Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 182
Filtrar
Más filtros

Bases de datos
Tipo del documento
Intervalo de año de publicación
1.
Immunity ; 56(9): 2121-2136.e6, 2023 09 12.
Artículo en Inglés | MEDLINE | ID: mdl-37659412

RESUMEN

Genetic association studies have demonstrated the critical involvement of the microglial immune response in Alzheimer's disease (AD) pathogenesis. Phospholipase C-gamma-2 (PLCG2) is selectively expressed by microglia and functions in many immune receptor signaling pathways. In AD, PLCG2 is induced uniquely in plaque-associated microglia. A genetic variant of PLCG2, PLCG2P522R, is a mild hypermorph that attenuates AD risk. Here, we identified a loss-of-function PLCG2 variant, PLCG2M28L, that confers an increased AD risk. PLCG2P522R attenuated disease in an amyloidogenic murine AD model, whereas PLCG2M28L exacerbated the plaque burden associated with altered phagocytosis and Aß clearance. The variants bidirectionally modulated disease pathology by inducing distinct transcriptional programs that identified microglial subpopulations associated with protective or detrimental phenotypes. These findings identify PLCG2M28L as a potential AD risk variant and demonstrate that PLCG2 variants can differentially orchestrate microglial responses in AD pathogenesis that can be therapeutically targeted.


Asunto(s)
Enfermedad de Alzheimer , Animales , Ratones , Enfermedad de Alzheimer/genética , Estudios de Asociación Genética , Microglía , Fagocitosis/genética , Fenotipo , Placa Amiloide , Fosfolipasa C gamma/metabolismo
2.
Brief Bioinform ; 23(2)2022 03 10.
Artículo en Inglés | MEDLINE | ID: mdl-35183061

RESUMEN

Deep learning is a promising tool that uses nonlinear transformations to extract features from high-dimensional data. Deep learning is challenging in genome-wide association studies (GWAS) with high-dimensional genomic data. Here we propose a novel three-step approach (SWAT-CNN) for identification of genetic variants using deep learning to identify phenotype-related single nucleotide polymorphisms (SNPs) that can be applied to develop accurate disease classification models. In the first step, we divided the whole genome into nonoverlapping fragments of an optimal size and then ran convolutional neural network (CNN) on each fragment to select phenotype-associated fragments. In the second step, using a Sliding Window Association Test (SWAT), we ran CNN on the selected fragments to calculate phenotype influence scores (PIS) and identify phenotype-associated SNPs based on PIS. In the third step, we ran CNN on all identified SNPs to develop a classification model. We tested our approach using GWAS data from the Alzheimer's Disease Neuroimaging Initiative (ADNI) including (N = 981; cognitively normal older adults (CN) = 650 and AD = 331). Our approach identified the well-known APOE region as the most significant genetic locus for AD. Our classification model achieved an area under the curve (AUC) of 0.82, which was compatible with traditional machine learning approaches, random forest and XGBoost. SWAT-CNN, a novel deep learning-based genome-wide approach, identified AD-associated SNPs and a classification model for AD and may hold promise for a range of biomedical applications.


Asunto(s)
Enfermedad de Alzheimer , Disfunción Cognitiva , Aprendizaje Profundo , Anciano , Enfermedad de Alzheimer/genética , Disfunción Cognitiva/genética , Estudio de Asociación del Genoma Completo , Humanos , Imagen por Resonancia Magnética/métodos
3.
Alzheimers Dement ; 20(1): 243-252, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37563770

RESUMEN

INTRODUCTION: Our previously developed blood-based transcriptional risk scores (TRS) showed associations with diagnosis and neuroimaging biomarkers for Alzheimer's disease (AD). Here, we developed brain-based TRS. METHODS: We integrated AD genome-wide association study summary and expression quantitative trait locus data to prioritize target genes using Mendelian randomization. We calculated TRS using brain transcriptome data of two independent cohorts (N = 878) and performed association analysis of TRS with diagnosis, amyloidopathy, tauopathy, and cognition. We compared AD classification performance of TRS with polygenic risk scores (PRS). RESULTS: Higher TRS values were significantly associated with AD, amyloidopathy, tauopathy, worse cognition, and faster cognitive decline, which were replicated in an independent cohort. The AD classification performance of PRS was increased with the inclusion of TRS up to 16% with the area under the curve value of 0.850. DISCUSSION: Our results suggest brain-based TRS improves the AD classification of PRS and may be a potential AD biomarker. HIGHLIGHTS: Transcriptional risk score (TRS) is developed using brain RNA-Seq data. Higher TRS values are shown in Alzheimer's disease (AD). TRS improves the AD classification power of PRS up to 16%. TRS is associated with AD pathology presence. TRS is associated with worse cognitive performance and faster cognitive decline.


Asunto(s)
Enfermedad de Alzheimer , Tauopatías , Humanos , Enfermedad de Alzheimer/diagnóstico por imagen , Enfermedad de Alzheimer/genética , Estudio de Asociación del Genoma Completo , Cognición , Factores de Riesgo , Biomarcadores , Puntuación de Riesgo Genético
4.
Alzheimers Dement ; 20(1): 652-694, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37698424

RESUMEN

The Alzheimer's Disease Neuroimaging Initiative (ADNI) aims to improve Alzheimer's disease (AD) clinical trials. Since 2006, ADNI has shared clinical, neuroimaging, and cognitive data, and biofluid samples. We used conventional search methods to identify 1459 publications from 2021 to 2022 using ADNI data/samples and reviewed 291 impactful studies. This review details how ADNI studies improved disease progression understanding and clinical trial efficiency. Advances in subject selection, detection of treatment effects, harmonization, and modeling improved clinical trials and plasma biomarkers like phosphorylated tau showed promise for clinical use. Biomarkers of amyloid beta, tau, neurodegeneration, inflammation, and others were prognostic with individualized prediction algorithms available online. Studies supported the amyloid cascade, emphasized the importance of neuroinflammation, and detailed widespread heterogeneity in disease, linked to genetic and vascular risk, co-pathologies, sex, and resilience. Biological subtypes were consistently observed. Generalizability of ADNI results is limited by lack of cohort diversity, an issue ADNI-4 aims to address by enrolling a diverse cohort.


Asunto(s)
Enfermedad de Alzheimer , Disfunción Cognitiva , Humanos , Enfermedad de Alzheimer/diagnóstico por imagen , Enfermedad de Alzheimer/terapia , Péptidos beta-Amiloides , Neuroimagen/métodos , Biomarcadores , Progresión de la Enfermedad , Proteínas tau , Disfunción Cognitiva/diagnóstico por imagen
5.
Brief Bioinform ; 22(6)2021 11 05.
Artículo en Inglés | MEDLINE | ID: mdl-33971669

RESUMEN

A large number of genetic variations have been identified to be associated with Alzheimer's disease (AD) and related quantitative traits. However, majority of existing studies focused on single types of omics data, lacking the power of generating a community including multi-omic markers and their functional connections. Because of this, the immense value of multi-omics data on AD has attracted much attention. Leveraging genomic, transcriptomic and proteomic data, and their backbone network through functional relations, we proposed a modularity-constrained logistic regression model to mine the association between disease status and a group of functionally connected multi-omic features, i.e. single-nucleotide polymorphisms (SNPs), genes and proteins. This new model was applied to the real data collected from the frontal cortex tissue in the Religious Orders Study and Memory and Aging Project cohort. Compared with other state-of-art methods, it provided overall the best prediction performance during cross-validation. This new method helped identify a group of densely connected SNPs, genes and proteins predictive of AD status. These SNPs are mostly expression quantitative trait loci in the frontal region. Brain-wide gene expression profile of these genes and proteins were highly correlated with the brain activation map of 'vision', a brain function partly controlled by frontal cortex. These genes and proteins were also found to be associated with the amyloid deposition, cortical volume and average thickness of frontal regions. Taken together, these results suggested a potential pathway underlying the development of AD from SNPs to gene expression, protein expression and ultimately brain functional and structural changes.


Asunto(s)
Enfermedad de Alzheimer/genética , Bases de Datos de Ácidos Nucleicos , Genómica , Polimorfismo de Nucleótido Simple , Transcriptoma , Enfermedad de Alzheimer/metabolismo , Estudio de Asociación del Genoma Completo , Humanos
6.
Mol Psychiatry ; 27(2): 1256-1273, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-35087196

RESUMEN

Alzheimer's disease (AD) is a progressive neurodegenerative disorder with loss of cognitive, executive, and other mental functions, and is the most common form of age-related dementia. Amyloid-ß peptide (Aß) contributes to the etiology and progression of the disease. Aß is derived from the amyloid-ß precursor protein (APP). Multiple microRNA (miRNA) species are also implicated in AD. We report that human hsa-miR20b-5p (miR-20b), produced from the MIR20B gene on Chromosome X, may play complex roles in AD pathogenesis, including Aß regulation. Specifically, miR-20b-5p miRNA levels were altered in association with disease progression in three regions of the human brain: temporal neocortex, cerebellum, and posterior cingulate cortex. In cultured human neuronal cells, miR-20b-5p treatment interfered with calcium homeostasis, neurite outgrowth, and branchpoints. A single-nucleotide polymorphism (SNP) upstream of the MIR20B gene (rs13897515) associated with differences in levels of cerebrospinal fluid (CSF) Aß1-42 and thickness of the entorhinal cortex. We located a miR-20b-5p binding site in the APP mRNA 3'-untranslated region (UTR), and treatment with miR-20b-5p reduced APP mRNA and protein levels. Network analysis of protein-protein interactions and gene coexpression revealed other important potential miR-20b-5p targets among AD-related proteins/genes. MiR-20b-5p, a miRNA that downregulated APP, was paradoxically associated with an increased risk for AD. However, miR-20b-5p also reduced, and the blockade of APP by siRNA likewise reduced calcium influx. As APP plays vital roles in neuronal health and does not exist solely to be the source of "pathogenic" Aß, the molecular etiology of AD is likely to not just be a disease of "excess" but a disruption of delicate homeostasis.


Asunto(s)
Enfermedad de Alzheimer , MicroARNs , Enfermedad de Alzheimer/metabolismo , Péptidos beta-Amiloides/metabolismo , Biomarcadores , Calcio , Humanos , MicroARNs/genética , MicroARNs/metabolismo , ARN Mensajero
7.
Brain ; 145(4): 1436-1448, 2022 05 24.
Artículo en Inglés | MEDLINE | ID: mdl-34613391

RESUMEN

Occupational attainment, which represents middle-age cognitive activities, is a known proxy marker of cognitive reserve for Alzheimer's disease. Previous genome-wide association studies have identified numerous genetic variants and revealed the genetic architecture of educational attainment, another marker of cognitive reserve. However, the genetic architecture and heritability for occupational attainment remain elusive. We performed a large-scale genome-wide association study of occupational attainment with 248 847 European individuals from the UK Biobank using the proportional odds logistic mixed model method. In this analysis, we defined occupational attainment using the classified job levels formulated in the UK Standard Occupational Classification system considering the individual professional skill and academic level. We identified 30 significant loci (P < 5 × 10-8); 12 were novel variants, not associated with other traits. Among them, four lead variants were associated with genes expressed in brain tissues by expression quantitative trait loci mapping from 10 brain regions: rs13002946, rs3741368, rs11654986 and rs1627527. The single nucleotide polymorphism-based heritability was estimated to be 8.5% (standard error of the mean = 0.004) and partitioned heritability was enriched in the CNS and brain tissues. Genetic correlation analysis showed shared genetic backgrounds between occupational attainment and multiple traits, including education, intelligence, leisure activities, life satisfaction and neuropsychiatric disorders. In two-sample Mendelian randomization analysis, we demonstrated that high occupation levels were associated with reduced risk for Alzheimer's disease [odds ratio (OR) = 0.78, 95% confidence interval (CI) = 0.65-0.92 in inverse variance weighted method; OR = 0.73, 95% CI = 0.57-0.92 in the weighted median method]. This causal relationship between occupational attainment and Alzheimer's disease was robust in additional sensitivity analysis that excluded potentially pleiotropic single nucleotide polymorphisms (OR = 0.72, 95% CI = 0.57-0.91 in the inverse variance weighted method; OR = 0.72, 95% CI = 0.53-0.97 in the weighted median method). Multivariable Mendelian randomization confirmed that occupational attainment had an independent effect on the risk for Alzheimer's disease even after taking educational attainment into account (OR = 0.72, 95% CI = 0.54-0.95 in the inverse variance weighted method; OR = 0.68, 95% CI = 0.48-0.97 in the weighted median method). Overall, our analyses provide insights into the genetic architecture of occupational attainment and demonstrate that occupational attainment is a potential causal protective factor for Alzheimer's disease as a proxy marker of cognitive reserve.


Asunto(s)
Enfermedad de Alzheimer , Reserva Cognitiva , Ocupaciones , Enfermedad de Alzheimer/genética , Biomarcadores , Estudio de Asociación del Genoma Completo , Humanos , Análisis de la Aleatorización Mendeliana , Persona de Mediana Edad , Polimorfismo de Nucleótido Simple
8.
Brain ; 145(7): 2541-2554, 2022 07 29.
Artículo en Inglés | MEDLINE | ID: mdl-35552371

RESUMEN

Approximately 30% of elderly adults are cognitively unimpaired at time of death despite the presence of Alzheimer's disease neuropathology at autopsy. Studying individuals who are resilient to the cognitive consequences of Alzheimer's disease neuropathology may uncover novel therapeutic targets to treat Alzheimer's disease. It is well established that there are sex differences in response to Alzheimer's disease pathology, and growing evidence suggests that genetic factors may contribute to these differences. Taken together, we sought to elucidate sex-specific genetic drivers of resilience. We extended our recent large scale genomic analysis of resilience in which we harmonized cognitive data across four cohorts of cognitive ageing, in vivo amyloid PET across two cohorts, and autopsy measures of amyloid neuritic plaque burden across two cohorts. These data were leveraged to build robust, continuous resilience phenotypes. With these phenotypes, we performed sex-stratified [n (males) = 2093, n (females) = 2931] and sex-interaction [n (both sexes) = 5024] genome-wide association studies (GWAS), gene and pathway-based tests, and genetic correlation analyses to clarify the variants, genes and molecular pathways that relate to resilience in a sex-specific manner. Estimated among cognitively normal individuals of both sexes, resilience was 20-25% heritable, and when estimated in either sex among cognitively normal individuals, resilience was 15-44% heritable. In our GWAS, we identified a female-specific locus on chromosome 10 [rs827389, ß (females) = 0.08, P (females) = 5.76 × 10-09, ß (males) = -0.01, P(males) = 0.70, ß (interaction) = 0.09, P (interaction) = 1.01 × 10-04] in which the minor allele was associated with higher resilience scores among females. This locus is located within chromatin loops that interact with promoters of genes involved in RNA processing, including GATA3. Finally, our genetic correlation analyses revealed shared genetic architecture between resilience phenotypes and other complex traits, including a female-specific association with frontotemporal dementia and male-specific associations with heart rate variability traits. We also observed opposing associations between sexes for multiple sclerosis, such that more resilient females had a lower genetic susceptibility to multiple sclerosis, and more resilient males had a higher genetic susceptibility to multiple sclerosis. Overall, we identified sex differences in the genetic architecture of resilience, identified a female-specific resilience locus and highlighted numerous sex-specific molecular pathways that may underly resilience to Alzheimer's disease pathology. This study illustrates the need to conduct sex-aware genomic analyses to identify novel targets that are unidentified in sex-agnostic models. Our findings support the theory that the most successful treatment for an individual with Alzheimer's disease may be personalized based on their biological sex and genetic context.


Asunto(s)
Enfermedad de Alzheimer , Disfunción Cognitiva , Esclerosis Múltiple , Enfermedad de Alzheimer/genética , Enfermedad de Alzheimer/patología , Cognición , Disfunción Cognitiva/genética , Femenino , Predisposición Genética a la Enfermedad , Estudio de Asociación del Genoma Completo , Humanos , Masculino , Caracteres Sexuales
9.
Alzheimers Dement ; 19(4): 1234-1244, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-35971593

RESUMEN

INTRODUCTION: Limbic age-related TDP-43 encephalopathy neuropathologic change (LATE-NC) is common in advanced age and can underlie a clinical presentation mimicking Alzheimer's disease (AD). We studied whether an autopsy-derived fluorodeoxyglucose positron emission tomography (FDG-PET) signature of LATE-NC provides clinical utility for differential diagnosis of amnestic dementia patients. METHODS: Ante mortem FDG-PET patterns from autopsy-confirmed LATE-NC (N = 7) and AD (N = 23) patients were used to stratify an independent cohort of clinically diagnosed AD dementia patients (N = 242) based on individual FDG-PET profiles. RESULTS: Autopsy-confirmed LATE-NC and AD groups showed markedly distinct temporo-limbic and temporo-parietal FDG-PET patterns, respectively. Clinically diagnosed AD dementia patients showing a LATE-NC-like FDG-PET pattern (N = 25, 10%) were significantly older, showed less abnormal AD biomarker levels, lower APOE ε4, and higher TMEM106B risk allele load. Clinically, they exhibited a more memory-predominant profile and a generally slower disease course. DISCUSSION: An autopsy-derived temporo-limbic FDG-PET signature identifies older amnestic patients whose clinical, genetic, and molecular biomarker features are consistent with underlying LATE-NC.


Asunto(s)
Enfermedad de Alzheimer , Fluorodesoxiglucosa F18 , Humanos , Autopsia , Diagnóstico Diferencial , Encéfalo/patología , Tomografía de Emisión de Positrones/métodos , Enfermedad de Alzheimer/diagnóstico por imagen , Enfermedad de Alzheimer/patología , Biomarcadores , Proteínas de la Membrana , Proteínas del Tejido Nervioso
10.
Alzheimers Dement ; 19(12): 5690-5699, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37409680

RESUMEN

BACKGROUND: Identifying genetic patterns that contribute to Alzheimer's disease (AD) is important not only for pre-symptomatic risk assessment but also for building personalized therapeutic strategies. METHODS: We implemented a novel simulative deep learning model to chromosome 19 genetic data from the Alzheimer's Disease Neuroimaging Initiative and the Imaging and Genetic Biomarkers of Alzheimer's Disease datasets. The model quantified the contribution of each single nucleotide polymorphism (SNP) and their epistatic impact on the likelihood of AD using the occlusion method. The top 35 AD-risk SNPs in chromosome 19 were identified, and their ability to predict the rate of AD progression was analyzed. RESULTS: Rs561311966 (APOC1) and rs2229918 (ERCC1/CD3EAP) were recognized as the most powerful factors influencing AD risk. The top 35 chromosome 19 AD-risk SNPs were significant predictors of AD progression. DISCUSSION: The model successfully estimated the contribution of AD-risk SNPs that account for AD progression at the individual level. This can help in building preventive precision medicine.


Asunto(s)
Enfermedad de Alzheimer , Aprendizaje Profundo , Humanos , Enfermedad de Alzheimer/genética , Polimorfismo de Nucleótido Simple/genética , Cromosomas Humanos Par 19 , Neuroimagen/métodos , Progresión de la Enfermedad , Imagen por Resonancia Magnética/métodos
11.
Alzheimers Dement ; 19(11): 5173-5184, 2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-37166019

RESUMEN

INTRODUCTION: Alzheimer's disease (AD) is heterogeneous, both clinically and neuropathologically. We investigated whether polygenic risk scores (PRSs) integrated with transcriptome profiles from AD brains can explain AD clinical heterogeneity. METHODS: We conducted co-expression network analysis and identified gene sets (modules) that were preserved in three AD transcriptome datasets and associated with AD-related neuropathological traits including neuritic plaques (NPs) and neurofibrillary tangles (NFTs). We computed the module-based PRSs (mbPRSs) for each module and tested associations with mbPRSs for cognitive test scores, cognitively defined AD subgroups, and brain imaging data. RESULTS: Of the modules significantly associated with NPs and/or NFTs, the mbPRSs from two modules (M6 and M9) showed distinct associations with language and visuospatial functioning, respectively. They matched clinical subtypes and brain atrophy at specific regions. DISCUSSION: Our findings demonstrate that polygenic profiling based on co-expressed gene sets can explain heterogeneity in AD patients, enabling genetically informed patient stratification and precision medicine in AD. HIGHLIGHTS: Co-expression gene-network analysis in Alzheimer's disease (AD) brains identified gene sets (modules) associated with AD heterogeneity. AD-associated modules were selected when genes in each module were enriched for neuritic plaques and neurofibrillary tangles. Polygenic risk scores from two selected modules were linked to the matching cognitively defined AD subgroups (language and visuospatial subgroups). Polygenic risk scores from the two modules were associated with cognitive performance in language and visuospatial domains and the associations were confirmed in regional-specific brain atrophy data.


Asunto(s)
Enfermedad de Alzheimer , Humanos , Enfermedad de Alzheimer/patología , Transcriptoma , Placa Amiloide/genética , Placa Amiloide/patología , Encéfalo/patología , Factores de Riesgo , Atrofia/patología
12.
Trends Genet ; 35(5): 371-382, 2019 05.
Artículo en Inglés | MEDLINE | ID: mdl-30922659

RESUMEN

Advances in high-throughput genotyping and next-generation sequencing (NGS) coupled with larger sample sizes brings the realization of precision medicine closer than ever. Polygenic approaches incorporating the aggregate influence of multiple genetic variants can contribute to a better understanding of the genetic architecture of many complex diseases and facilitate patient stratification. This review addresses polygenic concepts, methodological developments, hypotheses, and key issues in study design. Polygenic risk scores (PRSs) have been applied to many complex diseases and here we focus on Alzheimer's disease (AD) as a primary exemplar. This review was designed to serve as a starting point for investigators wishing to use PRSs in their research and those interested in enhancing clinical study designs through enrichment strategies.


Asunto(s)
Enfermedad de Alzheimer/genética , Estudios de Asociación Genética , Predisposición Genética a la Enfermedad , Herencia Multifactorial/genética , Enfermedad de Alzheimer/diagnóstico , Progresión de la Enfermedad , Humanos , Desequilibrio de Ligamiento , Fenotipo , Polimorfismo de Nucleótido Simple , Modelos de Riesgos Proporcionales
13.
Mol Psychiatry ; 26(10): 5636-5657, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-31942037

RESUMEN

Alzheimer's disease (AD) is the most common age-related form of dementia, associated with deposition of intracellular neuronal tangles consisting primarily of hyperphosphorylated microtubule-associated protein tau (p-tau) and extracellular plaques primarily comprising amyloid- ß (Aß) peptide. The p-tau tangle unit is a posttranslational modification of normal tau protein. Aß is a neurotoxic peptide excised from the amyloid-ß precursor protein (APP) by ß-site APP-cleaving enzyme 1 (BACE1) and the γ-secretase complex. MicroRNAs (miRNAs) are short, single-stranded RNAs that modulate protein expression as part of the RNA-induced silencing complex (RISC). We identified miR-298 as a repressor of APP, BACE1, and the two primary forms of Aß (Aß40 and Aß42) in a primary human cell culture model. Further, we discovered a novel effect of miR-298 on posttranslational levels of two specific tau moieties. Notably, miR-298 significantly reduced levels of ~55 and 50 kDa forms of the tau protein without significant alterations of total tau or other forms. In vivo overexpression of human miR-298 resulted in nonsignificant reduction of APP, BACE1, and tau in mice. Moreover, we identified two miR-298 SNPs associated with higher cerebrospinal fluid (CSF) p-tau and lower CSF Aß42 levels in a cohort of human AD patients. Finally, levels of miR-298 varied in postmortem human temporal lobe between AD patients and age-matched non-AD controls. Our results suggest that miR-298 may be a suitable target for AD therapy.


Asunto(s)
Enfermedad de Alzheimer , MicroARNs , Enfermedad de Alzheimer/genética , Secretasas de la Proteína Precursora del Amiloide/genética , Péptidos beta-Amiloides , Precursor de Proteína beta-Amiloide/genética , Animales , Ácido Aspártico Endopeptidasas/genética , Humanos , Ratones , MicroARNs/genética , Proteínas tau/genética
14.
Mol Psychiatry ; 26(1): 309-321, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-30361487

RESUMEN

Deposition of amyloid plaques in the brain is one of the two main pathological hallmarks of Alzheimer's disease (AD). Amyloid positron emission tomography (PET) is a neuroimaging tool that selectively detects in vivo amyloid deposition in the brain and is a reliable endophenotype for AD that complements cerebrospinal fluid biomarkers with regional information. We measured in vivo amyloid deposition in the brains of ~1000 subjects from three collaborative AD centers and ADNI using 11C-labeled Pittsburgh Compound-B (PiB)-PET imaging followed by meta-analysis of genome-wide association studies, first to our knowledge for PiB-PET, to identify novel genetic loci for this endophenotype. The APOE region showed the most significant association where several SNPs surpassed the genome-wide significant threshold, with APOE*4 being most significant (P-meta = 9.09E-30; ß = 0.18). Interestingly, after conditioning on APOE*4, 14 SNPs remained significant at P < 0.05 in the APOE region that were not in linkage disequilibrium with APOE*4. Outside the APOE region, the meta-analysis revealed 15 non-APOE loci with P < 1E-05 on nine chromosomes, with two most significant SNPs on chromosomes 8 (P-meta = 4.87E-07) and 3 (P-meta = 9.69E-07). Functional analyses of these SNPs indicate their potential relevance with AD pathogenesis. Top 15 non-APOE SNPs along with APOE*4 explained 25-35% of the amyloid variance in different datasets, of which 14-17% was explained by APOE*4 alone. In conclusion, we have identified novel signals in APOE and non-APOE regions that affect amyloid deposition in the brain. Our data also highlights the presence of yet to be discovered variants that may be responsible for the unexplained genetic variance of amyloid deposition.


Asunto(s)
Enfermedad de Alzheimer/diagnóstico por imagen , Enfermedad de Alzheimer/metabolismo , Péptidos beta-Amiloides/metabolismo , Compuestos de Anilina/análisis , Encéfalo/diagnóstico por imagen , Encéfalo/metabolismo , Estudio de Asociación del Genoma Completo , Tomografía de Emisión de Positrones , Tiazoles/análisis , Enfermedad de Alzheimer/genética , Apolipoproteína E4/genética , Endofenotipos , Femenino , Humanos , Masculino , Polimorfismo de Nucleótido Simple/genética
15.
Alzheimers Dement ; 18(6): 1260-1278, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-34757660

RESUMEN

Metabolites, the biochemical products of the cellular process, can be used to measure alterations in biochemical pathways related to the pathogenesis of Alzheimer's disease (AD). However, the relationships between systemic abnormalities in metabolism and the pathogenesis of AD are poorly understood. In this study, we aim to identify AD-specific metabolomic changes and their potential upstream genetic and transcriptional regulators through an integrative systems biology framework for analyzing genetic, transcriptomic, metabolomic, and proteomic data in AD. Metabolite co-expression network analysis of the blood metabolomic data in the Alzheimer's Disease Neuroimaging Initiative (ADNI) shows short-chain acylcarnitines/amino acids and medium/long-chain acylcarnitines are most associated with AD clinical outcomes, including episodic memory scores and disease severity. Integration of the gene expression data in both the blood from the ADNI and the brain from the Accelerating Medicines Partnership Alzheimer's Disease (AMP-AD) program reveals ABCA1 and CPT1A are involved in the regulation of acylcarnitines and amino acids in AD. Gene co-expression network analysis of the AMP-AD brain RNA-seq data suggests the CPT1A- and ABCA1-centered subnetworks are associated with neuronal system and immune response, respectively. Increased ABCA1 gene expression and adiponectin protein, a regulator of ABCA1, correspond to decreased short-chain acylcarnitines and amines in AD in the ADNI. In summary, our integrated analysis of large-scale multiomics data in AD systematically identifies novel metabolites and their potential regulators in AD and the findings pave a way for not only developing sensitive and specific diagnostic biomarkers for AD but also identifying novel molecular mechanisms of AD pathogenesis.


Asunto(s)
Enfermedad de Alzheimer , Humanos , Enfermedad de Alzheimer/patología , Aminoácidos , Genómica , Redes y Vías Metabólicas/genética , Metabolómica , Proteómica
16.
Alzheimers Dement ; 18(11): 2151-2166, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-35077012

RESUMEN

INTRODUCTION: The apolipoprotein E (APOE) genotype is the strongest genetic risk factor for late-onset Alzheimer's disease. However, its effect on lipid metabolic pathways, and their mediating effect on disease risk, is poorly understood. METHODS: We performed lipidomic analysis on three independent cohorts (the Australian Imaging, Biomarkers and Lifestyle [AIBL] flagship study, n = 1087; the Alzheimer's Disease Neuroimaging Initiative [ADNI] 1 study, n = 819; and the Busselton Health Study [BHS], n = 4384), and we defined associations between APOE ε2 and ε4 and 569 plasma/serum lipid species. Mediation analysis defined the proportion of the treatment effect of the APOE genotype mediated by plasma/serum lipid species. RESULTS: A total of 237 and 104 lipid species were associated with APOE ε2 and ε4, respectively. Of these 68 (ε2) and 24 (ε4) were associated with prevalent Alzheimer's disease. Individual lipid species or lipidomic models of APOE genotypes mediated up to 30% and 10% of APOE ε2 and ε4 treatment effect, respectively. DISCUSSION: Plasma lipid species mediate the treatment effect of APOE genotypes on Alzheimer's disease and as such represent a potential therapeutic target.


Asunto(s)
Enfermedad de Alzheimer , Humanos , Enfermedad de Alzheimer/genética , Apolipoproteína E2/genética , Australia , Apolipoproteínas E/genética , Genotipo , Estudios de Cohortes , Apolipoproteína E4/genética
17.
Neurobiol Dis ; 153: 105303, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-33631273

RESUMEN

Alzheimer's disease (AD) is a progressive neurodegenerative disorder characterized by cognitive decline, robust microgliosis, neuroinflammation, and neuronal loss. Genome-wide association studies recently highlighted a prominent role for microglia in late-onset AD (LOAD). Specifically, inositol polyphosphate-5-phosphatase (INPP5D), also known as SHIP1, is selectively expressed in brain microglia and has been reported to be associated with LOAD. Although INPP5D is likely a crucial player in AD pathophysiology, its role in disease onset and progression remains unclear. We performed differential gene expression analysis to investigate INPP5D expression in AD and its association with plaque density and microglial markers using transcriptomic (RNA-Seq) data from the Accelerating Medicines Partnership for Alzheimer's Disease (AMP-AD) cohort. We also performed quantitative real-time PCR, immunoblotting, and immunofluorescence assays to assess INPP5D expression in the 5xFAD amyloid mouse model. Differential gene expression analysis found that INPP5D expression was upregulated in LOAD and positively correlated with amyloid plaque density. In addition, in 5xFAD mice, Inpp5d expression increased as the disease progressed, and selectively in plaque-associated microglia. Increased Inpp5d expression levels in 5xFAD mice were abolished entirely by depleting microglia with the colony-stimulating factor receptor-1 antagonist PLX5622. Our findings show that INPP5D expression increases as AD progresses, predominantly in plaque-associated microglia. Importantly, we provide the first evidence that increased INPP5D expression might be a risk factor in AD, highlighting INPP5D as a potential therapeutic target. Moreover, we have shown that the 5xFAD mouse model is appropriate for studying INPP5D in AD.


Asunto(s)
Enfermedad de Alzheimer/genética , Microglía/metabolismo , Fosfatidilinositol-3,4,5-Trifosfato 5-Fosfatasas/genética , Placa Amiloide/genética , Anciano , Anciano de 80 o más Años , Enfermedad de Alzheimer/metabolismo , Animales , Femenino , Humanos , Masculino , Ratones , Ratones Transgénicos , Fosfatidilinositol-3,4,5-Trifosfato 5-Fosfatasas/metabolismo , Placa Amiloide/metabolismo , ARN Mensajero/metabolismo , RNA-Seq
18.
PLoS Med ; 18(5): e1003615, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-34043628

RESUMEN

BACKGROUND: While Alzheimer disease (AD) and vascular dementia (VaD) may be accelerated by hypercholesterolemia, the mechanisms underlying this association are unclear. We tested whether dysregulation of cholesterol catabolism, through its conversion to primary bile acids (BAs), was associated with dementia pathogenesis. METHODS AND FINDINGS: We used a 3-step study design to examine the role of the primary BAs, cholic acid (CA), and chenodeoxycholic acid (CDCA) as well as their principal biosynthetic precursor, 7α-hydroxycholesterol (7α-OHC), in dementia. In Step 1, we tested whether serum markers of cholesterol catabolism were associated with brain amyloid accumulation, white matter lesions (WMLs), and brain atrophy. In Step 2, we tested whether exposure to bile acid sequestrants (BAS) was associated with risk of dementia. In Step 3, we examined plausible mechanisms underlying these findings by testing whether brain levels of primary BAs and gene expression of their principal receptors are altered in AD. Step 1: We assayed serum concentrations CA, CDCA, and 7α-OHC and used linear regression and mixed effects models to test their associations with brain amyloid accumulation (N = 141), WMLs, and brain atrophy (N = 134) in the Baltimore Longitudinal Study of Aging (BLSA). The BLSA is an ongoing, community-based cohort study that began in 1958. Participants in the BLSA neuroimaging sample were approximately 46% male with a mean age of 76 years; longitudinal analyses included an average of 2.5 follow-up magnetic resonance imaging (MRI) visits. We used the Alzheimer's Disease Neuroimaging Initiative (ADNI) (N = 1,666) to validate longitudinal neuroimaging results in BLSA. ADNI is an ongoing, community-based cohort study that began in 2003. Participants were approximately 55% male with a mean age of 74 years; longitudinal analyses included an average of 5.2 follow-up MRI visits. Lower serum concentrations of 7α-OHC, CA, and CDCA were associated with higher brain amyloid deposition (p = 0.041), faster WML accumulation (p = 0.050), and faster brain atrophy mainly (false discovery rate [FDR] p = <0.001-0.013) in males in BLSA. In ADNI, we found a modest sex-specific effect indicating that lower serum concentrations of CA and CDCA were associated with faster brain atrophy (FDR p = 0.049) in males.Step 2: In the Clinical Practice Research Datalink (CPRD) dataset, covering >4 million registrants from general practice clinics in the United Kingdom, we tested whether patients using BAS (BAS users; 3,208 with ≥2 prescriptions), which reduce circulating BAs and increase cholesterol catabolism, had altered dementia risk compared to those on non-statin lipid-modifying therapies (LMT users; 23,483 with ≥2 prescriptions). Patients in the study (BAS/LMT) were approximately 34%/38% male and with a mean age of 65/68 years; follow-up time was 4.7/5.7 years. We found that BAS use was not significantly associated with risk of all-cause dementia (hazard ratio (HR) = 1.03, 95% confidence interval (CI) = 0.72-1.46, p = 0.88) or its subtypes. We found a significant difference between the risk of VaD in males compared to females (p = 0.040) and a significant dose-response relationship between BAS use and risk of VaD (p-trend = 0.045) in males.Step 3: We assayed brain tissue concentrations of CA and CDCA comparing AD and control (CON) samples in the BLSA autopsy cohort (N = 29). Participants in the BLSA autopsy cohort (AD/CON) were approximately 50%/77% male with a mean age of 87/82 years. We analyzed single-cell RNA sequencing (scRNA-Seq) data to compare brain BA receptor gene expression between AD and CON samples from the Religious Orders Study and Memory and Aging Project (ROSMAP) cohort (N = 46). ROSMAP is an ongoing, community-based cohort study that began in 1994. Participants (AD/CON) were approximately 56%/36% male with a mean age of 85/85 years. In BLSA, we found that CA and CDCA were detectable in postmortem brain tissue samples and were marginally higher in AD samples compared to CON. In ROSMAP, we found sex-specific differences in altered neuronal gene expression of BA receptors in AD. Study limitations include the small sample sizes in the BLSA cohort and likely inaccuracies in the clinical diagnosis of dementia subtypes in primary care settings. CONCLUSIONS: We combined targeted metabolomics in serum and amyloid positron emission tomography (PET) and MRI of the brain with pharmacoepidemiologic analysis to implicate dysregulation of cholesterol catabolism in dementia pathogenesis. We observed that lower serum BA concentration mainly in males is associated with neuroimaging markers of dementia, and pharmacological lowering of BA levels may be associated with higher risk of VaD in males. We hypothesize that dysregulation of BA signaling pathways in the brain may represent a plausible biologic mechanism underlying these results. Together, our observations suggest a novel mechanism relating abnormalities in cholesterol catabolism to risk of dementia.


Asunto(s)
Ácidos y Sales Biliares/metabolismo , Demencia/epidemiología , Anciano , Anciano de 80 o más Años , Ácidos y Sales Biliares/biosíntesis , Demencia/metabolismo , Femenino , Perfilación de la Expresión Génica , Humanos , Incidencia , Masculino , Metabolómica , Persona de Mediana Edad , Farmacoepidemiología , Reino Unido/epidemiología
19.
Brain ; 143(8): 2561-2575, 2020 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-32844198

RESUMEN

Approximately 30% of older adults exhibit the neuropathological features of Alzheimer's disease without signs of cognitive impairment. Yet, little is known about the genetic factors that allow these potentially resilient individuals to remain cognitively unimpaired in the face of substantial neuropathology. We performed a large, genome-wide association study (GWAS) of two previously validated metrics of cognitive resilience quantified using a latent variable modelling approach and representing better-than-predicted cognitive performance for a given level of neuropathology. Data were harmonized across 5108 participants from a clinical trial of Alzheimer's disease and three longitudinal cohort studies of cognitive ageing. All analyses were run across all participants and repeated restricting the sample to individuals with unimpaired cognition to identify variants at the earliest stages of disease. As expected, all resilience metrics were genetically correlated with cognitive performance and education attainment traits (P-values < 2.5 × 10-20), and we observed novel correlations with neuropsychiatric conditions (P-values < 7.9 × 10-4). Notably, neither resilience metric was genetically correlated with clinical Alzheimer's disease (P-values > 0.42) nor associated with APOE (P-values > 0.13). In single variant analyses, we observed a genome-wide significant locus among participants with unimpaired cognition on chromosome 18 upstream of ATP8B1 (index single nucleotide polymorphism rs2571244, minor allele frequency = 0.08, P = 2.3 × 10-8). The top variant at this locus (rs2571244) was significantly associated with methylation in prefrontal cortex tissue at multiple CpG sites, including one just upstream of ATPB81 (cg19596477; P = 2 × 10-13). Overall, this comprehensive genetic analysis of resilience implicates a putative role of vascular risk, metabolism, and mental health in protection from the cognitive consequences of neuropathology, while also providing evidence for a novel resilience gene along the bile acid metabolism pathway. Furthermore, the genetic architecture of resilience appears to be distinct from that of clinical Alzheimer's disease, suggesting that a shift in focus to molecular contributors to resilience may identify novel pathways for therapeutic targets.


Asunto(s)
Envejecimiento/genética , Enfermedad de Alzheimer/patología , Encéfalo/patología , Disfunción Cognitiva/genética , Reserva Cognitiva/fisiología , Anciano de 80 o más Años , Envejecimiento/patología , Cromosomas Humanos Par 18/genética , Femenino , Estudio de Asociación del Genoma Completo , Genotipo , Humanos , Masculino , Polimorfismo de Nucleótido Simple
20.
Nature ; 520(7546): 224-9, 2015 Apr 09.
Artículo en Inglés | MEDLINE | ID: mdl-25607358

RESUMEN

The highly complex structure of the human brain is strongly shaped by genetic influences. Subcortical brain regions form circuits with cortical areas to coordinate movement, learning, memory and motivation, and altered circuits can lead to abnormal behaviour and disease. To investigate how common genetic variants affect the structure of these brain regions, here we conduct genome-wide association studies of the volumes of seven subcortical regions and the intracranial volume derived from magnetic resonance images of 30,717 individuals from 50 cohorts. We identify five novel genetic variants influencing the volumes of the putamen and caudate nucleus. We also find stronger evidence for three loci with previously established influences on hippocampal volume and intracranial volume. These variants show specific volumetric effects on brain structures rather than global effects across structures. The strongest effects were found for the putamen, where a novel intergenic locus with replicable influence on volume (rs945270; P = 1.08 × 10(-33); 0.52% variance explained) showed evidence of altering the expression of the KTN1 gene in both brain and blood tissue. Variants influencing putamen volume clustered near developmental genes that regulate apoptosis, axon guidance and vesicle transport. Identification of these genetic variants provides insight into the causes of variability in human brain development, and may help to determine mechanisms of neuropsychiatric dysfunction.


Asunto(s)
Encéfalo/anatomía & histología , Variación Genética/genética , Estudio de Asociación del Genoma Completo , Adolescente , Adulto , Anciano , Anciano de 80 o más Años , Envejecimiento/genética , Apoptosis/genética , Núcleo Caudado/anatomía & histología , Niño , Femenino , Regulación del Desarrollo de la Expresión Génica/genética , Sitios Genéticos/genética , Hipocampo/anatomía & histología , Humanos , Imagen por Resonancia Magnética , Masculino , Proteínas de la Membrana/genética , Persona de Mediana Edad , Tamaño de los Órganos/genética , Putamen/anatomía & histología , Caracteres Sexuales , Cráneo/anatomía & histología , Adulto Joven
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA