Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 52
Filtrar
Más filtros

Bases de datos
Tipo del documento
Intervalo de año de publicación
1.
Nucleic Acids Res ; 52(12): 7063-7080, 2024 Jul 08.
Artículo en Inglés | MEDLINE | ID: mdl-38808662

RESUMEN

Cohesin plays a crucial role in the organization of topologically-associated domains (TADs), which influence gene expression and DNA replication timing. Whether epigenetic regulators may affect TADs via cohesin to mediate DNA replication remains elusive. Here, we discover that the histone demethylase PHF2 associates with RAD21, a core subunit of cohesin, to regulate DNA replication in mouse neural stem cells (NSC). PHF2 loss impairs DNA replication due to the activation of dormant replication origins in NSC. Notably, the PHF2/RAD21 co-bound genomic regions are characterized by CTCF enrichment and epigenomic features that resemble efficient, active replication origins, and can act as boundaries to separate adjacent domains. Accordingly, PHF2 loss weakens TADs and chromatin loops at the co-bound loci due to reduced RAD21 occupancy. The observed topological and DNA replication defects in PHF2 KO NSC support a cohesin-dependent mechanism. Furthermore, we demonstrate that the PHF2/RAD21 complex exerts little effect on gene regulation, and that PHF2's histone-demethylase activity is dispensable for normal DNA replication and proliferation of NSC. We propose that PHF2 may serve as a topological accessory to cohesin for cohesin localization to TADs and chromatin loops, where cohesin represses dormant replication origins directly or indirectly, to sustain DNA replication in NSC.


Asunto(s)
Proteínas de Ciclo Celular , Proteínas Cromosómicas no Histona , Cohesinas , Replicación del ADN , Proteínas de Unión al ADN , Células-Madre Neurales , Animales , Proteínas de Ciclo Celular/metabolismo , Proteínas de Ciclo Celular/genética , Proteínas Cromosómicas no Histona/metabolismo , Proteínas Cromosómicas no Histona/genética , Células-Madre Neurales/metabolismo , Células-Madre Neurales/citología , Ratones , Proteínas de Unión al ADN/metabolismo , Proteínas de Unión al ADN/genética , Cromatina/metabolismo , Origen de Réplica , Histona Demetilasas/metabolismo , Histona Demetilasas/genética , Proteínas Nucleares/metabolismo , Proteínas Nucleares/genética , Genoma/genética , Factor de Unión a CCCTC/metabolismo , Factor de Unión a CCCTC/genética , Ratones Noqueados
2.
Biogerontology ; 25(2): 341-360, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-37987889

RESUMEN

Telomere shortening is a well-established hallmark of cellular aging. Telomerase reverse transcriptase (TERT) plays a crucial role in maintaining the length of telomeres, which are specialised protective caps at the end of chromosomes. The lack of in vitro aging models, particularly for the central nervous system (CNS), has impeded progress in understanding aging and age-associated neurodegenerative diseases. In this study, we aimed to explore the possibility of inducing aging-associated features in cell types of the CNS using hiPSC (human induced pluripotent stem cell) technology. To achieve this, we utilised CRISPR/Cas9 to generate hiPSCs with a loss of telomerase function and shortened telomeres. Through directed differentiation, we generated motor neurons and astrocytes to investigate whether telomere shortening could lead to age-associated phenotypes. Our findings revealed that shortened telomeres induced age-associated characteristics in both motor neurons and astrocytes including increased cellular senescence, heightened inflammation, and elevated DNA damage. We also observed cell-type specific age-related morphology changes. Additionally, our study highlighted the fundamental role of TERT and telomere shortening in neural progenitor cell (NPC) proliferation and neuronal differentiation. This study serves as a proof of concept that telomere shortening can effectively induce aging-associated phenotypes, thereby providing a valuable tool to investigate age-related decline and neurodegenerative diseases.


Asunto(s)
Células Madre Pluripotentes Inducidas , Enfermedades Neurodegenerativas , Telomerasa , Humanos , Acortamiento del Telómero , Células Madre Pluripotentes Inducidas/metabolismo , Astrocitos/metabolismo , Telomerasa/genética , Telómero , Neuronas Motoras/metabolismo , Fenotipo
3.
EMBO Rep ; 22(6): e51777, 2021 06 04.
Artículo en Inglés | MEDLINE | ID: mdl-33871166

RESUMEN

Enterovirus-A71 (EV-A71) has been associated with severe neurological forms of hand, foot, and mouth disease (HFMD). EV-A71 infects motor neurons at neuromuscular junctions (NMJs) to invade the central nervous system (CNS). Here, we investigate the role of peripherin (PRPH) during EV-A71 infection, a type III intermediate neurofilament involved in neurodegenerative conditions. In mice infected with EV-A71, PRPH co-localizes with viral particles in the muscles at NMJs and in the spinal cord. In motor neuron-like and neuroblastoma cell lines, surface-expressed PRPH facilitates viral entry, while intracellular PRPH influences viral genome replication through interactions with structural and non-structural viral components. Importantly, PRPH does not play a role during infection with coxsackievirus A16, another causative agent of HFMD rarely associated with neurological complications, suggesting that EV-A71 ability to exploit PRPH represents a unique attribute for successful CNS invasion. Finally, we show that EV-A71 also exploits some of the many PRPH-interacting partners. Of these, small GTP-binding protein Rac1 represents a potential druggable host target to limit neuroinvasion of EV-A71.


Asunto(s)
Enterovirus Humano A , Enterovirus , Enfermedad de Boca, Mano y Pie , Animales , Enterovirus Humano A/genética , Filamentos Intermedios , Ratones , Periferinas , Médula Espinal
4.
Mol Cell ; 51(3): 349-59, 2013 Aug 08.
Artículo en Inglés | MEDLINE | ID: mdl-23932716

RESUMEN

Long noncoding RNAs (lncRNAs) are abundant in the mammalian transcriptome, and many are specifically expressed in the brain. We have identified a group of lncRNAs, including rhabdomyosarcoma 2-associated transcript (RMST), which are indispensable for neurogenesis. Here, we provide mechanistic insight into the role of human RMST in modulating neurogenesis. RMST expression is specific to the brain, regulated by the transcriptional repressor REST, and increases during neuronal differentiation, indicating a role in neurogenesis. RMST physically interacts with SOX2, a transcription factor known to regulate neural fate. RMST and SOX2 coregulate a large pool of downstream genes implicated in neurogenesis. Through RNA interference and genome-wide SOX2 binding studies, we found that RMST is required for the binding of SOX2 to promoter regions of neurogenic transcription factors. These results establish the role of RMST as a transcriptional coregulator of SOX2 and a key player in the regulation of neural stem cell fate.


Asunto(s)
Proteínas del Tejido Nervioso/metabolismo , ARN Largo no Codificante/metabolismo , Proteínas Represoras/metabolismo , Factores de Transcripción SOXB1/metabolismo , Empalme Alternativo , Sitios de Unión , Diferenciación Celular , Línea Celular , Proteínas Co-Represoras , Proteínas de Unión al ADN , Regulación del Desarrollo de la Expresión Génica , Humanos , Células-Madre Neurales , Neurogénesis , Regiones Promotoras Genéticas , Unión Proteica , Interferencia de ARN , ARN Largo no Codificante/genética , ARN Interferente Pequeño
5.
Hum Mol Genet ; 25(11): 2168-2181, 2016 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-27005422

RESUMEN

Spinal muscular atrophy (SMA) is an autosomal-recessive pediatric neurodegenerative disease characterized by selective loss of spinal motor neurons. It is caused by mutation in the survival of motor neuron 1, SMN1, gene and leads to loss of function of the full-length SMN protein. microRNAs (miRNAs) are small RNAs that are involved in post-transcriptional regulation of gene expression. Prior studies have implicated miRNAs in the pathogenesis of motor neuron disease. We hypothesized that motor neuron-specific miRNA expression changes are involved in their selective vulnerability in SMA. Therefore, we sought to determine the effect of SMN loss on miRNAs and their target mRNAs in spinal motor neurons. We used microarray and RNAseq to profile both miRNA and mRNA expression in primary spinal motor neuron cultures after acute SMN knockdown. By integrating the miRNA:mRNA profiles, a number of dysregulated miRNAs were identified with enrichment in differentially expressed putative mRNA targets. miR-431 expression was highly increased, and a number of its putative mRNA targets were significantly downregulated in motor neurons after SMN loss. Further, we found that miR-431 regulates motor neuron neurite length by targeting several molecules previously identified to play a role in motor neuron axon outgrowth, including chondrolectin. Together, our findings indicate that cell-type-specific dysregulation of miR-431 plays a role in the SMA motor neuron phenotype.


Asunto(s)
MicroARNs/genética , Atrofia Muscular Espinal/genética , Proteína 1 para la Supervivencia de la Neurona Motora/genética , Animales , Modelos Animales de Enfermedad , Regulación de la Expresión Génica , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , Ratones , Ratones Noqueados , MicroARNs/biosíntesis , Análisis por Micromatrices , Neuronas Motoras/metabolismo , Neuronas Motoras/patología , Atrofia Muscular Espinal/fisiopatología , Neuritas/metabolismo , Neuritas/patología
6.
Trends Genet ; 29(8): 461-8, 2013 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-23562612

RESUMEN

The central nervous system (CNS) is a complex biological system composed of numerous cell types working in concert. The intricate development and functioning of this highly ordered structure depends upon exquisite spatial and temporal control of gene expression in the cells comprising the CNS. Thus, gene regulatory networks that control cell fates and functions play critical roles in the CNS. Failure to develop and maintain intricate regulatory networks properly leads to impaired development or neural dysfunction, which might manifest as neurological disorders. Long noncoding RNAs (lncRNAs) are emerging as important components of gene regulatory networks, working in concert with transcription factors and epigenetic regulators of gene expression. Interestingly, many lncRNAs are highly expressed in the adult and developing brain, often showing precise temporal and spatial patterns of expression. This specificity of expression and growing awareness of the importance of lncRNAs suggest that they play key roles in CNS development and function. In this review, we highlight the growing evidence for the importance of lncRNAs in the CNS and the indications that their dysregulation underlies some neurological disorders.


Asunto(s)
Sistema Nervioso Central/fisiopatología , ARN Largo no Codificante/genética , Encéfalo/crecimiento & desarrollo , Encéfalo/fisiopatología , Sistema Nervioso Central/metabolismo , Epigénesis Genética , Regulación del Desarrollo de la Expresión Génica , Redes Reguladoras de Genes , Humanos , Enfermedades del Sistema Nervioso/genética , Enfermedades del Sistema Nervioso/fisiopatología , Transcripción Genética
7.
EMBO J ; 31(3): 522-33, 2012 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-22193719

RESUMEN

Long non-coding RNAs (lncRNAs) are a numerous class of newly discovered genes in the human genome, which have been proposed to be key regulators of biological processes, including stem cell pluripotency and neurogenesis. However, at present very little functional characterization of lncRNAs in human differentiation has been carried out. In the present study, we address this using human embryonic stem cells (hESCs) as a paradigm for pluripotency and neuronal differentiation. With a newly developed method, hESCs were robustly and efficiently differentiated into neurons, and we profiled the expression of thousands of lncRNAs using a custom-designed microarray. Some hESC-specific lncRNAs involved in pluripotency maintenance were identified, and shown to physically interact with SOX2, and PRC2 complex component, SUZ12. Using a similar approach, we identified lncRNAs required for neurogenesis. Knockdown studies indicated that loss of any of these lncRNAs blocked neurogenesis, and immunoprecipitation studies revealed physical association with REST and SUZ12. This study indicates that lncRNAs are important regulators of pluripotency and neurogenesis, and represents important evidence for an indispensable role of lncRNAs in human brain development.


Asunto(s)
Diferenciación Celular/genética , Cromatina/metabolismo , Neuronas/citología , ARN no Traducido/fisiología , Factores de Transcripción/metabolismo , Técnica del Anticuerpo Fluorescente , Técnicas de Silenciamiento del Gen , Humanos , Análisis de Secuencia por Matrices de Oligonucleótidos , ARN no Traducido/genética , ARN no Traducido/metabolismo
8.
J Mol Cell Cardiol ; 89(Pt A): 98-112, 2015 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-26423156

RESUMEN

Long noncoding RNAs (lncRNAs) are emerging as important regulators of developmental pathways. However, their roles in human cardiac precursor cell (CPC) remain unexplored. To characterize the long noncoding transcriptome during human CPC cardiac differentiation, we profiled the lncRNA transcriptome in CPCs isolated from the human fetal heart and identified 570 lncRNAs that were modulated during cardiac differentiation. Many of these were associated with active cardiac enhancer and super enhancers (SE) with their expression being correlated with proximal cardiac genes. One of the most upregulated lncRNAs was a SE-associated lncRNA that was named CARMEN, (CAR)diac (M)esoderm (E)nhancer-associated (N)oncoding RNA. CARMEN exhibits RNA-dependent enhancing activity and is upstream of the cardiac mesoderm-specifying gene regulatory network. Interestingly, CARMEN interacts with SUZ12 and EZH2, two components of the polycomb repressive complex 2 (PRC2). We demonstrate that CARMEN knockdown inhibits cardiac specification and differentiation in cardiac precursor cells independently of MIR-143 and -145 expression, two microRNAs located proximal to the enhancer sequences. Importantly, CARMEN expression was activated during pathological remodeling in the mouse and human hearts, and was necessary for maintaining cardiac identity in differentiated cardiomyocytes. This study demonstrates therefore that CARMEN is a crucial regulator of cardiac cell differentiation and homeostasis.


Asunto(s)
Tipificación del Cuerpo/genética , Diferenciación Celular/genética , Corazón/embriología , Homeostasis/genética , ARN Largo no Codificante/metabolismo , Animales , Linaje de la Célula/genética , Elementos de Facilitación Genéticos/genética , Proteína Potenciadora del Homólogo Zeste 2 , Perfilación de la Expresión Génica , Regulación del Desarrollo de la Expresión Génica , Técnicas de Silenciamiento del Gen , Humanos , Ratones , Miocardio/patología , Complejo Represivo Polycomb 2/metabolismo , ARN Largo no Codificante/genética , Células Madre/citología , Transcriptoma/genética
9.
Aging Dis ; 15(2): 503-516, 2024 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-37815912

RESUMEN

Aging is a complex physiological process encompassing both physical and cognitive decline over time. This intricate process is governed by a multitude of hallmarks and pathways, which collectively contribute to the emergence of numerous age-related diseases. In response to the remarkable increase in human life expectancy, there has been a substantial rise in research focusing on the development of anti-aging therapies and pharmacological interventions. Mitochondrial dysfunction, a critical factor in the aging process, significantly impacts overall cellular health. In this extensive review, we will explore the contemporary landscape of anti-aging strategies, placing particular emphasis on the promising potential of mitotherapy as a ground-breaking approach to counteract the aging process. Moreover, we will investigate the successful application of mitochondrial transplantation in both animal models and clinical trials, emphasizing its translational potential. Finally, we will discuss the inherent challenges and future possibilities of mitotherapy within the realm of aging research and intervention.


Asunto(s)
Envejecimiento , Rejuvenecimiento , Animales , Humanos , Rejuvenecimiento/fisiología , Envejecimiento/fisiología , Mitocondrias/metabolismo , Proteómica
10.
Chemosphere ; 349: 140740, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38006918

RESUMEN

Phthalates are extensively used as plasticizers in diverse consumer care products but have been reported to cause adverse health effects in humans. A commonly used phthalate, di-2-ethylhexylphthalate (DEHP) causes developmental and reproductive toxicities in humans, but the associated molecular mechanisms are not fully understood. Mono-2-ethylhexylphthalate (MEHP), a hydrolytic product of DEHP generated by cellular esterases, is proposed to be the active toxicant. We conducted a screen for sensory irritants among compounds used in consumer care using an assay for human Transient Receptor Potential A1 (hTRPA1). We have identified MEHP as a potent agonist of hTRPA1. MEHP-induced hTRPA1 activation was blocked by the TRPA1 inhibitor A-967079. Patch clamp assays revealed that MEHP induced inward currents in cells expressing hTRPA1. In addition, the N855S mutation in hTRPA1 associated with familial episodic pain syndrome decreased MEHP-induced hTRPA1 activation. In summary, we report that MEHP is a potent agonist of hTRPA1 which generates new possible mechanisms for toxic effects of phthalates in humans.


Asunto(s)
Dietilhexil Ftalato , Ácidos Ftálicos , Humanos , Dietilhexil Ftalato/toxicidad , Canal Catiónico TRPA1/genética , Ácidos Ftálicos/toxicidad , Hormonas Esteroides Gonadales
11.
Stem Cells Transl Med ; 13(4): 387-398, 2024 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-38321361

RESUMEN

The transplantation of spinal cord progenitor cells (SCPCs) derived from human-induced pluripotent stem cells (iPSCs) has beneficial effects in treating spinal cord injury (SCI). However, the presence of residual undifferentiated iPSCs among their differentiated progeny poses a high risk as these cells can develop teratomas or other types of tumors post-transplantation. Despite the need to remove these residual undifferentiated iPSCs, no specific surface markers can identify them for subsequent removal. By profiling the size of SCPCs after a 10-day differentiation process, we found that the large-sized group contains significantly more cells expressing pluripotent markers. In this study, we used a sized-based, label-free separation using an inertial microfluidic-based device to remove tumor-risk cells. The device can reduce the number of undifferentiated cells from an SCPC population with high throughput (ie, >3 million cells/minute) without affecting cell viability and functions. The sorted cells were verified with immunofluorescence staining, flow cytometry analysis, and colony culture assay. We demonstrated the capabilities of our technology to reduce the percentage of OCT4-positive cells. Our technology has great potential for the "downstream processing" of cell manufacturing workflow, ensuring better quality and safety of transplanted cells.


Asunto(s)
Células Madre Pluripotentes Inducidas , Células-Madre Neurales , Traumatismos de la Médula Espinal , Humanos , Médula Espinal/patología , Diferenciación Celular/fisiología , Traumatismos de la Médula Espinal/terapia , Traumatismos de la Médula Espinal/patología
12.
Emerg Microbes Infect ; 13(1): 2382235, 2024 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-39017655

RESUMEN

Enterovirus A71 (EV-A71) causes Hand, Foot, and Mouth Disease and has been clinically associated with neurological complications. However, there is a lack of relevant models to elucidate the neuropathology of EV-A71 and its mechanism, as the current models mainly utilize animal models or immortalized cell lines. In this study, we established a human motor neuron model for EV-A71 infection. Single cell transcriptomics of a mixed neuronal population reveal higher viral RNA load in motor neurons, suggesting higher infectivity and replication of EV-A71 in motor neurons. The elevated RNA load in motor neurons correlates with the downregulation of ferritin-encoding genes. Subsequent analysis confirms that neurons infected with EV-A71 undergo ferroptosis, as evidenced by increased levels of labile Fe2+ and peroxidated lipids. Notably, the Fe2+ chelator Deferoxamine improves mitochondrial function and promotes survival of motor neurons by 40% after EV-A71 infection. These findings deepen understanding of the molecular pathogenesis of EV-A71 infection, providing insights which suggest that improving mitochondrial respiration and inhibition of ferroptosis can mitigate the impact of EV-A71 infection in the central nervous system.


Asunto(s)
Enterovirus Humano A , Infecciones por Enterovirus , Ferroptosis , Neuronas Motoras , Ferroptosis/efectos de los fármacos , Humanos , Enterovirus Humano A/fisiología , Enterovirus Humano A/genética , Enterovirus Humano A/efectos de los fármacos , Neuronas Motoras/virología , Neuronas Motoras/metabolismo , Infecciones por Enterovirus/virología , Infecciones por Enterovirus/metabolismo , Replicación Viral , Mitocondrias/metabolismo , Deferoxamina/farmacología , Carga Viral , Hierro/metabolismo , Ferritinas/metabolismo , Ferritinas/genética
13.
J Clin Invest ; 2024 May 09.
Artículo en Inglés | MEDLINE | ID: mdl-38722695

RESUMEN

Spinal Muscular Atrophy (SMA) is typically characterized as a motor neuron disease, but extra-neuronal phenotypes are present in almost every organ in severely affected patients and animal models. Extra-neuronal phenotypes were previously underappreciated as patients with severe SMA phenotypes usually died in infancy; however, with current treatments for motor neurons increasing patient lifespan, impaired function of peripheral organs may develop into significant future comorbidities and lead to new treatment-modified phenotypes. Fatty liver is seen in SMA animal models , but generalizability to patients and whether this is due to hepatocyte-intrinsic Survival Motor Neuron (SMN) protein deficiency and/or subsequent to skeletal muscle denervation is unknown. If liver pathology in SMA is SMN-dependent and hepatocyte-intrinsic, this suggests SMN repleting therapies must target extra-neuronal tissues and motor neurons for optimal patient outcome. Here we showed that fatty liver is present in SMA and that SMA patient-specific iHeps were susceptible to steatosis. Using proteomics, functional studies and CRISPR/Cas9 gene editing, we confirmed that fatty liver in SMA is a primary SMN-dependent hepatocyte-intrinsic liver defect associated with mitochondrial and other hepatic metabolism implications. These pathologies require monitoring and indicate need for systematic clinical surveillance and additional and/or combinatorial therapies to ensure continued SMA patient health.

14.
Mol Ther ; 20(12): 2335-46, 2012 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-22968480

RESUMEN

Previous efforts to derive lung progenitor cells from human embryonic stem (hES) cells using embryoid body formation or stromal feeder cocultures had been limited by low efficiencies. Here, we report a step-wise differentiation method to drive both hES and induced pluripotent stem (iPS) cells toward the lung lineage. Our data demonstrated a 30% efficiency in generating lung epithelial cells (LECs) that expresses various distal lung markers. Further enrichment of lung progenitor cells using a stem cell marker, CD166 before transplantation into bleomycin-injured NOD/SCID mice resulted in enhanced survivability of mice and improved lung pulmonary functions. Immunohistochemistry of lung sections from surviving mice further confirmed the specific engraftment of transplanted cells in the damaged lung. These cells were shown to express surfactant protein C, a specific marker for distal lung progenitor in the alveoli. Our study has therefore demonstrated the proof-of-concept of using iPS cells for the repair of acute lung injury, demonstrating the potential usefulness of using patient's own iPS cells to prevent immune rejection which arise from allogenic transplantation.


Asunto(s)
Lesión Pulmonar Aguda/metabolismo , Lesión Pulmonar Aguda/terapia , Antígenos CD/metabolismo , Moléculas de Adhesión Celular Neuronal/metabolismo , Diferenciación Celular/fisiología , Células Madre Embrionarias/citología , Proteínas Fetales/metabolismo , Células Madre Pluripotentes Inducidas/citología , Lesión Pulmonar Aguda/genética , Animales , Diferenciación Celular/genética , Línea Celular , Células Madre Embrionarias/metabolismo , Células Madre Embrionarias/fisiología , Células Madre Embrionarias/trasplante , Citometría de Flujo , Humanos , Inmunohistoquímica , Células Madre Pluripotentes Inducidas/metabolismo , Células Madre Pluripotentes Inducidas/fisiología , Células Madre Pluripotentes Inducidas/trasplante , Ratones
15.
Bioeng Transl Med ; 8(2): e10389, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36925680

RESUMEN

The neuroinflammatory response that is elicited after spinal cord injury contributes to both tissue damage and reparative processes. The complex and dynamic cellular and molecular changes within the spinal cord microenvironment result in a functional imbalance of immune cells and their modulatory factors. To facilitate wound healing and repair, it is necessary to manipulate the immunological pathways during neuroinflammation to achieve successful therapeutic interventions. In this review, recent advancements and fresh perspectives on the consequences of neuroinflammation after SCI and modulation of the inflammatory responses through the use of molecular-, cellular-, and biomaterial-based therapies to promote tissue regeneration and functional recovery will be discussed.

16.
Artículo en Inglés | MEDLINE | ID: mdl-37751213

RESUMEN

Transplanting human induced pluripotent stem cells (iPSCs)-derived spinal cord progenitor cells (SCPCs) is a promising approach to treat spinal cord injuries. However, stem cell therapies face challenges in cell survival, cell localization to the targeted site, and the control of cell differentiation. Here, we encapsulated SCPCs in thiol-modified hyaluronan-gelatin hydrogels and optimized scaffold mechanical properties and cell encapsulation density to promote cell viability and neuronal differentiation in vitro and in vivo. Different compositions of hyaluronan-gelatin hydrogels formulated by varying concentrations of poly(ethylene glycol) diacrylate were mechanically characterized by using atomic force microscopy. In vitro SCPC encapsulation study showed higher cell viability and proliferation with lower substrate Young's modulus (200 Pa vs 580 Pa) and cell density. Moreover, the soft hydrogels facilitated a higher degree of neuronal differentiation with extended filament structures in contrast to clumped cellular morphologies obtained in stiff hydrogels (p < 0.01). When transplanted in vivo, the optimized SCPC-encapsulated hydrogels resulted in higher cell survival and localization at the transplanted region as compared to cell delivery without hydrogel encapsulation at 2 weeks postimplantation within the rat spinal cord (p < 0.01). Notably, immunostaining demonstrated that the hydrogel-encapsulated SCPCs differentiated along the neuronal and oligodendroglial lineages in vivo. The lack of pluripotency and proliferation also supported the safety of the SCPC transplantation approach. Overall, the injectable hyaluronan-gelatin hydrogel shows promise in supporting the survival and neural differentiation of human SCPCs after transplantation into the spinal cord.

17.
Carbohydr Polym ; 302: 120308, 2023 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-36604036

RESUMEN

Hydrogels with more than one mode of crosslinking have gained interest due to improved control over hydrogel properties such as mechanical strength using multiple stimuli. In this work, sodium alginate was covalently conjugated onto thermoresponsive polyurethanes to prepare hybrid polymers (EPC-Alg) that are responsive to both temperature and Ca2+, forming orthogonally crosslinked hydrogels which are non-toxic to cells. Notably, the crosslinks are fully reversible, allowing for gel strength to be modulated via selective removal of either stimulus, or complete deconstruction of the hydrogel network by removing both stimuli. Higher alginate fractions increased the hydrophilicity and Ca2+ response of the EPC-Alg hydrogel, enabling tunable modulation of the thermal stability, stiffness and gelation temperatures. The EPC-Alg hydrogel could sustain protein release for a month and encapsulate neural spheroids with high cell viability after 7-day culture, demonstrating feasibility towards 3D cell encapsulation in cell-based biomedical applications such as cell encapsulation and cell therapy.


Asunto(s)
Alginatos , Encapsulación Celular , Hidrogeles/farmacología
18.
Adv Healthc Mater ; 12(9): e2202342, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36502337

RESUMEN

In the process of generating organoids, basement membrane extracts or Matrigel are often used to encapsulate cells but they are poorly defined and contribute to reproducibility issues. While defined hydrogels are increasingly used for organoid culture, the effects of replacing Matrigel with a defined hydrogel on neural progenitor growth, neural differentiation, and maturation within organoids are not well-explored. In this study, the use of alginate hydrogels as a Matrigel substitute in spinal cord organoid generation is explored. It is found that alginate encapsulation reduces organoid size variability by preventing organoid aggregation. Importantly, alginate supports neurogenesis and gliogenesis of the spinal cord organoids at a similar efficiency to Matrigel, with mature myelinated neurons observed by day 120. Furthermore, using alginate leads to lower expression of non-spinal markers such as FOXA2, suggesting better control over neural fate specification. To demonstrate the feasibility of using alginate-based organoid cultures as disease models, an isogenic pair of induced pluripotent stem cells discordant for the ALS-causing mutation TDP43G298S is used, where increased TDP43 mislocalization in the mutant organoids is observed. This study shows that alginate is an ideal substitute for Matrigel for spinal cord organoid derivation, especially when a xeno-free and fully defined 3D culture condition is desired.


Asunto(s)
Hidrogeles , Enfermedades de la Médula Espinal , Humanos , Hidrogeles/farmacología , Hidrogeles/metabolismo , Alginatos/farmacología , Reproducibilidad de los Resultados , Organoides , Enfermedades de la Médula Espinal/metabolismo
19.
bioRxiv ; 2023 Jan 19.
Artículo en Inglés | MEDLINE | ID: mdl-36711589

RESUMEN

The geroscience hypothesis states that a therapy that prevents the underlying aging process should prevent multiple aging related diseases. The mTOR (mechanistic target of rapamycin)/insulin and NAD+ (nicotinamide adenine dinucleotide) pathways are two of the most validated aging pathways. Yet, it's largely unclear how they might talk to each other in aging. In genome-wide CRISPRa screening with a novel class of N-O-Methyl-propanamide-containing compounds we named BIOIO-1001, we identified lipid metabolism centering on SIRT3 as a point of intersection of the mTOR/insulin and NAD+ pathways. In vivo testing indicated that BIOIO-1001 reduced high fat, high sugar diet-induced metabolic derangements, inflammation, and fibrosis, each being characteristic of non-alcoholic steatohepatitis (NASH). An unbiased screen of patient datasets suggested a potential link between the anti-inflammatory and anti-fibrotic effects of BIOIO-1001 in NASH models to those in amyotrophic lateral sclerosis (ALS). Directed experiments subsequently determined that BIOIO-1001 was protective in both sporadic and familial ALS models. Both NASH and ALS have no treatments and suffer from a lack of convenient biomarkers to monitor therapeutic efficacy. A potential strength in considering BIOIO-1001 as a therapy is that the blood biomarker that it modulates, namely plasma triglycerides, can be conveniently used to screen patients for responders. More conceptually, to our knowledge BIOIO-1001 is a first therapy that fits the geroscience hypothesis by acting on multiple core aging pathways and that can alleviate multiple conditions after they have set in.

20.
iScience ; 26(11): 108152, 2023 Nov 17.
Artículo en Inglés | MEDLINE | ID: mdl-37920668

RESUMEN

MicroRNAs (miRNAs) modulate mRNA expression, and their deregulation contributes to various diseases including amyotrophic lateral sclerosis (ALS). As fused in sarcoma (FUS) is a causal gene for ALS and regulates biogenesis of miRNAs, we systematically analyzed the miRNA repertoires in spinal cords and hippocampi from ALS-FUS mice to understand how FUS-dependent miRNA deregulation contributes to ALS. miRNA profiling identified differentially expressed miRNAs between different central nervous system (CNS) regions as well as disease states. Among the up-regulated miRNAs, miR-1197 targets the pro-survival pseudokinase Trib2. A reduced TRIB2 expression was observed in iPSC-derived motor neurons from ALS patients. Pharmacological stabilization of TRIB2 protein with a clinically approved cancer drug rescues the survival of iPSC-derived human motor neurons, including those from a sporadic ALS patient. Collectively, our data indicate that miRNA profiling can be used to probe the molecular mechanisms underlying selective vulnerability, and TRIB2 is a potential therapeutic target for ALS.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA