Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
1.
Acta Neuropathol ; 146(2): 301-318, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37335342

RESUMEN

Essential Tremor (ET) is a prevalent neurological disease characterized by an 8-10 Hz action tremor. Molecular mechanisms of ET remain poorly understood. Clinical data suggest the importance of the cerebellum in disease pathophysiology, and pathological studies indicate Purkinje Cells (PCs) incur damage. Our recent cerebellar cortex and PC-specific transcriptome studies identified alterations in calcium (Ca2+) signaling pathways that included ryanodine receptor type 1 (RyR1) in ET. RyR1 is an intracellular Ca2+ release channel located on the Endoplasmic Reticulum (ER), and in cerebellum is predominantly expressed in PCs. Under stress conditions, RyR1 undergoes several post-translational modifications (protein kinase A [PKA] phosphorylation, oxidation, nitrosylation), coupled with depletion of the channel-stabilizing binding partner calstabin1, which collectively characterize a "leaky channel" biochemical signature. In this study, we found markedly increased PKA phosphorylation at the RyR1-S2844 site, increased RyR1 oxidation and nitrosylation, and calstabin1 depletion from the RyR1 complex in postmortem ET cerebellum. Decreased calstabin1-RyR1-binding affinity correlated with loss of PCs and climbing fiber-PC synapses in ET. This 'leaky' RyR1 signature was not seen in control or Parkinson's disease cerebellum. Microsomes from postmortem cerebellum demonstrated excessive ER Ca2+ leak in ET vs. controls, attenuated by channel stabilization. We further studied the role of RyR1 in tremor using a mouse model harboring a RyR1 point mutation that mimics constitutive site-specific PKA phosphorylation (RyR1-S2844D). RyR1-S2844D homozygous mice develop a 10 Hz action tremor and robust abnormal oscillatory activity in cerebellar physiological recordings. Intra-cerebellar microinfusion of RyR1 agonist or antagonist, respectively, increased or decreased tremor amplitude in RyR1-S2844D mice, supporting a direct role of cerebellar RyR1 leakiness for tremor generation. Treating RyR1-S2844D mice with a novel RyR1 channel-stabilizing compound, Rycal, effectively dampened cerebellar oscillatory activity, suppressed tremor, and normalized cerebellar RyR1-calstabin1 binding. These data collectively support that stress-associated ER Ca2+ leak via RyR1 may contribute to tremor pathophysiology.


Asunto(s)
Calcio , Canal Liberador de Calcio Receptor de Rianodina , Humanos , Canal Liberador de Calcio Receptor de Rianodina/metabolismo , Calcio/metabolismo , Temblor/metabolismo , Cerebelo/metabolismo , Retículo Endoplásmico/metabolismo , Músculo Esquelético/metabolismo
2.
Sci Transl Med ; 16(747): eadl1408, 2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38748772

RESUMEN

Essential tremor (ET) is the most prevalent movement disorder, characterized primarily by action tremor, an involuntary rhythmic movement with a specific frequency. However, the neuronal mechanism underlying the coding of tremor frequency remains unexplored. Here, we used in vivo electrophysiology, optogenetics, and simultaneous motion tracking in the Grid2dupE3 mouse model to investigate whether and how neuronal activity in the olivocerebellum determines the frequency of essential tremor. We report that tremor frequency was encoded by the temporal coherence of population neuronal firing within the olivocerebellums of these mice, leading to frequency-dependent cerebellar oscillations and tremors. This mechanism was precise and generalizable, enabling us to use optogenetic stimulation of the deep cerebellar nuclei to induce frequency-specific tremors in wild-type mice or alter tremor frequencies in tremor mice. In patients with ET, we showed that deep brain stimulation of the thalamus suppressed tremor symptoms but did not eliminate cerebellar oscillations measured by electroencephalgraphy, indicating that tremor-related oscillations in the cerebellum do not require the reciprocal interactions with the thalamus. Frequency-disrupting transcranial alternating current stimulation of the cerebellum could suppress tremor amplitudes, confirming the frequency modulatory role of the cerebellum in patients with ET. These findings offer a neurodynamic basis for the frequency-dependent stimulation of the cerebellum to treat essential tremor.


Asunto(s)
Cerebelo , Temblor Esencial , Neuronas , Núcleo Olivar , Temblor Esencial/fisiopatología , Animales , Humanos , Núcleo Olivar/fisiopatología , Cerebelo/fisiopatología , Ratones , Masculino , Optogenética , Femenino , Estimulación Encefálica Profunda , Persona de Mediana Edad , Electroencefalografía , Anciano
3.
Bioeng Transl Med ; 8(2): e10432, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36925695

RESUMEN

Tracking kinematic details of motor behaviors is a foundation to study the neuronal mechanism and biology of motor control. However, most of the physiological motor behaviors and movement disorders, such as gait, balance, tremor, dystonia, and myoclonus, are highly dependent on the overall momentum of the whole-body movements. Therefore, tracking the targeted movement and overall momentum simultaneously is critical for motor control research, but it remains an unmet need. Here, we introduce the intrinsic oscillatory property (IOP), a fundamental mechanical principle of physics, as a method for motion tracking in a force plate. The overall kinetic energy of animal motions can be transformed into the oscillatory amplitudes at the designed IOP frequency of the force plate, while the target movement has its own frequency features and can be tracked simultaneously. Using action tremor as an example, we reported that force plate-based IOP approach has superior performance and reliability in detecting both tremor severity and tremor frequency, showing a lower level of coefficient of variation (CV) compared with video- and accelerometer-based motion tracking methods and their combination. Under the locomotor suppression effect of medications, therapeutic effects on tremor severity can still be quantified by dynamically adjusting the overall locomotor activity detected by IOP. We further validated IOP method in optogenetic-induced movements and natural movements, confirming that IOP can represent the intensity of general rhythmic and nonrhythmic movements, thus it can be generalized as a common approach to study kinematics.

4.
FASEB J ; 25(4): 1390-401, 2011 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-21209058

RESUMEN

Amyloid formation is initiated by protein misfolding, followed by self-association to ultimately form amyloid fibrils. The discovery of toxic prefibrillar oligomers in many amyloidosis underscores the importance of understanding the folding mechanism prior to such aggregation. Here, we investigated the folding properties of the natively unfolded amyloid-ß (Aß) peptide and the familial variants (A21G, E22Q, E22G, E22K, and D23N) in Alzheimer's disease (AD). In combinations of native electrophoresis, analytical ultracentrifugation, fluorescence emission, and far-UV circular dichroism, we showed that all Aß40 variants are predominantly monomeric with similar residual secondary structures, but distinct hydrophobic-exposed protein surfaces. Guanidine hydrochloride (GdnHCl) denaturation in the absence and presence of trifluoroethanol (TFE) showed that Aß variants adopt an apparent 2-state equilibrium model with different stabilities, in which wild type is less stable than A21G but more stable than D23N and E22 mutants. By correlating the folding stability with the nucleation phase in fibrillization, we found the more stable the variant, the slower the nucleation, except for D23N. Besides, the unfolding of Aß conformation leads to reduced formation of mature fibrils, but an increase in nonfibrillar, amorphous type of aggregates. Overall, we demonstrated that folding stability of Aß is an important determinant of the nucleation kinetics.


Asunto(s)
Péptidos beta-Amiloides/química , Precursor de Proteína beta-Amiloide/química , Fragmentos de Péptidos/química , Pliegue de Proteína , Secuencia de Aminoácidos , Amiloide/química , Precursor de Proteína beta-Amiloide/genética , Guanidina/farmacología , Humanos , Cinética , Desnaturalización Proteica , Estabilidad Proteica , Estructura Secundaria de Proteína , Trifluoroetanol/farmacología
5.
Curr Biol ; 31(12): 2507-2519.e4, 2021 06 21.
Artículo en Inglés | MEDLINE | ID: mdl-33862007

RESUMEN

In ribosomal DNA (rDNA) repeats, sequences encoding small-subunit (SSU) rRNA precede those encoding large-subunit (LSU) rRNAs. Processing the composite transcript and subunit assembly requires >100 subunit-specific nucleolar assembly factors (AFs). To investigate the functional organization of the nucleolus, we localized AFs in S. cerevisiae in which the rDNA axis was "linearized" to reduce its dimensionality, thereby revealing its coaxial organization. In this situation, rRNA synthesis and processing continue. The axis is embedded in an inner layer/phase of SSU AFs that is surrounded by an outer layer/phase of LSU AFs. When subunit production is inhibited, subsets of AFs differentially relocate between the inner and outer layers, as expected if there is a cycle of repeated relocation whereby "latent" AFs become "operative" when recruited to nascent subunits. Recognition of AF cycling and localization of segments of rRNA make it possible to infer the existence of assembly intermediates that span between the inner and outer layers and to chart the cotranscriptional assembly of each subunit. AF cycling also can explain how having more than one protein phase in the nucleolus makes possible "vectorial 2-phase partitioning" as a driving force for relocation of nascent rRNPs. Because nucleoplasmic AFs are also present in the outer layer, we propose that critical surface remodeling occurs at this site, thereby partitioning subunit precursors into the nucleoplasm for post-transcriptional maturation. Comparison to observations on higher eukaryotes shows that the coaxial paradigm is likely to be applicable for the many other organisms that have rDNA repeats.


Asunto(s)
Nucléolo Celular , ADN Ribosómico , Saccharomyces cerevisiae/citología , Saccharomyces cerevisiae/genética , Nucléolo Celular/genética , ADN Ribosómico/genética , ARN Ribosómico/genética
6.
Sci Transl Med ; 12(526)2020 01 15.
Artículo en Inglés | MEDLINE | ID: mdl-31941824

RESUMEN

Essential tremor (ET) is one of the most common movement disorders and the prototypical disorder for abnormal rhythmic movements. However, the pathophysiology of tremor generation in ET remains unclear. Here, we used autoptic cerebral tissue from patients with ET, clinical data, and mouse models to report that synaptic pruning deficits of climbing fiber (CF)-to-Purkinje cell (PC) synapses, which are related to glutamate receptor delta 2 (GluRδ2) protein insufficiency, cause excessive cerebellar oscillations and might be responsible for tremor. The CF-PC synaptic pruning deficits were correlated with the reduction in GluRδ2 expression in the postmortem ET cerebellum. Mice with GluRδ2 insufficiency and CF-PC synaptic pruning deficits develop ET-like tremor that can be suppressed with viral rescue of GluRδ2 protein. Step-by-step optogenetic or pharmacological inhibition of neuronal firing, axonal activity, or synaptic vesicle release confirmed that the activity of the excessive CF-to-PC synapses is required for tremor generation. In vivo electrophysiology in mice showed that excessive cerebellar oscillatory activity is CF dependent and necessary for tremor and optogenetic-driven PC synchronization was sufficient to generate tremor in wild-type animals. Human validation by cerebellar electroencephalography confirmed that excessive cerebellar oscillations also exist in patients with ET. Our findings identify a pathophysiologic contribution to tremor at molecular (GluRδ2), structural (CF-to-PC synapses), physiological (cerebellar oscillations), and behavioral levels (kinetic tremor) that might have clinical applications for treating ET.


Asunto(s)
Cerebelo/metabolismo , Temblor/metabolismo , Temblor/patología , Animales , Humanos , Ratones , Células de Purkinje/metabolismo , Células de Purkinje/patología , Receptores de Glutamato/metabolismo , Sinapsis/metabolismo , Sinapsis/patología
7.
Artículo en Inglés | MEDLINE | ID: mdl-30402338

RESUMEN

Background: Tremor is the most common movement disorder; however, the pathophysiology of tremor remains elusive. While several neuropathological alterations in tremor disorders have been observed in post-mortem studies of human brains, a full understanding of the relationship between brain circuitry alterations and tremor requires testing in animal models. Additionally, tremor animal models are critical for our understanding of tremor pathophysiology, and/or to serve as a platform for therapy development. Methods: A PubMed search was conducted in May 2018 to identify published papers for review. Results: The methodology used in most studies on animal models of tremor lacks standardized measurement of tremor frequency and amplitude; instead, these studies are based on the visual inspection of phenotypes, which may fail to delineate tremor from other movement disorders such as ataxia. Of the animal models with extensive tremor characterization, harmaline-induced rodent tremor models provide an important framework showing that rhythmic and synchronous neuronal activities within the olivocerebellar circuit can drive action tremor. In addition, dopamine-depleted monkey and mouse models may develop rest tremor, highlighting the role of dopamine in rest tremor generation. Finally, other animal models of tremor have involvement of the cerebellar circuitry, leading to altered Purkinje cell physiology. Discussion: Both the cerebellum and the basal ganglia are likely to play a role in tremor generation. While the cerebellar circuitry can generate rhythmic movements, the nigrostriatal system is likely to modulate the tremor circuit. Tremor disorders are heterogeneous in nature. Therefore, each animal model may represent a subset of tremor disorders, which collectively can advance our understanding of tremor.


Asunto(s)
Encéfalo/patología , Modelos Animales de Enfermedad , Temblor , Animales , Encéfalo/fisiopatología , Humanos , PubMed/estadística & datos numéricos , Temblor/patología , Temblor/fisiopatología
8.
PLoS One ; 11(9): e0163359, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27658206

RESUMEN

Expansion of the polyglutamine (polyQ) tract in the huntingtin (Htt) protein causes Huntington's disease (HD), a fatal inherited movement disorder linked to neurodegeneration in the striatum and cortex. S-nitrosylation and S-acylation of cysteine residues regulate many functions of cytosolic proteins. We therefore used a resin-assisted capture approach to identify these modifications in Htt. In contrast to many proteins that have only a single S-nitrosylation or S-acylation site, we identified sites along much of the length of Htt. Moreover, analysis of cells expressing full-length Htt or a large N-terminal fragment of Htt shows that polyQ expansion strongly increases Htt S-nitrosylation. This effect appears to be general since it is also observed in Ataxin-1, which causes spinocerebellar ataxia type 1 (SCA1) when its polyQ tract is expanded. Overexpression of nitric oxide synthase increases the S-nitrosylation of normal Htt and the frequency of conspicuous juxtanuclear inclusions of Htt N-terminal fragments in transfected cells. Taken together with the evidence that S-nitrosylation of Htt is widespread and parallels polyQ expansion, these subcellular changes show that S-nitrosylation affects the biology of this protein in vivo.

9.
J Vis Exp ; (67): e4197, 2012 Sep 21.
Artículo en Inglés | MEDLINE | ID: mdl-23023110

RESUMEN

Zygotes are essential intermediates between haploid and diploid states in the life cycle of many organisms, including yeast (Figure 1) (1). S. cerevisiae zygotes result from the fusion of haploid cells of distinct mating type (MATa, MATalpha) and give rise to corresponding stable diploids that successively generate as many as 20 diploid progeny as a result of their strikingly asymmetric mitotic divisions (2). Zygote formation is orchestrated by a complex sequence of events: In this process, soluble mating factors bind to cognate receptors, triggering receptor-mediated signaling cascades that facilitate interruption of the cell cycle and culminate in cell-cell fusion. Zygotes may be considered a model for progenitor or stem cell function. Although much has been learned about the formation of zygotes and although zygotes have been used to investigate cell-molecular questions of general significance, almost all studies have made use of mating mixtures in which zygotes are intermixed with a majority population of haploid cells (3-8). Many aspects of the biochemistry of zygote formation and the continuing life of the zygote therefore remain uninvestigated. Reports of purification of yeast zygotes describe protocols based on their sedimentation properties (9); however, this sedimentation-based procedure did not yield nearly 90% purity in our hands. Moreover, it has the disadvantage that cells are exposed to hypertonic sorbitol. We therefore have developed a versatile purification procedure. For this purpose, pairs of haploid cells expressing red or green fluorescent proteins were co-incubated to allow zygote formation, harvested at various times, and the resulting zygotes were purified using a flow cytometry-based sorting protocol. This technique provides a convenient visual assessment of purity and maturation. The average purity of the fraction is approximately 90%. According to the timing of harvest, zygotes of varying degrees of maturity can be recovered. The purified samples provide a convenient point of departure for "-omic" studies, for recovery of initial progeny, and for systematic investigation of this progenitor cell.


Asunto(s)
Citometría de Flujo/métodos , Saccharomyces cerevisiae/química , Proteínas Fluorescentes Verdes/biosíntesis , Proteínas Fluorescentes Verdes/química , Proteínas Luminiscentes/biosíntesis , Proteínas Luminiscentes/química , Saccharomyces cerevisiae/citología , Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/fisiología , Esporas Fúngicas/química , Esporas Fúngicas/citología , Proteína Fluorescente Roja
10.
J Biochem ; 147(4): 535-43, 2010 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-19959503

RESUMEN

Helicobacter pylori is a spiral Gram-negative microaerophilic bacterium. It is unique and distinctive among various bacterial pathogens for its ability to persist in the extreme acidic environment of human stomachs. To address and identify changes in the proteome of H. pylori in response to low pH, we have used a proteomic approach to study the protein expression of H. pylori under neutral (pH 7) and acidic (pH 5) conditions. Global protein-expression profiles of H. pylori under acid stress were analysed by two-dimensional polyacrylamide gel electrophoresis (2-DE) followed by liquid chromatography (LC)-nanoESI-mass spectrometry (MS)/MS and bioinformatics database analysis. Among the proteins differentially expressed under acidic condition, a non-heme iron-containing ferritin of H. pylori (HP-ferritin) was found to be consistently upregulated at pH 5 as compared to pH 7. It was also found that HP-ferritin can switch from an iron-storage protein with ferroxidase activity to a DNA-binding/protection function under in vitro conditions upon exposure to acidic environment. Prokaryotic ferritins, such as non-heme iron-binding HP-ferritin with dual functionality reported herein, may play a significant urease-independent role in the acid adaptation of H. pylori under physiological conditions in vivo.


Asunto(s)
Ceruloplasmina/metabolismo , Proteínas de Unión al ADN/metabolismo , Ferritinas/genética , Ferritinas/metabolismo , Helicobacter pylori/enzimología , Estrés Fisiológico/genética , Regulación hacia Arriba , Adaptación Fisiológica , Proteínas Bacterianas/química , Proteínas Bacterianas/genética , Proteínas Bacterianas/aislamiento & purificación , Proteínas Bacterianas/metabolismo , Ceruloplasmina/química , Ceruloplasmina/genética , Ceruloplasmina/aislamiento & purificación , Biología Computacional/métodos , Daño del ADN , Proteínas de Unión al ADN/química , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/aislamiento & purificación , Regulación hacia Abajo , Ferritinas/química , Ferritinas/aislamiento & purificación , Perfilación de la Expresión Génica , Genes Bacterianos , Helicobacter pylori/genética , Helicobacter pylori/fisiología , Concentración de Iones de Hidrógeno , Microquímica/métodos , Datos de Secuencia Molecular , Peso Molecular , Conformación Proteica , Proteómica/métodos , ARN Mensajero/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/aislamiento & purificación , Proteínas Recombinantes/metabolismo , Análisis de Secuencia de ADN , Factores de Tiempo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA