RESUMEN
Annexin A8 (ANXA8) gene, a member of the annexin family, encodes an anticoagulant protein involved in blood coagulation cascade and acts as an indirect inhibitor of the thromboplastin-specific complex. However, little is known about the function of ANXA8 in porcine endometrial cells so far. Here, ANXA8 mRNA was found to be abundant in porcine endometrium on days 11-13 of pregnancy. Real-time RT-PCR analysis indicated that the mRNA expression of the leukaemia inhibitory factor (LIF) and the epidermal growth factor (EGF) was upregulated by ANXA8 in porcine endometrial cells. Immunofluorescence technology and cell cycle analysis revealed that ANXA8 promoted the proliferation of endometrial cells, as evidenced by the abundant proliferating cell nuclear antigen (PCNA) expression and an increase in the S phase. Western blot analysis results indicated that ANXA8 activated the phosphorylation of the target protein kinase B (Akt) protein. Immunofluorescence technology results showed that the PCNA protein had no significant change in porcine endometrial cells with both ANXA8 overexpression and the addition of Akt inhibitor. Furthermore, the number of implantation sites was significantly reduced by injection of mus-siRNA-ANXA8 into the uterine horn of mice. Collectively, these results suggest that ANXA8 promotes the proliferation of endometrial cells through the Akt signalling pathway.
Asunto(s)
Anexinas/genética , Proliferación Celular/fisiología , Endometrio/metabolismo , Animales , Anexinas/metabolismo , Femenino , Masculino , Ratones Endogámicos ICR , Embarazo , Antígeno Nuclear de Célula en Proliferación/metabolismo , Proteínas Proto-Oncogénicas c-akt , ARN Mensajero/metabolismo , ARN Interferente Pequeño , Transducción de Señal , Sus scrofaRESUMEN
In this study, a new method was reported for the fabrication of the nanostructured CuO/Al thermite film on a Cu substrate. The CuO nanorod (NR) arrays grew vertically from the Cu surfaces by electrochemical anodization processes, followed by the deposition of an Al layer on the CuO NRs via magnetron sputtering to form a core/shell CuO/Al nanothermite film, whose component, structure and morphology were subsequently characterized. In addition, the energy-release characteristics of the obtained nanothermite film were investigated using thermal analyses and laser ignition tests. All evidence demonstrates that the obtained CuO/Al is of a uniform structure and has superb energy performance. Impressively, the resulting material is potentially useful in applications of functional energetic chips due to its easy integration with microelectromechanical systems (MEMS) technologies.
RESUMEN
Obese and lean pig breeds show obvious differences in adipose metabolism/fat deposition; however, the molecular mechanism underlying phenotype variation remains unknown. In order to understand it, we analyzed the differences of gene expression in backfat between Meishan (a typical Chinese indigenous obese breed) and Large White (a lean Western breed) pigs. Here, we cloned porcine ß subunit of IDH3 (IDH3B) and 2447 bp 5'-flanking sequence of this gene, and determined the genomic structure. Porcine IDH3B contains three isoforms, IDH3B ( 1 ), IDH3B ( 2 ) and IDH3B ( 3 ). Real-time RT-PCR revealed that these three isoforms were prevalently up-regulated in backfat of western commercial pigs, Large White, Landrace and Duroc, compared with Chinese indigenous breeds, Meishan and Tongcheng pigs. A 304 bp insertion/deletion variant was found in the 5'-flanking region. Dual-luciferase reporter assays showed that in vitro the promoter of IDH3B gene with the insertion had higher luciferase activity as compared with the wild type. Three genotypes AA, AB and BB, due to this insertion, were detected, and the frequency of allele A was dominant in western commercial pigs, whereas allele B predominated in Chinese indigenous breeds. IDH3B mRNA expression in Meishan pigs was more abundant with genotype AA than with genotype AB or BB, as in Large White pigs. In addition, the polymorphism was detected in 317 pigs of a Large White × Meishan F2 resource population. Association analysis showed that pigs with genotype AA possessed higher backfat thickness at buttocks than those with genotype AB (P < 0.05) or BB. These data suggested that the 304 bp insertion mutation in promoter region increased the expression of porcine IDH3ß transcripts and this mutation might be a candidate marker for marker assistant selection in swine breeding.
Asunto(s)
Tejido Adiposo/enzimología , Composición Corporal/genética , Regulación Enzimológica de la Expresión Génica/fisiología , Mutación INDEL/genética , Isocitrato Deshidrogenasa/metabolismo , Fenotipo , Sus scrofa/genética , Animales , Composición Corporal/fisiología , Cartilla de ADN/genética , ADN Complementario/biosíntesis , Etiquetas de Secuencia Expresada , Regulación Enzimológica de la Expresión Génica/genética , Estudios de Asociación Genética , Isocitrato Deshidrogenasa/genética , Modelos Lineales , Luciferasas , Plásmidos/genética , Regiones Promotoras Genéticas/genética , Reacción en Cadena en Tiempo Real de la Polimerasa , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Especificidad de la Especie , Sus scrofa/fisiologíaRESUMEN
In this study, CoFe2O4 is selected for the first time to synthesize CoFe2O4/Al nanothermite films via an integration of nano-Al with CoFe2O4 nanowires (NWs), which can be prepared through a facile hydrothermal-annealing route. The resulting nanothermite film demonstrates a homogeneous structure and an intense contact between the Al and CoFe2O4 NWs at the nanoscale. In addition, both thermal analysis and laser ignition test reveal the superb energetic performances of the prepared CoFe2O4/Al NWs nanothermite film. Within different thicknesses of nano-Al for the CoFe2O4/Al NWs nanothermite films investigated here, the maximum heat output has reached as great as 2100 J·g-1 at the optimal thickness of 400 nm for deposited Al. Moreover, the fabrication strategy for CoFe2O4/Al NWs is also easy and suitable for diverse thermite systems based upon other composite metal oxides, such as MnCo2O4 and NiCo2O4. Importantly, this method has the featured advantages of simple operation and compatibility with microsystems, both of which may further facilitate potential applications for functional energetic chips.
RESUMEN
In order to enhance the ignition ability and reliability of traditional electronic initiators, a novel electronic initiator has been designed to integrate with a nanothermite multilayer film and an electrode plug. The Al/CuOx nanothermite multilayer film with different thickness is deposited on the surface of the electrode plug by magnetron sputtering which uses Pt-W wire as electronic resistance. The exothermicity of Al/CuOx nanothermite multilayer film is so favourable that the ignition ability of electronic initiator is significantly improved. The full firing-voltage sensitivity of the electronic initiator is 10.8 V. The thickness of Al/CuOx multilayer film has negligible effects on the ignition time and ignition energy, but leads to great impacts on the function time, the maximum length of combustion flame and ignition ability. The electrical ignition experiments have exhibited outstanding ignition ability, since the electronic initiator can easily fire the insensitive ignition composition of boron-potassium nitrate (B-KNO3) tablet in a gap of 20.35 mm. It proves that this novel proposal of remoulding the traditional electronic ignition devices will distinctly improve the ignition ability and reliability of electronic initiator.
RESUMEN
Identifying genetic basis of domestication and improvement in livestock contributes to our understanding of the role of artificial selection in shaping the genome. Here we used whole-genome sequencing and the genotyping by sequencing approach to detect artificial selection signatures and identify the associated SNPs of two economic traits in Duroc pigs. A total of 38 candidate selection regions were detected by combining the fixation index and the Composite Likelihood Ratio methods. Further genome-wide association study revealed seven associated SNPs that were related with intramuscular fat content and feed conversion ratio traits, respectively. Enrichment analysis suggested that the artificial selection regions harbored genes, such as MSTN, SOD2, MC5R and CD83, which are responsible for economic traits including lean muscle mass, fertility and immunization. Overall, this study found a series of candidate genes putatively associated with the breeding improvement of Duroc pigs and the polygenic basis of adaptive evolution, which can provide important references and fundamental information for future breeding programs.
Asunto(s)
Cruzamiento , Porcinos/genética , Agricultura , Animales , Genómica , Polimorfismo de Nucleótido Simple , Selección GenéticaRESUMEN
Tongcheng (TC) and Yorkshire (YK) are two pig breeds with distinctive muscle morphology. Porcine microRNAome (miRNAome) of the longissimus muscle during five developmental stages (40, 55, 63, 70, and 90 days post coitum (dpc)) was explored by Solexa sequencing in the present study to find miRNAs involved in the different regulation of skeletal muscle development between the two breeds. A total of 320 known porcine miRNAs, 64 miRNAs corresponding to other mammals, and 224 potentially novel miRNAs were identified. Principal component analysis (PCA) and hierarchical cluster analysis (HCA) suggested that the factor "pig breed" affected the miRNA expression profiles to a lesser extent than the factor "developmental stage". Fifty-seven miRNAs were differentially expressed (DE) between the neighbor developmental stages in TC and 45 such miRNAs were found in YK, 34 in common; there were more down-regulated stage-DE miRNAs than up-regulated. And a total of 23, 30, 12, 6, and 30 breed-DE miRNAs between TC and YK were identified at 40, 55, 63, 70, and 90 dpc, respectively, which were mainly involved in cellular protein modification process, protein transport, and metabolic process. As the only highly expressed breed-DE miRNA found in no less than four developmental stages, and also a stage-DE miRNA found both in TC and YK, miR-499-5p could bind the 3'-UTR of a myofibrillogenesis regulator, destrin/actin depolymerizing factor (DSTN), as validated in dual luciferase reporter assay. The results suggested that miR-499-5p possibly play a noteworthy role in the breed-distinctive porcine muscle fiber development associated with the regulation of DSTN.
Asunto(s)
Músculos de la Espalda/crecimiento & desarrollo , Músculos de la Espalda/metabolismo , MicroARNs/metabolismo , Sus scrofa/crecimiento & desarrollo , Sus scrofa/metabolismo , Animales , Femenino , Regulación del Desarrollo de la Expresión Génica , Masculino , ARN Mensajero/metabolismo , Especificidad de la EspecieRESUMEN
A novel low bandgap star-like macromolecule was synthesized and applied as electron donor material in the bulk heterojunction solar cells, in which the 5,5'-bibenzo[c][1,2,5]thiadiazole was used as the central node, in conjunction with four conjugated donor-acceptor arms. Compared with the corresponding small molecule with first generation arms, the macromolecule with second generation branches exhibited significantly enhanced photovoltaic device performances (blended with PC71BM as the active layer) due to dramatically improved short-circuit current density (Jsc) and fill factor (FF). The improvement in Jsc and FF can be attributed to the more broad absorption and the more favorable phase separation when comparing a monodisperse macromolecule with the second generation arms (SFTBT) with a small molecule with first generation branches (DFTBT).
RESUMEN
A novel 3D donor material (SF8TBT) based on spiro-fluorene has been developed. Compared with the corresponding 1D linear molecule, the OPVs of this 3D donor exhibited power conversion efficiencies of 4.82%, much higher than that of 1D small molecules (1.69%).