Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
iScience ; 27(8): 110525, 2024 Aug 16.
Artículo en Inglés | MEDLINE | ID: mdl-39156641

RESUMEN

Elevated pernio incidence was observed during the COVID-19 pandemic. This prospective study enrolled subjects with pandemic-associated pernio in Wisconsin and Switzerland. Because pernio is a cutaneous manifestation of the interferonopathies, and type I interferon (IFN-I) immunity is critical to COVID-19 recovery, we tested the hypothesis that severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)-mediated IFN-I signaling might underlie some pernio cases. Tissue-level IFN-I activity and plasmacytoid dendritic cell infiltrates were demonstrated in 100% of the Wisconsin cases. Across both cohorts, sparse SARS-CoV-2 RNA was captured in 25% (6/22) of biopsies, all with high inflammation. Affected patients lacked adaptive immunity to SARS-CoV-2. A hamster model of intranasal SARS-CoV-2 infection was used as a proof-of-principle experiment: RNA was detected in lungs and toes with IFN-I activity at both the sites, while replicating virus was found only in the lung. These data support a viral trigger for some pernio cases, where sustained local IFN-I activity can be triggered in the absence of seroconversion.

2.
bioRxiv ; 2024 Jul 28.
Artículo en Inglés | MEDLINE | ID: mdl-39091849

RESUMEN

Transfer RNA (tRNA) modifications are crucial for protein synthesis, but their position-specific physiological roles remain poorly understood. Here we investigate the impact of N4-acetylcytidine (ac4C), a highly conserved tRNA modification, using a Thumpd1 knockout mouse model. We find that loss of Thumpd1-dependent tRNA acetylation leads to reduced levels of tRNALeu, increased ribosome stalling, and activation of eIF2α phosphorylation. Thumpd1 knockout mice exhibit growth defects and sterility. Remarkably, concurrent knockout of Thumpd1 and the stress-sensing kinase Gcn2 causes penetrant postnatal lethality, indicating a critical genetic interaction. Our findings demonstrate that a modification restricted to a single position within type II cytosolic tRNAs can regulate ribosome-mediated stress signaling in mammalian organisms, with implications for our understanding of translation control as well as therapeutic interventions.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA