Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
Prostate ; 82(4): 483-492, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-34985786

RESUMEN

BACKGROUND: Accurate diagnosis of localized prostate cancer (PCa) is limited by inadequacy of multiparametric (mp) MRI to fully identify and differentiate localized malignant tissue from benign pathologies. Prostate-specific membrane antigen (PSMA) represents an excellent target for molecular imaging. IAB2M, an 85-kD minibody derived from a de-immunized monoclonal antibody directed at the extracellular domain of human PSMA (huJ591), and PSMA-11, a small molecule ligand have been previously tested as probes for visualization of recurrent/metastatic PCa with PET/CT. This pilot, non-randomized trial studied their diagnostic utility in patients (pts) with localized PCa. METHODS: Pts planned for radical prostatectomy (RP) were enrolled and underwent mpMRI and PET/CT imaging with 89 Zr-df-IAB2M and/or 68 Ga-PSMA-PET/CT. Image results were read by a radiologist blinded to clinical information and pathology results, mapped and compared to corresponding histopathology findings from all lesions, both clinically significant and nonsignificant. The detection rates of all three imaging modalities were measured and correlated. RESULTS: 20 pts with median age of 64.5 (46-79) years and PSA level of 7.5 (1.6-36.56) ng/ml were enrolled. 19 pts underwent RP and were imaged pre-operatively with 89 Zr-Df-IAB2M PET/CT and mpMRI. Nine of those were imaged using 68 Ga-PSMA-11 as well. Out of 48 intraprostatic lesions verified on surgical pathology, IAB2M PET/CT was able to detect 36 (75%). A similar proportion of pathologically confirmed, clinically significant lesions (22/29, 76%) was detected. IAB2M PET/CT was also able to identify 14/19 (74%) extraprostatic lesions. The performance of mpMRI was inferior, with 24/48 detectable lesions (50%) and 18/29 clinically significant intraprostatic lesions (62%). Compared to the current standard (mpMRI), IAB2M PET/CT had a sensitivity of 88%, specificity 38%, positive predictive value 58%, and accuracy 63%. In 9 pts who underwent Ga-PSMA-11 as well, the latter yielded a detection rate of 70% (14/20), which was also seen in clinically significant lesions (10/14, 71%). Ga-PSMA-11 PET/CT also detected 4/6 (67%) extraprostatic lesions. CONCLUSIONS: In this pilot study, the performance of 89 Zr-df-IAB2M was superior to mpMRI and similar to 68 Ga-PSMA-11 PET/CT. The higher detection rate of PSMA-PET supports its use as a diagnostic tool with consequent management change implications in men with localized PCa.


Asunto(s)
Antígenos de Superficie , Radioisótopos de Galio , Glutamato Carboxipeptidasa II , Imágenes de Resonancia Magnética Multiparamétrica , Tomografía Computarizada por Tomografía de Emisión de Positrones/métodos , Neoplasias de la Próstata/diagnóstico por imagen , Radioisótopos , Circonio , Anciano , Anticuerpos Monoclonales , Antígenos de Superficie/inmunología , Glutamato Carboxipeptidasa II/inmunología , Humanos , Masculino , Persona de Mediana Edad , Proyectos Piloto , Prostatectomía , Sensibilidad y Especificidad
2.
Cureus ; 12(6): e8921, 2020 Jun 30.
Artículo en Inglés | MEDLINE | ID: mdl-32760622

RESUMEN

Prostate-specific membrane antigen (PSMA) is a cell membrane glycoprotein that is selectively expressed in prostate cells, with expression levels increasing dramatically in prostatic adenocarcinoma. PSMA-based radioligand therapy (RLT) has emerged as a viable therapeutic modality for the treatment of progressive metastatic prostate cancer. One commonly employed combination involves lutetium-177 conjugated to the ligand PSMA-617 (177Lu-PSMA-617). In this meta-analysis, we examine therapeutic responses in patients with metastatic disease who have received 177Lu-PSMA-617 therapy. We conducted a literature search with the following inclusion criteria: clinical trials involving more than 10 patients and solely utilizing 177Lu-PSMA-617. Seventeen studies were included in the final analysis. Variables documented included the number of patients, the total therapeutic dose administered, the percentage of any prostate-specific antigen (PSA) decline, the percentage with PSA decline exceeding 50% baseline, and toxicities. Overall, a majority of patients responded to therapy, and in the prospective studies, survival was found to be upwards of one year. Significant toxicities included cytopenias, which were infrequent. Patients who had PSA declines in response to therapy had longer survival. Performance status and tumor grade were also key predictors of outcome.

3.
Cureus ; 12(2): e7107, 2020 Feb 26.
Artículo en Inglés | MEDLINE | ID: mdl-32257655

RESUMEN

Prostate cancer is the most common non-cutaneous cancer in men in the United States and is the second most common cause of cancer deaths after lung cancer in men. Despite all advances in the field of prostate cancer imaging and treatment, currently, it is sub-optimally responsive to all available treatment options. Radioimmunotherapy with a monoclonal antibody (mAb), J591, has shown promising results in the treatment of prostate cancer. J591 is a deimmunized mAb that targets the extracellular domain of prostate-specific membrane antigen (PSMA), a surface-bound and internalizing glycoprotein that is upregulated in prostate cancer. Phase I/II clinical trials have shown accurate tumor targeting, biochemical and radiographic responses, and increased overall survival in patients with mCRPC with tolerable, predictable, and reversible myelotoxicity. Ongoing studies focus on improving the therapeutic index of radiolabeled J591. Herein, the literature on published clinical trials involving therapeutic J591 conjugated to b-emitter, lutetium-177 for mCRPC, is sequentially reviewed.

4.
Cureus ; 12(2): e7147, 2020 Feb 29.
Artículo en Inglés | MEDLINE | ID: mdl-32257692

RESUMEN

Cancer cells can be selectively targeted by identifying and developing antibodies to specific antigens present on the cancer cell surface. Cytotoxic agents can be conjugated to these antibodies that bind to these cell surface antigens in order to significantly increase the therapeutic index of whichever cytotoxic agent is utilized. This approach of conjugating the cytotoxic drugs to antibodies to target specific surface antigens enhances the anti-tumor activity of antibodies and improves the tumor-to-normal tissue selectivity of chemotherapy. Critical parameters in the development of these antibody-drug conjugates include: 1) selection of most appropriate antigen, 2) the ability of an antibody to be internalized after binding to the antigen, 3) cytotoxic drug potency and 4) stability of the antibody-drug conjugate. For prostate cancer, prostate-specific membrane antigen (PSMA, also known as folate hydrolase-1) is the most validated theragnostic target to date. PSMA is overexpressed on the prostate cancer cell surface, which makes it an even better target for selective drug delivery through conjugated antibodies. Here, we review the PSMA-based antibody-drug conjugates for metastatic castration-resistance prostate cancer (mCRPC).

5.
J Cutan Aesthet Surg ; 13(3): 226-228, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33209000

RESUMEN

Hair transplantation in areas of scalp scars is a clinical challenge. However, by creating the visual illusion of central bulking with the use of peripherally transplanted curled chest hairs, cicatricial alopecia can perhaps be cosmetically improved. In a case of a 34-year-old affected man, this strategic procedure was implemented with positive results, as the transplantation was successful, the scar was far less noticeable, and the patient was satisfied with the results. The "pseudo-dense hair transplantation" method can be applied to similar patients, noting that a more succinct procedure will need to be elucidated for the varying etiologies of cicatricial alopecia.

6.
Bladder Cancer ; 4(3): 247-259, 2018 Jul 30.
Artículo en Inglés | MEDLINE | ID: mdl-30112436

RESUMEN

Urothelial carcinoma (UC) is characterized by expression of a plethora of cell surface antigens, thus offering opportunities for specific therapeutic targeting with use of antibody-drug conjugates (ADCs). ADCs are structured from two major constituents, a monoclonal antibody (mAb) against a specific target and a cytotoxic drug connected via a linker molecule. Several ADCs are developed against different UC surface markers, but the ones at most advanced stages of development include sacituzumab govitecan (IMMU-132), enfortumab vedotin (ASG-22CE/ASG-22ME), ASG-15ME for advanced UC, and oportuzumab monatox (VB4-845) for early UC. Several new targets are identified and utilized for novel or existing ADC testing. The most promising ones include human epidermal growth factor receptor 2 (HER2) and members of the fibroblast growth factor receptor axis (FGF/FGFR). Positive preclinical and early clinical results are reported in many cases, thus the next step involves further improving efficacy and reducing toxicity as well as testing combination strategies with approved agents.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA