Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Mol Cell ; 64(4): 774-789, 2016 11 17.
Artículo en Inglés | MEDLINE | ID: mdl-27840026

RESUMEN

For many years, a connection between circadian clocks and cancer has been postulated. Here we describe an unexpected function for the circadian repressor CRY2 as a component of an FBXL3-containing E3 ligase that recruits T58-phosphorylated c-MYC for ubiquitylation. c-MYC is a critical regulator of cell proliferation; T58 is central in a phosphodegron long recognized as a hotspot for mutation in cancer. This site is also targeted by FBXW7, although the full machinery responsible for its turnover has remained obscure. CRY1 cannot substitute for CRY2 in promoting c-MYC degradation. Their unique functions may explain prior conflicting reports that have fueled uncertainty about the relationship between clocks and cancer. We demonstrate that c-MYC is a target of CRY2-dependent protein turnover, suggesting a molecular mechanism for circadian control of cell growth and a new paradigm for circadian protein degradation.


Asunto(s)
Transformación Celular Neoplásica/genética , Relojes Circadianos/genética , Criptocromos/genética , Proteínas F-Box/genética , Regulación Neoplásica de la Expresión Génica , Linfoma/genética , Proteínas Proto-Oncogénicas c-myc/genética , Animales , Proteínas Portadoras/química , Proteínas Portadoras/genética , Proteínas Portadoras/metabolismo , Transformación Celular Neoplásica/metabolismo , Transformación Celular Neoplásica/patología , Ritmo Circadiano/genética , Criptocromos/química , Criptocromos/metabolismo , Proteínas Cullin/química , Proteínas Cullin/genética , Proteínas Cullin/metabolismo , Proteínas F-Box/química , Proteínas F-Box/metabolismo , Fibroblastos , Células HEK293 , Humanos , Linfoma/metabolismo , Linfoma/mortalidad , Linfoma/patología , Ratones , Ratones Noqueados , Modelos Moleculares , Estabilidad Proteica , Estructura Secundaria de Proteína , Proteolisis , Proteínas Proto-Oncogénicas c-myc/química , Proteínas Proto-Oncogénicas c-myc/metabolismo , Proteínas Quinasas Asociadas a Fase-S/química , Proteínas Quinasas Asociadas a Fase-S/genética , Proteínas Quinasas Asociadas a Fase-S/metabolismo , Transducción de Señal , Análisis de Supervivencia
2.
J Biol Rhythms ; 32(4): 345-358, 2017 08.
Artículo en Inglés | MEDLINE | ID: mdl-28816632

RESUMEN

Metformin is widely used in the treatment of type 2 diabetes to lower blood glucose. Although metformin is a relatively safe and effective drug, its clinical efficacy is variable and under certain circumstances it may contribute to life-threatening lactic acidosis. Thus, additional understanding of metformin pharmacokinetics and pharmacodynamics could provide important information regarding therapeutic use of this widely prescribed drug. Here we report a significant effect of time of day on acute blood glucose reduction in response to metformin administration and on blood lactate levels in healthy mice. Furthermore, we demonstrate that while metformin transport into hepatocytes is unaltered by time of day, the kinetics of metformin-induced activation of AMP-activated protein kinase (AMPK) in the liver are remarkably altered with circadian time. Liver-specific ablation of Bmal1 expression alters metformin induction of AMPK and blood glucose response but does not completely abolish time of day differences. Together, these data demonstrate that circadian rhythms affect the biological responses to metformin in a complex manner.


Asunto(s)
Relojes Circadianos/efectos de los fármacos , Hígado/efectos de los fármacos , Hígado/fisiología , Metformina/administración & dosificación , Proteínas Quinasas Activadas por AMP , Animales , Glucemia/efectos de los fármacos , Ritmo Circadiano/efectos de los fármacos , Diabetes Mellitus Tipo 2/tratamiento farmacológico , Hepatocitos/efectos de los fármacos , Hepatocitos/fisiología , Lactatos/sangre , Masculino , Ratones , Proteínas Serina-Treonina Quinasas
3.
Cell Metab ; 26(1): 243-255.e6, 2017 Jul 05.
Artículo en Inglés | MEDLINE | ID: mdl-28683290

RESUMEN

Cellular metabolite balance and mitochondrial function are under circadian control, but the pathways connecting the molecular clock to these functions are unclear. Peroxisome proliferator-activated receptor delta (PPARδ) enables preferential utilization of lipids as fuel during exercise and is a major driver of exercise endurance. We show here that the circadian repressors CRY1 and CRY2 function as co-repressors for PPARδ. Cry1-/-;Cry2-/- myotubes and muscles exhibit elevated expression of PPARδ target genes, particularly in the context of exercise. Notably, CRY1/2 seem to repress a distinct subset of PPARδ target genes in muscle compared to the co-repressor NCOR1. In vivo, genetic disruption of Cry1 and Cry2 enhances sprint exercise performance in mice. Collectively, our data demonstrate that CRY1 and CRY2 modulate exercise physiology by altering the activity of several transcription factors, including CLOCK/BMAL1 and PPARδ, and thereby alter energy storage and substrate selection for energy production.


Asunto(s)
Criptocromos/metabolismo , PPAR delta/metabolismo , Condicionamiento Físico Animal , Animales , Células Cultivadas , Criptocromos/genética , Eliminación de Gen , Regulación de la Expresión Génica , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Músculos/fisiología , Mapas de Interacción de Proteínas
4.
Elife ; 42015 Mar 10.
Artículo en Inglés | MEDLINE | ID: mdl-25756610

RESUMEN

The circadian transcriptional repressors cryptochrome 1 (Cry1) and 2 (Cry2) evolved from photolyases, bacterial light-activated DNA repair enzymes. In this study, we report that while they have lost DNA repair activity, Cry1/2 adapted to protect genomic integrity by responding to DNA damage through posttranslational modification and coordinating the downstream transcriptional response. We demonstrate that genotoxic stress stimulates Cry1 phosphorylation and its deubiquitination by Herpes virus associated ubiquitin-specific protease (Hausp, a.k.a Usp7), stabilizing Cry1 and shifting circadian clock time. DNA damage also increases Cry2 interaction with Fbxl3, destabilizing Cry2. Thus, genotoxic stress increases the Cry1/Cry2 ratio, suggesting distinct functions for Cry1 and Cry2 following DNA damage. Indeed, the transcriptional response to genotoxic stress is enhanced in Cry1-/- and blunted in Cry2-/- cells. Furthermore, Cry2-/- cells accumulate damaged DNA. These results suggest that Cry1 and Cry2, which evolved from DNA repair enzymes, protect genomic integrity via coordinated transcriptional regulation.


Asunto(s)
Relojes Circadianos/genética , Criptocromos/fisiología , Daño del ADN , Proteasas Ubiquitina-Específicas/fisiología , Animales , Línea Celular , Criptocromos/metabolismo , Ratones , Fosforilación , Unión Proteica , Estabilidad Proteica , Transcripción Genética , Peptidasa Específica de Ubiquitina 7 , Proteasas Ubiquitina-Específicas/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA