HR 2·22, 1·00-4·93, p=0·050). However, gross total resection had no effect on overall survival compared with sub-total resection in patients with group 4 tumours (HR 1·67, 0·93-2·99, p=0·084). INTERPRETATION: The prognostic benefit of increased extent of resection for patients with medulloblastoma is attenuated after molecular subgroup affiliation is taken into account. Although maximum safe surgical resection should remain the standard of care, surgical removal of small residual portions of medulloblastoma is not recommended when the likelihood of neurological morbidity is high because there is no definitive benefit to gross total resection compared with near-total resection. FUNDING: Canadian Cancer Society Research Institute, Terry Fox Research Institute, Canadian Institutes of Health Research, National Institutes of Health, Pediatric Brain Tumor Foundation, and the Garron Family Chair in Childhood Cancer Research.


Asunto(s)
Neoplasias Encefálicas/clasificación , Neoplasias Encefálicas/cirugía , Meduloblastoma/clasificación , Meduloblastoma/cirugía , Pronóstico , Adulto , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/patología , Canadá , Niño , Preescolar , Terapia Combinada , Progresión de la Enfermedad , Supervivencia sin Enfermedad , Femenino , Humanos , Lactante , Imagen por Resonancia Magnética , Masculino , Meduloblastoma/genética , Meduloblastoma/patología , Estudios Retrospectivos
17.
Stroke ; 47(2): 527-30, 2016 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-26628387

RESUMEN

BACKGROUND AND PURPOSE: Clinical trial studies show that plaque eccentricity (symmetry) is among the plaque features that have been associated with more frequent cerebrovascular events. Plaque eccentricity of intracranial atherosclerotic disease is unclear because of lacking of cerebral artery specimens. METHODS: 1.5T magnetic resonance imaging was performed in the postmortem brains to scan the cross sections of middle cerebral artery. Plaque eccentricity of histology-verified middle cerebral artery atherosclerosis was calculated on T1-weighted fat-suppressed sequence. RESULTS: Validated by histology, concentric atherosclerotic plaques were identified in 46 middle cerebral arteries (63.9%) on magnetic resonance imaging and eccentric plaques in 26 arteries (26.1%). Eccentric plaques showed higher maximum wall thickness and lower minimum wall thickness than concentric plaques (both P<0.001). Plaque burden and brain infarctions were similar between concentric and eccentric plaques. CONCLUSIONS: Intracranial atherosclerosis presents as eccentric or concentric in geometry, which may be not linked to intracranial plaque risk. Further in vivo imaging studies are needed to identify morphological features of intracranial plaques and to verify its association with brain infarctions.


Asunto(s)
Infarto Encefálico/patología , Arteriosclerosis Intracraneal/patología , Arteria Cerebral Media/patología , Placa Aterosclerótica/patología , Anciano , Autopsia , Arterias Cerebrales/patología , Estudios de Cohortes , Femenino , Humanos , Procesamiento de Imagen Asistido por Computador , Imagen por Resonancia Magnética , Masculino , Persona de Mediana Edad , Tamaño de los Órganos , Estudios Prospectivos
18.
Stroke ; 47(9): 2299-304, 2016 09.
Artículo en Inglés | MEDLINE | ID: mdl-27462119

RESUMEN

BACKGROUND AND PURPOSE: High signal on T1-weighted fat-suppressed images in middle cerebral artery plaques on ex vivo magnetic resonance imaging was verified to be intraplaque hemorrhage histologically. However, the underlying plaque component of low signal on T1-weighted fat-suppressed images (LST1) has never been explored. Based on our experience, we hypothesized that LST1 might indicate the presence of lipid core within intracranial plaques. METHODS: 1.5 T magnetic resonance imaging was performed in the postmortem brains to scan the cross sections of bilateral middle cerebral arteries. Then middle cerebral artery specimens were removed for histology processing. LST1 presence was identified on magnetic resonance images, and lipid core areas were measured on the corresponding histology sections. RESULTS: Total 76 middle cerebral artery locations were included for analysis. LST1 showed a high specificity (96.9%; 95% confidence interval, 82.0%-99.8%) but a low sensitivity (38.6%; 95% confidence interval, 24.7%-54.5%) for detecting lipid core of all areas. However, the sensitivity increased markedly (81.2%; 95% confidence interval, 53.7%-95.0%) when only lipid cores of area ≥0.80 mm(2) were included. Mean lipid core area was 5× larger in those with presence of LST1 than in those without (1.63±1.18 mm(2) versus 0.32±0.31 mm(2); P=0.003). CONCLUSIONS: LST1 is a promising imaging biomarker of identifying intraplaque lipid core, which may be useful to distinguish intracranial atherosclerotic disease from other intracranial vasculopathies and to assess plaque vulnerability for risk stratification of patients with intracranial atherosclerotic disease. In vivo clinical studies are required to explore the correlation between LST1 and clinical outcomes of patients with intracranial atherosclerotic disease.


Asunto(s)
Aterosclerosis/diagnóstico por imagen , Imagen por Resonancia Magnética/métodos , Arteria Cerebral Media/diagnóstico por imagen , Placa Aterosclerótica/diagnóstico por imagen , Anciano , Anciano de 80 o más Años , Femenino , Humanos , Masculino , Persona de Mediana Edad , Sensibilidad y Especificidad
20.
Lancet Oncol ; 16(5): 569-82, 2015 May.
Artículo en Inglés | MEDLINE | ID: mdl-25882982

RESUMEN

BACKGROUND: Rhabdoid brain tumours, also called atypical teratoid rhabdoid tumours, are lethal childhood cancers with characteristic genetic alterations of SMARCB1/hSNF5. Lack of biological understanding of the substantial clinical heterogeneity of these tumours restricts therapeutic advances. We integrated genomic and clinicopathological analyses of a cohort of patients with atypical teratoid rhabdoid tumours to find out the molecular basis for clinical heterogeneity in these tumours. METHODS: We obtained 259 rhabdoid tumours from 37 international institutions and assessed transcriptional profiles in 43 primary tumours and copy number profiles in 38 primary tumours to discover molecular subgroups of atypical teratoid rhabdoid tumours. We used gene and pathway enrichment analyses to discover group-specific molecular markers and did immunohistochemical analyses on 125 primary tumours to evaluate clinicopathological significance of molecular subgroup and ASCL1-NOTCH signalling. FINDINGS: Transcriptional analyses identified two atypical teratoid rhabdoid tumour subgroups with differential enrichment of genetic pathways, and distinct clinicopathological and survival features. Expression of ASCL1, a regulator of NOTCH signalling, correlated with supratentorial location (p=0·004) and superior 5-year overall survival (35%, 95% CI 13-57, and 20%, 6-34, for ASCL1-positive and ASCL1-negative tumours, respectively; p=0·033) in 70 patients who received multimodal treatment. ASCL1 expression also correlated with superior 5-year overall survival (34%, 7-61, and 9%, 0-21, for ASCL1-positive and ASCL1-negative tumours, respectively; p=0·001) in 39 patients who received only chemotherapy without radiation. Cox hazard ratios for overall survival in patients with differential ASCL1 enrichment treated with chemotherapy with or without radiation were 2·02 (95% CI 1·04-3·85; p=0·038) and 3·98 (1·71-9·26; p=0·001). Integrated analyses of molecular subgroupings with clinical prognostic factors showed three distinct clinical risk groups of tumours with different therapeutic outcomes. INTERPRETATION: An integration of clinical risk factors and tumour molecular groups can be used to identify patients who are likely to have improved long-term radiation-free survival and might help therapeutic stratification of patients with atypical teratoid rhabdoid tumours. FUNDING: C17 Research Network, Genome Canada, b.r.a.i.n.child, Mitchell Duckman, Tal Doron and Suri Boon foundations.


Asunto(s)
Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/biosíntesis , Genómica , Receptores Notch/biosíntesis , Tumor Rabdoide/genética , Teratoma/genética , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Niño , Preescolar , Femenino , Regulación Neoplásica de la Expresión Génica , Humanos , Inmunohistoquímica , Lactante , Masculino , Pronóstico , Receptores Notch/genética , Tumor Rabdoide/patología , Factores de Riesgo , Transducción de Señal/genética , Teratoma/patología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA