RESUMEN
Sigma receptors are non-opiate/non-phencyclidine receptors that bind progesterone and/or heme and also several unrelated xenobiotics/chemicals. They reside in the plasma membrane and in the membranes of the endoplasmic reticulum, mitochondria, and nucleus. Until recently, the biology/pharmacology of these proteins focused primarily on their role in neuronal functions in the brain/retina. However, there have been recent developments in the field with the discovery of unexpected roles for these proteins in iron/heme homeostasis. Sigma receptor 1 (S1R) regulates the oxidative stress-related transcription factor NRF2 and protects against ferroptosis, an iron-induced cell death process. Sigma receptor 2 (S2R), which is structurally unrelated to S1R, complexes with progesterone receptor membrane components PGRMC1 and PGRMC2. S2R, PGRMC1, and PGRMC2, either independently or as protein-protein complexes, elicit a multitude of effects with a profound influence on iron/heme homeostasis. This includes the regulation of the secretion of the iron-regulatory hormone hepcidin, the modulation of the activity of mitochondrial ferrochelatase, which catalyzes iron incorporation into protoporphyrin IX to form heme, chaperoning heme to specific hemoproteins thereby influencing their biological activity and stability, and protection against ferroptosis. Consequently, S1R, S2R, PGRMC1, and PGRMC2 potentiate disease progression in hemochromatosis and cancer. These new discoveries usher this intriguing group of non-traditional progesterone receptors into an unchartered territory in biology and medicine.
Asunto(s)
Ferroptosis , Receptores sigma , Receptores sigma/metabolismo , Hemo/metabolismo , Receptores de Progesterona/metabolismo , Hierro , HomeostasisRESUMEN
Aerobic glycolysis in cancer cells, originally observed by Warburg 100 years ago, which involves the production of lactate as the end product of glucose breakdown even in the presence of adequate oxygen, is the foundation for the current interest in the cancer-cell-specific reprograming of metabolic pathways. The renewed interest in cancer cell metabolism has now gone well beyond the original Warburg effect related to glycolysis to other metabolic pathways that include amino acid metabolism, one-carbon metabolism, the pentose phosphate pathway, nucleotide synthesis, antioxidant machinery, etc. Since glucose and amino acids constitute the primary nutrients that fuel the altered metabolic pathways in cancer cells, the transporters that mediate the transfer of these nutrients and their metabolites not only across the plasma membrane but also across the mitochondrial and lysosomal membranes have become an integral component of the expansion of the Warburg effect. In this review, we focus on the interplay between these transporters and metabolic pathways that facilitates metabolic reprogramming, which has become a hallmark of cancer cells. The beneficial outcome of this recent understanding of the unique metabolic signature surrounding the Warburg effect is the identification of novel drug targets for the development of a new generation of therapeutics to treat cancer.
RESUMEN
In the original publication [...].
RESUMEN
Mutations in p53 and KRAS are seen in most cases of colon cancer. The impact of these mutations on signaling pathways related to cancer growth has been studied in depth, but relatively less is known on their effects on amino acid transporters in cancer cells. This represents a significant knowledge gap because amino acid nutrition in cancer cells profoundly influences macropinocytosis and ferroptosis, two processes with opposing effects on tumor growth. Here, we used isogenic colon cancer cell lines to investigate the effects of p53 deletion and KRAS activation on two amino acid transporters relevant to macropinocytosis (SLC38A5) and ferroptosis (SLC7A11). Our studies show that the predominant effect of p53 deletion is to induce SLC7A11 with the resultant potentiation of antioxidant machinery and protection of cancer cells from ferroptosis, whereas KRAS activation induces not only SLC7A11 but also SLC38A5, thus offering protection from ferroptosis as well as improving amino acid nutrition in cancer cells via accelerated macropinocytosis. Niclosamide, an FDA-approved anti-helminthic, blocks the functions of SLC7A11 and SLC38A5, thus inducing ferroptosis and suppressing macropinocytosis, with the resultant effective reversal of tumor-promoting actions of oncogenic changes in p53 and KRAS. These findings underscore the potential of this drug in colon cancer treatment.
Asunto(s)
Neoplasias del Colon , Ferroptosis , Niclosamida , Pinocitosis , Proteínas Proto-Oncogénicas p21(ras) , Proteína p53 Supresora de Tumor , Humanos , Ferroptosis/efectos de los fármacos , Ferroptosis/genética , Pinocitosis/efectos de los fármacos , Neoplasias del Colon/tratamiento farmacológico , Neoplasias del Colon/patología , Neoplasias del Colon/metabolismo , Neoplasias del Colon/genética , Proteína p53 Supresora de Tumor/metabolismo , Proteína p53 Supresora de Tumor/genética , Proteínas Proto-Oncogénicas p21(ras)/metabolismo , Proteínas Proto-Oncogénicas p21(ras)/genética , Línea Celular Tumoral , Niclosamida/farmacología , Niclosamida/uso terapéutico , Antineoplásicos/farmacología , Sistema de Transporte de Aminoácidos y+/metabolismo , Sistema de Transporte de Aminoácidos y+/genética , Mutación/genéticaRESUMEN
The amino acid transporters SLC38A5 and SLC7A11 are upregulated in triple-negative breast cancer (TNBC). SLC38A5 transports glutamine, methionine, glycine and serine, and therefore activates mTOR signaling and induces epigenetic modifications. SLC7A11 transports cystine and increases the cellular levels of glutathione, which protects against oxidative stress and lipid peroxidation via glutathione peroxidase, a seleno (Se)-enzyme. The primary source of Se is dietary Se-methionine (Se-Met). Since SLC38A5 transports methionine, we examined its role in Se-Met uptake in TNBC cells. We found that SLC38A5 interacts with methionine and Se-Met with comparable affinity. We also examined the influence of Se-Met on Nrf2 in TNBC cells. Se-Met activated Nrf2 and induced the expression of Nrf2-target genes, including SLC7A11. Our previous work discovered niclosamide, an antiparasitic drug, as a potent inhibitor of SLC38A5. Here, we found SLC7A11 to be inhibited by niclosamide with an IC50 value in the range of 0.1-0.2 µM. In addition to the direct inhibition of SLC38A5 and SLC7A11, the pretreatment of TNBC cells with niclosamide reduced the expression of both transporters. Niclosamide decreased the glutathione levels, inhibited proliferation, suppressed GPX4 expression, increased lipid peroxidation, and induced ferroptosis in TNBC cells. It also significantly reduced the growth of the TNBC cell line MB231 in mouse xenografts.