Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros

Bases de datos
Tipo de estudio
Tipo del documento
Intervalo de año de publicación
1.
Mol Pharm ; 21(9): 4589-4602, 2024 Sep 02.
Artículo en Inglés | MEDLINE | ID: mdl-39088435

RESUMEN

Amorphous solid dispersion (ASD) in a polymer matrix is a powerful method for enhancing the solubility and bioavailability of otherwise crystalline, poorly water-soluble drugs. 6-Carboxycellulose acetate butyrate (CCAB) is a relatively new commercial cellulose derivative that was introduced for use in waterborne coating applications. As CCAB is an amphiphilic, carboxyl-containing, high glass transition temperature (Tg) polymer, characteristics essential to excellent ASD polymer performance, we chose to explore its ASD potential. Structurally diverse drugs quercetin, ibuprofen, ritonavir, loratadine, and clarithromycin were dispersed in CCAB matrices. We evaluated the ability of CCAB to create ASDs with these drugs and its ability to provide solubility enhancement and effective drug release. CCAB/drug dispersions prepared by spray drying were amorphous up to 25 wt % drug, with loratadine remaining amorphous up to 50% drug. CCAB formulations with 10% drug proved effective at providing in vitro solubility enhancement for the crystalline flavonoid drug quercetin as well as ritonavir, but not for the more soluble APIs ibuprofen and clarithromycin and the more hydrophobic loratadine. CCAB did provide slow and controlled release of ibuprofen, offering a simple and promising Long-duration ibuprofen formulation. Formulation with clarithromycin showed the ability of the polymer to protect against degradation of the drug at stomach pH. Furthermore, CCAB ASDs with both loratadine and ibuprofen could be improved by the addition of the water-soluble polymer poly(vinylpyrrolidone) (PVP), with which CCAB shows good miscibility. CCAB provided solubility enhancement in some cases, and the slower drug release exhibited by CCAB, especially in the stomach, could be especially beneficial, for example, in formulations containing known stomach irritants like ibuprofen.


Asunto(s)
Celulosa , Ibuprofeno , Loratadina , Polímeros , Solubilidad , Polímeros/química , Celulosa/química , Celulosa/análogos & derivados , Ibuprofeno/química , Ibuprofeno/farmacocinética , Loratadina/química , Loratadina/análogos & derivados , Loratadina/farmacocinética , Liberación de Fármacos , Quercetina/química , Claritromicina/química , Ritonavir/química , Química Farmacéutica/métodos , Composición de Medicamentos/métodos
2.
Biomacromolecules ; 21(12): 4835-4849, 2020 12 14.
Artículo en Inglés | MEDLINE | ID: mdl-33236636

RESUMEN

Oxidation of polysaccharides has been a useful approach to new materials. However, selectivity in oxidation of polysaccharide macromolecular polyols remains a significant challenge with few methods for the synthesis of ketone-substituted polysaccharides. We report here a selective, practical, and efficient process, beginning with 2-hydroxypropyl ethers of polysaccharides that are simple and economical to prepare. We demonstrate this approach herein using commercial 2-hydroxypropyl cellulose (HPC) and 2-hydroxypropyl dextran (HPD) that we prepared. We oxidize the terminal, secondary alcohols of the oligo(2-hydroxypropyl) substituents with sodium hypochlorite so that the product has an oligo(2-hydroxypropyl) side chains terminated by a ketone. We demonstrate the high chemo- and regioselectivity of this oxidation by analytical methods including hydrolysis to monosaccharides and mass spectrometry of the resulting mixture. We provide an initial demonstration of the potential utility of these keto-polysaccharides by reacting Ox-HPC with primary amines to form Schiff base imines, providing proactive polymers.


Asunto(s)
Dextranos , Éteres , Celulosa , Cetonas , Polisacáridos
3.
Biomacromolecules ; 21(10): 4261-4272, 2020 10 12.
Artículo en Inglés | MEDLINE | ID: mdl-32809805

RESUMEN

Polysaccharide-based hydrogels are attractive materials for biomedical applications for reasons that include their polyfunctionality, generally benign nature, and biodegradability. However, the use of polysaccharide-based hydrogels may be limited by toxicity arising from small-molecule crosslinkers, or may involve undesired chemical modification [Hennink, W. E.; et al. Adv. Drug Delivery Rev. 2012, 64, 223-236]. Here, we report a green, simple, efficient strategy for the preparation of polysaccharide-based, in situ forming hydrogels. The Edgar group reports in the accompanying manuscript that chemoselective oxidation of oligo(hydroxypropyl)-substituted polysaccharides introduces ketone groups at the termini of the side chains [Nichols, B. L. B.; et al]. Amine-containing moieties can condense with ketones to form imines. The imine linkage is dynamic in the presence of water, providing the potential for self-healing [Wei, Z.; et al. Adv. Funct. Mater. 2015, 25, 1352-1359], injectability [Wei, Z.; et al. Adv. Funct. Mater. 2015, 25, 1352-1359], and pH responsiveness [Yao, K.; et al. J. Appl. Polym. Sci. 1993, 48, 343-354]. In this work, we designed and prepared two different types of hydrogels, oxidized hydroxypropyl cellulose/chitosan (Ox-HPC-Chitosan) and oxidized hydroxypropyl dextran/chitosan (Ox-HPD-Chitosan), each cross-linked by imine bonds. The mechanical properties of these hydrogels were characterized by rheometry, revealing that hydrogel storage modulus could be tuned from 300 Pa to 13 kPa simply by controlling the degree of substitution (DS) of ketone groups. Rheological characterization also illustrated the rapid self-healing property of these all-polysaccharide hydrogels. Moreover, these hydrogels exhibited high swelling rates and facile injectability. Therefore, this work reveals a potential strategy for the construction of hydrogels that require no small-molecule crosslinkers and are therefore highly attractive for biomedical, agricultural, controlled release, and other applications.


Asunto(s)
Quitosano , Hidrogeles , Sistemas de Liberación de Medicamentos , Polisacáridos
4.
Mol Pharm ; 15(4): 1700-1713, 2018 04 02.
Artículo en Inglés | MEDLINE | ID: mdl-29513538

RESUMEN

During the dissolution of amorphous solid dispersions (ASDs), various phase transformations can occur, which will ultimately impact the degree of supersaturation. This study employed dissolution and diffusion measurements to compare the performance of various ASD formulations based on the maximum amount of free drug in the solution that was able to permeate through a cellulose-based membrane. Telaprevir (TPV) was used as the model drug compound, and ASDs were prepared with different drug loadings and with four different polymers. Four possible scenarios that can influence TPV mass flow rates upon ASD dissolution were described and supported with experimental data: (1) a system dissolves readily and completely undergoes phase separation via glass-liquid phase separation (GLPS), forming drug-rich aggregates, and reaches the maximum anticipated mass flow rate; (2) where the maximum mass flow rate decreases due to substantial mixing of the polymer into the drug-rich phase, and/or due to the formation of soluble polymer-drug complexes; (3) a system does not undergo GLPS due to slow drug release and/or matrix crystallization; and (4) a system does not undergo GLPS due to rapid crystallization from the supersaturated solution generated during dissolution. The results described herein support the importance of the combined use of the dissolution-diffusion measurements to determine the maximum level of supersaturation achievable for diverse drug formulations.


Asunto(s)
Liberación de Fármacos/efectos de los fármacos , Oligopéptidos/química , Polímeros/química , Transporte Biológico/efectos de los fármacos , Celulosa/química , Química Farmacéutica/métodos , Cristalización/métodos , Preparaciones de Acción Retardada/química , Difusión , Composición de Medicamentos/métodos , Solubilidad/efectos de los fármacos
5.
Sci Rep ; 10(1): 18535, 2020 10 28.
Artículo en Inglés | MEDLINE | ID: mdl-33116200

RESUMEN

Amorphous solid dispersion (ASD) is a widely employed formulation technique for drugs with poor aqueous solubility. Polymers are integral components of ASDs, but mechanisms by which polymers lead to the generation and maintenance of supersaturated solutions, which enhance oral absorption in vivo, are poorly understood. Herein, a diverse group of newly synthesized cellulose derivatives was evaluated for their ability to inhibit crystallization of enzalutamide, a poorly soluble compound used to treat prostate cancer. ASDs were prepared from selected polymers, specifically a somewhat hydrophobic polymer that was extremely effective at inhibiting drug crystallization, and a less effective, but more hydrophilic, crystallization inhibitor, that might afford better release. Drug membrane transport rate was evaluated in vitro and compared to in vivo performance, following oral dosing in rats. Good correlation was noted between the in vitro diffusion cell studies and the in vivo data. The ASD formulated with the less effective crystallization inhibitor outperformed the ASD prepared with the highly effective crystallization inhibitor in terms of the amount and rate of drug absorbed in vivo. This study provides valuable insight into key factors impacting oral absorption from enabling ASD formulations, and how best to evaluate such formulations using in vitro approaches.


Asunto(s)
Sistemas de Liberación de Medicamentos/métodos , Feniltiohidantoína/análogos & derivados , Animales , Benzamidas , Cristalización , Interacciones Hidrofóbicas e Hidrofílicas , Masculino , Nitrilos , Feniltiohidantoína/administración & dosificación , Feniltiohidantoína/química , Feniltiohidantoína/farmacología , Polímeros/química , Polisacáridos/química , Polisacáridos/farmacología , Ratas , Ratas Sprague-Dawley , Solubilidad , Agua/química
6.
Eur J Pharm Biopharm ; 144: 110-124, 2019 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-31493510

RESUMEN

Inhalation therapy has been reported as the most effective treatment for respiratory bacterial infections due to the increasing relevance of drug bioavailability. Drug delivery systems (DDS) have the capacity to overcome pulmonary biological barriers limiting the bioavailability of inhaled anti-infectives. This is important to eradicate bacterial infections and to prevent the development of bacterial resistance. Despite substantial efforts in the field, the current state-of-the-art often fails to achieve those goals, and we still observe increasing bacterial resistance. We give a brief insight on benefits and challenges in pulmonary delivery of anti-infectives. In the context of drug delivery development for pulmonary infections, particularly focusing on Pseudomonas aeruginosa (PA) infections, this mini review will critically discuss the main requirements, as well as the recent strategies of drug delivery system synthesis and preparation. Finally, interaction of DDS with crucial pulmonary biological barriers will be of great importance for the success of future applications of the developed DDS.


Asunto(s)
Antibacterianos/administración & dosificación , Pulmón/efectos de los fármacos , Infecciones del Sistema Respiratorio/tratamiento farmacológico , Administración por Inhalación , Animales , Sistemas de Liberación de Medicamentos/métodos , Humanos , Pulmón/microbiología , Infecciones por Pseudomonas/tratamiento farmacológico , Pseudomonas aeruginosa/efectos de los fármacos , Infecciones del Sistema Respiratorio/microbiología
7.
Carbohydr Polym ; 182: 149-158, 2018 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-29279109

RESUMEN

The efficacy of rifapentine, an oral antibiotic used to treat tuberculosis, may be reduced due to degradation at gastric pH and low solubility at intestinal pH. We hypothesized that delivery properties would be improved in vitro by incorporating rifapentine into pH-responsive amorphous solid dispersions (ASDs) with cellulose derivatives including: hydroxypropylmethylcellulose acetate succinate (HPMCAS), cellulose acetate suberate (CASub), and 5-carboxypentyl hydroxypropyl cellulose (CHC). ASDs generally reduced rifapentine release at gastric pH, with CASub affording >31-fold decrease in area under the curve (AUC) compared to rifapentine alone. Critically, reduced gastric dissolution was accompanied by reduced degradation to 3-formylrifamycin. Certain ASDs also enhanced apparent solubility and stabilization of supersaturated solutions at intestinal pH, with HPMCAS providing nearly 4-fold increase in total AUC vs. rifapentine alone. These results suggest that rifapentine delivery via ASD with these cellulosic polymers may improve bioavailability in vivo.


Asunto(s)
Antibióticos Antituberculosos/química , Celulosa/química , Sistemas de Liberación de Medicamentos , Rifampin/análogos & derivados , Portadores de Fármacos/química , Humanos , Concentración de Iones de Hidrógeno , Metilcelulosa/análogos & derivados , Conformación Molecular , Rifampin/química , Solubilidad
8.
Carbohydr Polym ; 157: 86-93, 2017 Feb 10.
Artículo en Inglés | MEDLINE | ID: mdl-27988001

RESUMEN

Quercetin (Q) is a bioactive flavonol with potential to benefit human health. However, Q bioavailability is relatively low, due to its poor aqueous solubility and extensive phase-II metabolism. Strategies to increase solution concentrations in the small intestinal lumen have the potential to substantially increase Q bioavailability, and by extension, efficacy. We aimed to achieve this by incorporating Q into amorphous solid dispersions (ASDs) with cellulose derivatives. Q was dispersed in matrices of cellulose esters including 6-carboxycellulose acetate butyrate (CCAB), hydroxypropylmethylcellulose acetate succinate (HPMCAS) and cellulose acetate suberate (CASub) to afford ASDs that provided stability against crystallization, and pH-triggered release. Blends of CASub and CCAB with the hydrophilic polyvinylpyrrolidone (PVP) further enhanced dissolution. The ASD 10% Q:20% PVP:70% CASub most significantly enhanced Q solution concentration under intestinal pH conditions, increasing area under the concentration/time curve (AUC) 18-fold compared to Q alone. This novel ASD method promises to enhance Q bioavailability in vivo.


Asunto(s)
Celulosa/química , Quercetina/química , Disponibilidad Biológica , Cristalización , Estabilidad de Medicamentos , Povidona/química , Solubilidad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA