Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Bases de datos
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Front Pharmacol ; 13: 961866, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36225588

RESUMEN

Background: Intracranial atherosclerotic stenosis (ICAS) is a common cause of first and recurrent ischemic stroke worldwide. Circular RNAs (circRNA)s have been recently suggested as candidate biomarkers in diagnosing and prognosis of ischemic stroke. A few circRNAs even serve as therapeutic targets that improves neurological function after ischemic stroke. However, the roles of circRNAs in ICAS caused ischemic stroke (ICAS-stroke) have not been fully understood. Therefore, in this study, we attempted to find some clues by investigating the different expression profiles of circRNAs between patients diagnosed with ICAS-stroke and normal control (NC)s. Methods: The OE Biotech Human ceRNA Microarray 4 × 180 K (47, 899 probes) screened circRNAs differentially expressed in peripheral blood in a discovery cohort (5 NCs versus five patients with ICAS-stroke). Afterwards, a validation cohort (31 NCs versus 48 patients with ICAS-stroke) was performed by quantitative polymerase chain reaction (qPCR). Gene Ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG) and CircRNA-microRNA-mRNA interaction network was performed to identify potential interactions with microRNAs and pathway-deregulated circRNAs. Results: There were 244 circRNAs differentially expressed in patients diagnosed with ICAS-stroke compared with NCs [fold change (FC) ≥ 2.0 and p-value<0.05]. Among the 244 circRNAs, 5 circRNAs (hsa_circ_0003574, hsa_circ_0010509, hsa_circ_0026628, hsa_circ_0074057, hsa_circ_0016993) were selected for following verification by qPCR. Only hsa_circRNA_0003574 was significantly upregulated in patients than in NCs. GO analysis indicated that predicted target genes involved various biological processes, cellular components, and molecular functions. KEGG analysis showed that many genes were enriched within the arginine and proline metabolism, pyrimidine metabolism, arginine and proline metabolism, lysosome, cytokine-cytokine receptor interaction, and RNA transport. The circRNA-miRNA-mRNA network analysis show the miRNAs that has_circ_0003574 likely interacts with. Conclusion: We observed that hsa_circRNA_0003574 is upregulated in patients with ICAS-stroke compared with NCs, indicating it may be a potential novel biomarker and therapeutic target for ICAS-stroke. In addition, we analyzed the laboratory results and found that homocysteine and glycosylated hemoglobin were elevated among ICAS-stroke patients. The relationship between hsa_circRNA_0003574 and these parameters requires further investigation.

2.
Front Neurol ; 13: 963508, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36330428

RESUMEN

Ischemic stroke (IS) is a severe disease with a high disability, recurrence, and mortality rates. Autophagy, a highly conserved process that degrades damaged or aging organelles and excess cellular components to maintain homeostasis, is activated during IS. It influences the blood-brain barrier integrity and regulates apoptosis. Circular RNAs (circRNAs) are novel non-coding RNAs involved in IS-induced autophagy and participate in various pathological processes following IS. In addition, they play a role in autophagy regulation. This review summarizes current evidence on the roles of autophagy and circRNA in IS and the potential mechanisms by which circRNAs regulate autophagy to influence IS injury. This review serves as a basis for the clinical application of circRNAs as novel biomarkers and therapeutic targets in the future.

3.
Oxid Med Cell Longev ; 2021: 6659908, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33747348

RESUMEN

Circular RNAs (circRNAs) are novel noncoding RNAs that play regulatory roles in gene expression. Dysregulation of circRNAs is associated with the development and progression of several diseases, such as diabetes mellitus, nervous system diseases, cardiovascular diseases, and cancer. CircRNAs functionally participate in cell physiological activities through various molecular mechanisms. However, these molecular mechanisms are unclear. Oxidative stress is an essential factor in the pathogenesis of various diseases, including neurological diseases. Emerging roles of circRNAs have been identified in different systems in response to oxidative stress. In this review, we summarize the current understanding of circRNA biogenesis, properties, expression profiles, and the clues indicating the regulatory roles of circRNAs through oxidative stress in various systems, especially the nervous system.


Asunto(s)
Enfermedades del Sistema Nervioso/genética , Estrés Oxidativo/genética , ARN Circular/genética , Enfermedades Vasculares/genética , Regulación de la Expresión Génica , Humanos , Modelos Biológicos , ARN Circular/metabolismo
4.
Front Genet ; 12: 706823, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34552617

RESUMEN

Introduction: Congenital muscular dystrophy (CMD) is a group of early-onset disorders with clinical and genetic heterogeneity. Patients always present with muscle weakness typically from birth to early infancy, delay or arrest of gross motor development, and joint and/or spinal rigidity. There are various genes related to the development of CMD. Among them, mutations in integrin alpha 7 (ITGA7) is a rare subtype. The identification of disease-causing genes facilitates the diagnosis and treatment of CMD. Methods: We screened ITGA7 mutations in four people by whole exome sequencing and targeted sequencing from a consanguineous family. We then carried out electromyography and neuroelectrophysiological examinations to clarify a clinical picture of the patient diagnosed with CMD. Results: We report a Chinese boy diagnosed with CMD who carries a homozygous variant (c.1088dupG, p.H364Sfs*15) of the ITGA7 gene. According to the genotype analysis of his family members, this is an autosomal recessive inheritance. Conclusions: Our case further shows that ITGA7 mutation is related to CMD. Genetic counseling and multidisciplinary management of CMD play an important role in helping patients and their family. Further elucidation of the significant clinical and genetic heterogeneity, therapeutic targets, and the clinical care for patients remains our challenge for the future.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA