Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
Más filtros

Bases de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Am J Hum Genet ; 106(4): 484-495, 2020 04 02.
Artículo en Inglés | MEDLINE | ID: mdl-32220290

RESUMEN

Glycosylphosphatidylinositol (GPI)-anchored proteins are critical for embryogenesis, neurogenesis, and cell signaling. Variants in several genes participating in GPI biosynthesis and processing lead to decreased cell surface presence of GPI-anchored proteins (GPI-APs) and cause inherited GPI deficiency disorders (IGDs). In this report, we describe 12 individuals from nine unrelated families with 10 different bi-allelic PIGK variants. PIGK encodes a component of the GPI transamidase complex, which attaches the GPI anchor to proteins. Clinical features found in most individuals include global developmental delay and/or intellectual disability, hypotonia, cerebellar ataxia, cerebellar atrophy, and facial dysmorphisms. The majority of the individuals have epilepsy. Two individuals have slightly decreased levels of serum alkaline phosphatase, while eight do not. Flow cytometric analysis of blood and fibroblasts from affected individuals showed decreased cell surface presence of GPI-APs. The overexpression of wild-type (WT) PIGK in fibroblasts rescued the levels of cell surface GPI-APs. In a knockout cell line, transfection with WT PIGK also rescued the GPI-AP levels, but transfection with the two tested mutant variants did not. Our study not only expands the clinical and known genetic spectrum of IGDs, but it also expands the genetic differential diagnosis for cerebellar atrophy. Given the fact that cerebellar atrophy is seen in other IGDs, flow cytometry for GPI-APs should be considered in the work-ups of individuals presenting this feature.


Asunto(s)
Aciltransferasas/genética , Moléculas de Adhesión Celular/genética , Enfermedades Cerebelosas/genética , Epilepsia/genética , Variación Genética/genética , Hipotonía Muscular/genética , Trastornos del Neurodesarrollo/genética , Anomalías Múltiples/genética , Alelos , Femenino , Humanos , Discapacidad Intelectual/genética , Masculino , Malformaciones del Sistema Nervioso/genética , Linaje , Síndrome
2.
Am J Hum Genet ; 105(3): 625-630, 2019 09 05.
Artículo en Inglés | MEDLINE | ID: mdl-31303264

RESUMEN

Rothmund-Thomson syndrome (RTS) is an autosomal-recessive disorder characterized by poikiloderma, sparse hair, short stature, and skeletal anomalies. Type 2 RTS, which is defined by the presence of bi-allelic mutations in RECQL4, is characterized by increased cancer susceptibility and skeletal anomalies, whereas the genetic basis of RTS type 1, which is associated with juvenile cataracts, is unknown. We studied ten individuals, from seven families, who had RTS type 1 and identified a deep intronic splicing mutation of the ANAPC1 gene, a component of the anaphase-promoting complex/cyclosome (APC/C), in all affected individuals, either in the homozygous state or in trans with another mutation. Fibroblast studies showed that the intronic mutation causes the activation of a 95 bp pseudoexon, leading to mRNAs with premature termination codons and nonsense-mediated decay, decreased ANAPC1 protein levels, and prolongation of interphase. Interestingly, mice that were heterozygous for a knockout mutation have an increased incidence of cataracts. Our results demonstrate that deficiency in the APC/C is a cause of RTS type 1 and suggest a possible link between the APC/C and RECQL4 helicase because both proteins are involved in DNA repair and replication.


Asunto(s)
Ciclosoma-Complejo Promotor de la Anafase/genética , Subunidad Apc1 del Ciclosoma-Complejo Promotor de la Anafase/genética , Mutación , Síndrome Rothmund-Thomson/genética , Humanos
3.
Am J Hum Genet ; 104(1): 164-178, 2019 01 03.
Artículo en Inglés | MEDLINE | ID: mdl-30580808

RESUMEN

SMARCC2 (BAF170) is one of the invariable core subunits of the ATP-dependent chromatin remodeling BAF (BRG1-associated factor) complex and plays a crucial role in embryogenesis and corticogenesis. Pathogenic variants in genes encoding other components of the BAF complex have been associated with intellectual disability syndromes. Despite its significant biological role, variants in SMARCC2 have not been directly associated with human disease previously. Using whole-exome sequencing and a web-based gene-matching program, we identified 15 individuals with variable degrees of neurodevelopmental delay and growth retardation harboring one of 13 heterozygous variants in SMARCC2, most of them novel and proven de novo. The clinical presentation overlaps with intellectual disability syndromes associated with other BAF subunits, such as Coffin-Siris and Nicolaides-Baraitser syndromes and includes prominent speech impairment, hypotonia, feeding difficulties, behavioral abnormalities, and dysmorphic features such as hypertrichosis, thick eyebrows, thin upper lip vermilion, and upturned nose. Nine out of the fifteen individuals harbor variants in the highly conserved SMARCC2 DNA-interacting domains (SANT and SWIRM) and present with a more severe phenotype. Two of these individuals present cardiac abnormalities. Transcriptomic analysis of fibroblasts from affected individuals highlights a group of differentially expressed genes with possible roles in regulation of neuronal development and function, namely H19, SCRG1, RELN, and CACNB4. Our findings suggest a novel SMARCC2-related syndrome that overlaps with neurodevelopmental disorders associated with variants in BAF-complex subunits.


Asunto(s)
Discapacidades del Desarrollo/complicaciones , Discapacidades del Desarrollo/genética , Discapacidad Intelectual/complicaciones , Discapacidad Intelectual/genética , Mutación , Factores de Transcripción/genética , Anomalías Múltiples/genética , Adolescente , Niño , Preescolar , Proteínas de Unión al ADN , Cara/anomalías , Femenino , Deformidades Congénitas de la Mano/genética , Humanos , Masculino , Micrognatismo/genética , Cuello/anomalías , Proteína Reelina , Síndrome
4.
Am J Hum Genet ; 105(2): 384-394, 2019 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-31256876

RESUMEN

Proteins anchored to the cell surface via glycosylphosphatidylinositol (GPI) play various key roles in the human body, particularly in development and neurogenesis. As such, many developmental disorders are caused by mutations in genes involved in the GPI biosynthesis and remodeling pathway. We describe ten unrelated families with bi-allelic mutations in PIGB, a gene that encodes phosphatidylinositol glycan class B, which transfers the third mannose to the GPI. Ten different PIGB variants were found in these individuals. Flow cytometric analysis of blood cells and fibroblasts from the affected individuals showed decreased cell surface presence of GPI-anchored proteins. Most of the affected individuals have global developmental and/or intellectual delay, all had seizures, two had polymicrogyria, and four had a peripheral neuropathy. Eight children passed away before four years old. Two of them had a clinical diagnosis of DOORS syndrome (deafness, onychodystrophy, osteodystrophy, mental retardation, and seizures), a condition that includes sensorineural deafness, shortened terminal phalanges with small finger and toenails, intellectual disability, and seizures; this condition overlaps with the severe phenotypes associated with inherited GPI deficiency. Most individuals tested showed elevated alkaline phosphatase, which is a characteristic of the inherited GPI deficiency but not DOORS syndrome. It is notable that two severely affected individuals showed 2-oxoglutaric aciduria, which can be seen in DOORS syndrome, suggesting that severe cases of inherited GPI deficiency and DOORS syndrome might share some molecular pathway disruptions.


Asunto(s)
Anomalías Craneofaciales/etiología , Glicosilfosfatidilinositoles/biosíntesis , Glicosilfosfatidilinositoles/deficiencia , Deformidades Congénitas de la Mano/etiología , Pérdida Auditiva Sensorineural/etiología , Discapacidad Intelectual/etiología , Manosiltransferasas/genética , Enfermedades Metabólicas/etiología , Mutación , Uñas Malformadas/etiología , Enfermedades del Sistema Nervioso Periférico/etiología , Convulsiones/patología , Adulto , Niño , Preescolar , Anomalías Craneofaciales/patología , Femenino , Glicosilfosfatidilinositoles/genética , Deformidades Congénitas de la Mano/patología , Pérdida Auditiva Sensorineural/patología , Humanos , Lactante , Recién Nacido , Discapacidad Intelectual/patología , Masculino , Enfermedades Metabólicas/patología , Uñas Malformadas/patología , Linaje , Enfermedades del Sistema Nervioso Periférico/patología , Convulsiones/genética , Índice de Severidad de la Enfermedad , Adulto Joven
5.
Hum Genet ; 140(6): 879-884, 2021 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-33386993

RESUMEN

DOORS syndrome is characterized by deafness, onychodystrophy, osteodystrophy, intellectual disability, and seizures. In this study, we report two unrelated individuals with DOORS syndrome without deafness. Exome sequencing revealed a homozygous missense variant in PIGF (NM_173074.3:c.515C>G, p.Pro172Arg) in both. We demonstrate impaired glycosylphosphatidylinositol (GPI) biosynthesis through flow cytometry analysis. We thus describe the causal role of a novel disease gene, PIGF, in DOORS syndrome and highlight the overlap between this condition and GPI deficiency disorders. For each gene implicated in DOORS syndrome and/or inherited GPI deficiencies, there is considerable clinical variability so a high index of suspicion is warranted even though not all features are noted.


Asunto(s)
Anomalías Craneofaciales/genética , Glicosilfosfatidilinositoles/deficiencia , Deformidades Congénitas de la Mano/genética , Pérdida Auditiva Sensorineural/genética , Discapacidad Intelectual/genética , Proteínas de la Membrana/genética , Mutación Missense , Uñas Malformadas/genética , Convulsiones/genética , Adolescente , Secuencia de Aminoácidos , Animales , Consanguinidad , Anomalías Craneofaciales/metabolismo , Anomalías Craneofaciales/patología , Femenino , Expresión Génica , Glicosilfosfatidilinositoles/genética , Glicosilfosfatidilinositoles/metabolismo , Células HEK293 , Deformidades Congénitas de la Mano/metabolismo , Deformidades Congénitas de la Mano/patología , Pérdida Auditiva Sensorineural/metabolismo , Pérdida Auditiva Sensorineural/patología , Homocigoto , Humanos , Lactante , Discapacidad Intelectual/metabolismo , Discapacidad Intelectual/patología , Masculino , Proteínas de la Membrana/deficiencia , Uñas Malformadas/metabolismo , Uñas Malformadas/patología , Convulsiones/metabolismo , Convulsiones/patología , Alineación de Secuencia , Secuenciación del Exoma
6.
Am J Hum Genet ; 103(4): 602-611, 2018 10 04.
Artículo en Inglés | MEDLINE | ID: mdl-30269814

RESUMEN

Inherited GPI deficiencies (IGDs) are a subset of congenital disorders of glycosylation that are increasingly recognized as a result of advances in whole-exome sequencing (WES) and whole-genome sequencing (WGS). IGDs cause a series of overlapping phenotypes consisting of seizures, dysmorphic features, multiple congenital malformations, and severe intellectual disability. We present a study of six individuals from three unrelated families in which WES or WGS identified bi-allelic phosphatidylinositol glycan class S (PIGS) biosynthesis mutations. Phenotypes included severe global developmental delay, seizures (partly responding to pyridoxine), hypotonia, weakness, ataxia, and dysmorphic facial features. Two of them had compound-heterozygous variants c.108G>A (p.Trp36∗) and c.101T>C (p.Leu34Pro), and two siblings of another family were homozygous for a deletion and insertion leading to p.Thr439_Lys451delinsArgLeuLeu. The third family had two fetuses with multiple joint contractures consistent with fetal akinesia. They were compound heterozygous for c.923A>G (p.Glu308Gly) and c.468+1G>C, a splicing mutation. Flow-cytometry analyses demonstrated that the individuals with PIGS mutations show a GPI-AP deficiency profile. Expression of the p.Trp36∗ variant in PIGS-deficient HEK293 cells revealed only partial restoration of cell-surface GPI-APs. In terms of both biochemistry and phenotype, loss of function of PIGS shares features with PIGT deficiency and other IGDs. This study contributes to the understanding of the GPI-AP biosynthesis pathway by describing the consequences of PIGS disruption in humans and extending the family of IGDs.


Asunto(s)
Anomalías Múltiples/genética , Aciltransferasas/genética , Artrogriposis/genética , Ataxia Cerebelosa/genética , Epilepsia Generalizada/genética , Línea Celular , Niño , Preescolar , Discapacidades del Desarrollo/genética , Femenino , Células HEK293 , Humanos , Discapacidad Intelectual/genética , Masculino , Hipotonía Muscular/genética , Mutación , Malformaciones del Sistema Nervioso/genética , Linaje , Convulsiones/genética , Síndrome , Secuenciación del Exoma/métodos
7.
Genet Med ; 23(10): 1873-1881, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34113002

RESUMEN

PURPOSE: Phosphatidylinositol Glycan Anchor Biosynthesis, class G (PIGG) is an ethanolamine phosphate transferase catalyzing the modification of glycosylphosphatidylinositol (GPI). GPI serves as an anchor on the cell membrane for surface proteins called GPI-anchored proteins (GPI-APs). Pathogenic variants in genes involved in the biosynthesis of GPI cause inherited GPI deficiency (IGD), which still needs to be further characterized. METHODS: We describe 22 individuals from 19 unrelated families with biallelic variants in PIGG. We analyzed GPI-AP surface levels on granulocytes and fibroblasts for three and two individuals, respectively. We demonstrated enzymatic activity defects for PIGG variants in vitro in a PIGG/PIGO double knockout system. RESULTS: Phenotypic analysis of reported individuals reveals shared PIGG deficiency-associated features. All tested GPI-APs were unchanged on granulocytes whereas CD73 level in fibroblasts was decreased. In addition to classic IGD symptoms such as hypotonia, intellectual disability/developmental delay (ID/DD), and seizures, individuals with PIGG variants of null or severely decreased activity showed cerebellar atrophy, various neurological manifestations, and mitochondrial dysfunction, a feature increasingly recognized in IGDs. Individuals with mildly decreased activity showed autism spectrum disorder. CONCLUSION: This in vitro system is a useful method to validate the pathogenicity of variants in PIGG and to study PIGG physiological functions.


Asunto(s)
Trastorno del Espectro Autista , Discapacidad Intelectual , Fosfotransferasas (Aceptor de Grupo Alcohol)/genética , Humanos , Proteínas de la Membrana , Linaje , Convulsiones , Virulencia
8.
Clin Genet ; 99(2): 313-317, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-33156547

RESUMEN

Phosphatidylinositol Glycan Anchor Biosynthesis class H (PIGH) is an essential player in the glycosylphosphatidylinositol (GPI) synthesis, an anchor for numerous cell membrane-bound proteins. PIGH deficiency is a newly described and rare disorder associated with developmental delay, seizures and behavioral difficulties. Herein, we report three new unrelated families with two different bi-allelic PIGH variants, including one new variant p.(Arg163Trp) which seems associated with a more severe phenotype. The common clinical features in all affected individuals are developmental delay/intellectual disability and hypotonia. Variable clinical features include seizures, autism spectrum disorder, apraxia, severe language delay, dysarthria, feeding difficulties, facial dysmorphisms, microcephaly, strabismus, and musculoskeletal anomalies. The two siblings homozygous for the p.(Arg163Trp) variant have severe symptoms including profound psychomotor retardation, intractable seizures, multiple bone fractures, scoliosis, loss of independent ambulation, and delayed myelination on brain MRI. Serum iron levels were significantly elevated in one individual. All tested individuals with PIGH deficiency had normal alkaline phosphatase and CD16, a GPI-anchored protein (GPI-AP), was found to be decreased by 60% on granulocytes from one individual. This study expands the PIGH deficiency phenotype range toward the severe end of the spectrum with the identification of a novel pathogenic variant.


Asunto(s)
Anomalías Múltiples/genética , Enfermedades del Desarrollo Óseo/genética , Proteínas de la Membrana/deficiencia , Proteínas de la Membrana/genética , Trastornos del Neurodesarrollo/genética , Niño , Preescolar , Femenino , Humanos , Masculino , Linaje , Fenotipo , Adulto Joven
9.
Clin Genet ; 100(5): 607-614, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34296759

RESUMEN

Early infantile epileptic encephalopathy 38 (EIEE38, MIM #617020) is caused by biallelic variants in ARV1, encoding a transmembrane protein of the endoplasmic reticulum with a pivotal role in glycosylphosphatidylinositol (GPI) biosynthesis. We ascertained seven new patients from six unrelated families harboring biallelic variants in ARV1, including five novel variants. Affected individuals showed psychomotor delay, hypotonia, early onset refractory seizures followed by regression and specific neuroimaging features. Flow cytometric analysis on patient fibroblasts showed a decrease in GPI-anchored proteins on the cell surface, supporting a lower residual activity of the mutant ARV1 as compared to the wildtype. A rescue assay through the transduction of lentivirus expressing wild type ARV1 cDNA effectively rescued these alterations. This study expands the clinical and molecular spectrum of the ARV1-related encephalopathy, confirming the essential role of ARV1 in GPI biosynthesis and brain function.


Asunto(s)
Estudios de Asociación Genética , Predisposición Genética a la Enfermedad , Proteínas de la Membrana/deficiencia , Fenotipo , Espasmos Infantiles/diagnóstico , Espasmos Infantiles/genética , Alelos , Sustitución de Aminoácidos , Encéfalo/anomalías , Proteínas Portadoras/genética , Análisis Mutacional de ADN , Facies , Femenino , Proteínas Ligadas a GPI/biosíntesis , Estudios de Asociación Genética/métodos , Glicosilfosfatidilinositoles/metabolismo , Humanos , Imagen por Resonancia Magnética , Masculino , Proteínas de la Membrana/genética , Mutación , Linaje , Embarazo , Diagnóstico Prenatal/métodos , Espasmos Infantiles/metabolismo
10.
Am J Hum Genet ; 101(5): 856-865, 2017 Nov 02.
Artículo en Inglés | MEDLINE | ID: mdl-29100095

RESUMEN

Approximately one in every 200 mammalian proteins is anchored to the cell membrane through a glycosylphosphatidylinositol (GPI) anchor. These proteins play important roles notably in neurological development and function. To date, more than 20 genes have been implicated in the biogenesis of GPI-anchored proteins. GPAA1 (glycosylphosphatidylinositol anchor attachment 1) is an essential component of the transamidase complex along with PIGK, PIGS, PIGT, and PIGU (phosphatidylinositol-glycan biosynthesis classes K, S, T, and U, respectively). This complex orchestrates the attachment of the GPI anchor to the C terminus of precursor proteins in the endoplasmic reticulum. Here, we report bi-allelic mutations in GPAA1 in ten individuals from five families. Using whole-exome sequencing, we identified two frameshift mutations (c.981_993del [p.Gln327Hisfs∗102] and c.920delG [p.Gly307Alafs∗11]), one intronic splicing mutation (c.1164+5C>T), and six missense mutations (c.152C>T [p.Ser51Leu], c.160_161delinsAA [p.Ala54Asn], c.527G>C [p.Trp176Ser], c.869T>C [p.Leu290Pro], c.872T>C [p.Leu291Pro], and c.1165G>C [p.Ala389Pro]). Most individuals presented with global developmental delay, hypotonia, early-onset seizures, cerebellar atrophy, and osteopenia. The splicing mutation was found to decrease GPAA1 mRNA. Moreover, flow-cytometry analysis of five available individual samples showed that several GPI-anchored proteins had decreased cell-surface abundance in leukocytes (FLAER, CD16, and CD59) or fibroblasts (CD73 and CD109). Transduction of fibroblasts with a lentivirus encoding the wild-type protein partially rescued the deficiency of GPI-anchored proteins. These findings highlight the role of the transamidase complex in the development and function of the cerebellum and the skeletal system.


Asunto(s)
Aciltransferasas/genética , Atrofia/genética , Enfermedades Óseas Metabólicas/genética , Discapacidades del Desarrollo/genética , Epilepsia/genética , Glicoproteínas de Membrana/genética , Mutación/genética , Adolescente , Adulto , Alelos , Cerebelo/patología , Niño , Preescolar , Exoma/genética , Femenino , Fibroblastos/patología , Glicosilfosfatidilinositoles/genética , Humanos , Masculino , Hipotonía Muscular/genética , Linaje , ARN Mensajero/genética , Convulsiones/genética
11.
Am J Hum Genet ; 100(1): 91-104, 2017 Jan 05.
Artículo en Inglés | MEDLINE | ID: mdl-27939640

RESUMEN

Identification of over 500 epigenetic regulators in humans raises an interesting question regarding how chromatin dysregulation contributes to different diseases. Bromodomain and PHD finger-containing protein 1 (BRPF1) is a multivalent chromatin regulator possessing three histone-binding domains, one non-specific DNA-binding module, and several motifs for interacting with and activating three lysine acetyltransferases. Genetic analyses of fish brpf1 and mouse Brpf1 have uncovered an important role in skeletal, hematopoietic, and brain development, but it remains unclear how BRPF1 is linked to human development and disease. Here, we describe an intellectual disability disorder in ten individuals with inherited or de novo monoallelic BRPF1 mutations. Symptoms include infantile hypotonia, global developmental delay, intellectual disability, expressive language impairment, and facial dysmorphisms. Central nervous system and spinal abnormalities are also seen in some individuals. These clinical features overlap with but are not identical to those reported for persons with KAT6A or KAT6B mutations, suggesting that BRPF1 targets these two acetyltransferases and additional partners in humans. Functional assays showed that the resulting BRPF1 variants are pathogenic and impair acetylation of histone H3 at lysine 23, an abundant but poorly characterized epigenetic mark. We also found a similar deficiency in different lines of Brpf1-knockout mice. These data indicate that aberrations in the chromatin regulator gene BRPF1 cause histone H3 acetylation deficiency and a previously unrecognized intellectual disability syndrome.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/genética , Cromatina/metabolismo , Histonas/metabolismo , Discapacidad Intelectual/genética , Mutación , Proteínas Nucleares/genética , Acetilación , Adolescente , Alelos , Animales , Proteínas Portadoras/genética , Niño , Cromatina/química , Proteínas de Unión al ADN , Discapacidades del Desarrollo/genética , Cara/anomalías , Femenino , Histona Acetiltransferasas/genética , Humanos , Lisina/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Hipotonía Muscular/genética , Síndrome
12.
J Inherit Metab Dis ; 43(6): 1321-1332, 2020 11.
Artículo en Inglés | MEDLINE | ID: mdl-32588908

RESUMEN

We investigated seven children from six families to expand the phenotypic spectrum associated with an early infantile epileptic encephalopathy caused by biallelic pathogenic variants in the phosphatidylinositol glycan anchor biosynthesis class Q (PIGQ) gene. The affected children were all identified by clinical or research exome sequencing. Clinical data, including EEGs and MRIs, was comprehensively reviewed and flow cytometry and transfection experiments were performed to investigate PIGQ function. Pathogenic biallelic PIGQ variants were associated with increased mortality. Epileptic seizures, axial hypotonia, developmental delay and multiple congenital anomalies were consistently observed. Seizure onset occurred between 2.5 months and 7 months of age and varied from treatable seizures to recurrent episodes of status epilepticus. Gastrointestinal issues were common and severe, two affected individuals had midgut volvulus requiring surgical correction. Cardiac anomalies including arrythmias were observed. Flow cytometry using granulocytes and fibroblasts from affected individuals showed reduced expression of glycosylphosphatidylinositol (GPI)-anchored proteins. Transfection of wildtype PIGQ cDNA into patient fibroblasts rescued this phenotype. We expand the phenotypic spectrum of PIGQ-related disease and provide the first functional evidence in human cells of defective GPI-anchoring due to pathogenic variants in PIGQ.


Asunto(s)
Anomalías Múltiples/genética , Proteínas de la Membrana/genética , Hipotonía Muscular/genética , Convulsiones/genética , Espasmos Infantiles/genética , Anomalías Múltiples/diagnóstico , Anomalías Múltiples/metabolismo , Niño , Preescolar , Resultado Fatal , Femenino , Humanos , Lactante , Recién Nacido , Masculino , Hipotonía Muscular/patología , Mutación Missense , Fenotipo , Convulsiones/diagnóstico , Convulsiones/metabolismo , Espasmos Infantiles/metabolismo , Espasmos Infantiles/patología , Secuenciación del Exoma
13.
Hum Mol Genet ; 26(9): 1706-1715, 2017 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-28334793

RESUMEN

There are over 150 known human proteins which are tethered to the cell surface via glycosylphosphatidylinositol (GPI) anchors. These proteins play a variety of important roles in development, and particularly in neurogenesis. Not surprisingly, mutations in the GPI anchor biosynthesis and remodeling pathway cause a number of developmental disorders. This group of conditions has been termed inherited GPI deficiencies (IGDs), a subgroup of congenital disorders of glycosylation; they present with variable phenotypes, often including seizures, hypotonia and intellectual disability. Here, we report two siblings with compound heterozygous variants in the gene phosphatidylinositol glycan anchor biosynthesis, class P (PIGP) (NM_153681.2: c.74T > C;p.Met25Thr and c.456delA;p.Glu153AsnFs*34). PIGP encodes a subunit of the enzyme that catalyzes the first step of GPI anchor biosynthesis. Both children presented with early-onset refractory seizures, hypotonia, and profound global developmental delay, reminiscent of other IGD phenotypes. Functional studies with patient cells showed reduced PIGP mRNA levels, and an associated reduction of GPI-anchored cell surface proteins, which was rescued by exogenous expression of wild-type PIGP. This work associates mutations in the PIGP gene with a novel autosomal recessive IGD, and expands our knowledge of the role of PIG genes in human development.


Asunto(s)
Hexosiltransferasas/genética , Proteínas de la Membrana/genética , Espasmos Infantiles/genética , Anomalías Múltiples/genética , Adulto , Línea Celular , Niño , Discapacidades del Desarrollo/genética , Glicosilfosfatidilinositoles/deficiencia , Glicosilfosfatidilinositoles/genética , Glicosilfosfatidilinositoles/metabolismo , Hemoglobinuria Paroxística/genética , Hexosiltransferasas/metabolismo , Humanos , Discapacidad Intelectual/genética , Proteínas de la Membrana/metabolismo , Hipotonía Muscular/genética , Mutación , Linaje , Convulsiones/genética , Espasmos Infantiles/metabolismo
14.
Genet Med ; 21(11): 2521-2531, 2019 11.
Artículo en Inglés | MEDLINE | ID: mdl-31092906

RESUMEN

PURPOSE: Skeletal muscle growth and regeneration rely on muscle stem cells, called satellite cells. Specific transcription factors, particularly PAX7, are key regulators of the function of these cells. Knockout of this factor in mice leads to poor postnatal survival; however, the consequences of a lack of PAX7 in humans have not been established. METHODS: Here, we study five individuals with myopathy of variable severity from four unrelated consanguineous couples. Exome sequencing identified pathogenic variants in the PAX7 gene. Clinical examination, laboratory tests, and muscle biopsies were performed to characterize the disease. RESULTS: The disease was characterized by hypotonia, ptosis, muscular atrophy, scoliosis, and mildly dysmorphic facial features. The disease spectrum ranged from mild to severe and appears to be progressive. Muscle biopsies showed the presence of atrophic fibers and fibroadipose tissue replacement, with the absence of myofiber necrosis. A lack of PAX7 expression was associated with satellite cell pool exhaustion; however, the presence of residual myoblasts together with regenerating myofibers suggest that a population of PAX7-independent myogenic cells partially contributes to muscle regeneration. CONCLUSION: These findings show that biallelic variants in the master transcription factor PAX7 cause a new type of myopathy that specifically affects satellite cell survival.


Asunto(s)
Enfermedades Musculares/genética , Factor de Transcripción PAX7/genética , Adolescente , Alelos , Niño , Preescolar , Femenino , Humanos , Masculino , Desarrollo de Músculos , Músculo Esquelético/metabolismo , Enfermedades Musculares/etiología , Mioblastos , Factor de Transcripción PAX7/metabolismo , Linaje , Regeneración , Células Satélite del Músculo Esquelético/metabolismo , Factores de Transcripción/genética , Secuenciación del Exoma/métodos
15.
Clin Genet ; 95(1): 112-121, 2019 01.
Artículo en Inglés | MEDLINE | ID: mdl-30054924

RESUMEN

It is estimated that 0.5% of all mammalian proteins have a glycosylphosphatidylinositol (GPI)-anchor. GPI-anchored proteins (GPI-APs) play key roles, particularly in embryogenesis, neurogenesis, immune response and signal transduction. Due to their involvement in many pathways and developmental events, defects in the genes involved in their synthesis and processing can result in a variety of genetic disorders for which affected individuals display a wide spectrum of features. We compiled the clinical characteristics of 202 individuals with mutations in the GPI biosynthesis and processing pathway through a review of the literature. This review has allowed us to compare the characteristics and the severity of the phenotypes associated with different genes as well as highlight features that are prominent for each. Certain combinations, such as seizures with aplastic/hypoplastic nails or abnormal alkaline phosphatase levels suggest an inherited GPI deficiency, and our review of all clinical findings may orient the management of inherited GPI deficiencies.


Asunto(s)
Proteínas Ligadas a GPI/genética , Glicosilfosfatidilinositoles/deficiencia , Glicosilfosfatidilinositoles/genética , Convulsiones/genética , Anomalías Múltiples/epidemiología , Anomalías Múltiples/genética , Anomalías Múltiples/patología , Glicosilfosfatidilinositoles/metabolismo , Humanos , Discapacidad Intelectual/epidemiología , Discapacidad Intelectual/genética , Discapacidad Intelectual/patología , Hipotonía Muscular/epidemiología , Hipotonía Muscular/genética , Hipotonía Muscular/patología , Mutación , Convulsiones/epidemiología , Convulsiones/patología
16.
Hum Mutat ; 39(6): 827-829, 2018 06.
Artículo en Inglés | MEDLINE | ID: mdl-29603516

RESUMEN

We identified an individual with a homozygous missense variant (p.Ser103Pro) in a conserved residue of the glycosylphosphatidylinositol (GPI) biosynthesis gene PIGH. This gene encodes an essential component of the phosphatidylinositol N-acetylglucosaminyltransferase complex, in the first step of the biosynthesis of GPI, a glycolipid anchor added to more than one hundred human proteins, several being critical for embryogenesis and neurological functions. The affected individual had hypotonia, moderate developmental delay, and autism. Unlike other reported individuals with GPI deficiency, the proband did not have epilepsy; however, he did have two episodes of febrile seizures. He had normal alkaline phosphatase and no brachytelephalangy. Upon analysis of the surface expression of GPI-anchored proteins on granulocytes, he was demonstrated to have GPI deficiency. This suggests that PIGH mutations may cause a syndrome with developmental delay and autism, but without an epileptic encephalopathy, and should increase the awareness of the potentially deleterious nature of biallelic variants in this gene.


Asunto(s)
Trastorno Autístico/genética , Discapacidades del Desarrollo/genética , Proteínas de la Membrana/genética , Convulsiones Febriles/genética , Trastorno Autístico/fisiopatología , Discapacidades del Desarrollo/fisiopatología , Femenino , Predisposición Genética a la Enfermedad , Glicosilfosfatidilinositoles/deficiencia , Glicosilfosfatidilinositoles/genética , Homocigoto , Humanos , Masculino , Mutación Missense/genética , Linaje , Convulsiones/genética , Convulsiones/fisiopatología , Convulsiones Febriles/fisiopatología , Secuenciación del Exoma
17.
J Med Genet ; 54(3): 196-201, 2017 03.
Artículo en Inglés | MEDLINE | ID: mdl-27694521

RESUMEN

BACKGROUND: Of our 1400 exome-studied patients, 67% originate from consanguineous families. ∼80% suffer from variable degree of intellectual disability (ID). The search for disease causing genes using homozygosity mapping was progressing slowly until 2010, then markedly accelerated by the introduction of exome analysis. OBJECTIVES: To identify the disease causing mutation(s) in three patients from two unrelated families who suffered from global developmental delay, severe ID and drug-responsive seizure disorder. METHODS: Exome analysis was performed in DNA of the three patients. The identified PIGC variants were generated and transfected into PIGC-defective mouse cells and the restoration of the surface expression of mouse CD90, CD48 and FLAER was assessed using flow cytometry. The expression of these proteins was also studied on the surface of patients' leucocytes. RESULTS: Three PIGC mutations were identified; homozygous p.L189W in one family and compound heterozygosity for p.L212P/p.R21X variants in another. PIGC participates in the biosynthesis of the glycosylphosphatidylinositol (GPI) anchor which tethers proteins to plasma membrane. In cells lacking PIGC protein, which were transfected with each of the PIGC variants, we detected a clear reduction of surface expression of GPI-anchored proteins. Furthermore, analyses of patients' leucocytes showed significant and constant decrease of CD16 surface expression in granulocytes, and moderate decrease of CD14, CD55, CD59 and FLAER levels. CONCLUSIONS: PIGC joins the list of genes in which mutations result in defective biosynthesis of GPI anchoring, manifesting by global developmental delay and seizure disorder. The lack of specific biomarker dictates exome sequencing as the diagnostic procedure of choice in similar patients.


Asunto(s)
Epilepsia/genética , Hexosiltransferasas/genética , Discapacidad Intelectual/genética , Proteínas de la Membrana/genética , Anomalías Múltiples , Secuencia de Aminoácidos/genética , Animales , Discapacidades del Desarrollo , Epilepsia/fisiopatología , Exoma/genética , Femenino , Estudios de Asociación Genética , Homocigoto , Humanos , Discapacidad Intelectual/fisiopatología , Masculino , Ratones , Mutación , Linaje
18.
Chem Pharm Bull (Tokyo) ; 65(9): 840-847, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28867711

RESUMEN

Four new lignans, a furofuran lignan medioresinol B (10) and three tetrahydrofuran lignans kobusinol C (16), 7'-methoxy magnostellin A (21), and mangnostellin D (23), along with 19 known lignans, were isolated from the flower buds of Magnolia biondii PAMP. The structures of the isolates were elucidated using spectroscopic analysis, mainly one- and two-dimensional NMR, high resolution-MS, and circular dichroism techniques as well as Mosher's esterification method. The anti-allergic effects of the isolated compounds were evaluated by analyzing the inhibition of interleukin-2 (IL-2) expression in Jurkat T-cells. Compounds 11-14 reduced IL-2 expression in a dose-dependent manner.


Asunto(s)
Interleucina-2/metabolismo , Lignanos/química , Magnoliaceae/química , Supervivencia Celular/efectos de los fármacos , Dicroismo Circular , Análisis Citogenético , Ensayo de Inmunoadsorción Enzimática , Expresión Génica/efectos de los fármacos , Humanos , Interleucina-2/análisis , Interleucina-2/antagonistas & inhibidores , Células Jurkat , Lignanos/aislamiento & purificación , Lignanos/farmacología , Espectroscopía de Resonancia Magnética , Magnoliaceae/metabolismo , Espectrometría de Masas
19.
Heliyon ; 10(1): e23619, 2024 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-38192858

RESUMEN

Drawing on the social practice theory, theory of planned behavior, social contagion theory, and social exchange theory, this study focused on tourist behaviors affecting tourism social sustainability and their drivers. Besides its unique contribution to distinguishing positive behaviors from negative ones, this study is the first exploring tourism social sustainability in remote communities in Vietnam, an emerging country and focusing on domestic tourists. The study reveals that tourists' knowledge about tourism social sustainability is not only the safeguard against conducting improper behaviors. Behaviors negatively impacting tourism social sustainability can be instigated by crowd, pampering of one's convenience, and superiority feeling. Furthermore, inappropriate behaviors can be nurtured by the community and service providers. This study also indicates a mixed finding regarding the role of tour operators and tour guides in enforcing the code of conduct and regulations; however, both leader and members of the community can play a critical role in promoting socially sustainable tourist behaviors.

20.
J Int Med Res ; 52(4): 3000605241240999, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38606734

RESUMEN

OBJECTIVE: This study aimed to assess the association of the neutrophil-to-lymphocyte ratio (NLR) with the occurrence of venous thromboembolism (VTE) and arterial thrombosis (AT). METHODS: This was a retrospective cross-sectional study including 585 medical records obtained from all consecutive patients who were suspected of having thrombosis. RESULTS: The AT group had a higher neutrophil count and NLR and a lower lymphocyte count than the non-thrombosis group. Receiver operating characteristic curve analysis showed the ability of the NLR to predict the presence of AT. The cut-off value for the NLR was 4.44. No distinction was found in the NLR between the VTE and non-thrombosis groups. Regression analysis showed that a high NLR was an independent factor related to the presence of AT. Patients with an NLR ≥ 4.44 had a higher risk of AT than those with an NLR < 4.44 (odds ratio = 2.015, 95% confidence interval: 1.180-3.443). CONCLUSION: A high NLR may be considered a predictive factor for the occurrence of AT, but an association with the presence of VTE was not found.


Asunto(s)
Trombosis , Tromboembolia Venosa , Humanos , Neutrófilos , Tromboembolia Venosa/diagnóstico , Estudios Retrospectivos , Estudios Transversales , Linfocitos , Curva ROC , Pronóstico
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA