Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
1.
Anal Bioanal Chem ; 414(8): 2607-2618, 2022 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-35091761

RESUMEN

The lateral flow assay (LFA) is one of the most popular technologies on the point-of-care diagnostics market due to its low cost and ease of use, with applications ranging from pregnancy to environmental toxins to infectious disease. While the use of these tests is relatively straightforward, significant development time and effort are required to create tests that are both sensitive and specific. Workflows to guide the LFA development process exist but moving from target selection to an LFA that is ready for field testing can be labor intensive, resource heavy, and time consuming. To reduce the cost and the duration of the LFA development process, we introduce a novel development platform centered on the flexibility, speed, and throughput of an automated robotic liquid handling system. The system comprises LFA-specific hardware and software that enable large optimization experiments with discrete and continuous variables such as antibody pair selection or reagent concentration. Initial validation of the platform was demonstrated during development of a malaria LFA but was readily expanded to encompass development of SARS-CoV-2 and Mycobacterium tuberculosis LFAs. The validity of the platform, where optimization experiments are run directly on LFAs rather than in solution, was based on a direct comparison between the robotic system and a more traditional ELISA-like method. By minimizing hands-on time, maximizing experiment size, and enabling improved reproducibility, the robotic system improved the quality and quantity of LFA assay development efforts.


Asunto(s)
COVID-19/diagnóstico , Inmunoensayo/instrumentación , Malaria/diagnóstico , Pruebas en el Punto de Atención , Tuberculosis/diagnóstico , Prueba Serológica para COVID-19/economía , Prueba Serológica para COVID-19/instrumentación , Diseño de Equipo , Humanos , Inmunoensayo/economía , Mycobacterium tuberculosis/aislamiento & purificación , Plasmodium/aislamiento & purificación , Pruebas en el Punto de Atención/economía , Reproducibilidad de los Resultados , SARS-CoV-2/aislamiento & purificación , Sensibilidad y Especificidad , Factores de Tiempo
2.
J Bacteriol ; 202(22)2020 10 22.
Artículo en Inglés | MEDLINE | ID: mdl-32900827

RESUMEN

Phenotypic testing for drug susceptibility of Mycobacterium tuberculosis is critical to basic research and managing the evolving problem of antimicrobial resistance in tuberculosis management, but it remains a specialized technique to which access is severely limited. Here, we report on the development and validation of an improved phage-mediated detection system for M. tuberculosis We incorporated a nanoluciferase (Nluc) reporter gene cassette into the TM4 mycobacteriophage genome to create phage TM4-nluc. We assessed the performance of this reporter phage in the context of cellular limit of detection and drug susceptibility testing using multiple biosafety level 2 drug-sensitive and -resistant auxotrophs as well as virulent M. tuberculosis strains. For both limit of detection and drug susceptibility testing, we developed a standardized method consisting of a 96-hour cell preculture followed by a 72-hour experimental window for M. tuberculosis detection with or without antibiotic exposure. The cellular limit of detection of M. tuberculosis in a 96-well plate batch culture was ≤102 CFU. Consistent with other phenotypic methods for drug susceptibility testing, we found TM4-nluc to be compatible with antibiotics representing multiple classes and mechanisms of action, including inhibition of core central dogma functions, cell wall homeostasis, metabolic inhibitors, compounds currently in clinical trials (SQ109 and Q203), and susceptibility testing for bedaquiline, pretomanid, and linezolid (components of the BPaL regimen for the treatment of multi- and extensively drug-resistant tuberculosis). Using the same method, we accurately identified rifampin-resistant and multidrug-resistant M. tuberculosis strains.IMPORTANCEMycobacterium tuberculosis, the causative agent of tuberculosis disease, remains a public health crisis on a global scale, and development of new interventions and identification of drug resistance are pillars in the World Health Organization End TB Strategy. Leveraging the tractability of the TM4 mycobacteriophage and the sensitivity of the nanoluciferase reporter enzyme, the present work describes an evolution of phage-mediated detection and drug susceptibility testing of M. tuberculosis, adding a valuable tool in drug discovery and basic biology research. With additional validation, this system may play a role as a quantitative phenotypic reference method and complement to genotypic methods for diagnosis and antibiotic susceptibility testing.


Asunto(s)
Antituberculosos/farmacología , Farmacorresistencia Bacteriana , Pruebas de Sensibilidad Microbiana/métodos , Micobacteriófagos/genética , Mycobacterium tuberculosis/efectos de los fármacos , Rifampin/farmacología , Humanos , Luciferasas/genética , Luciferasas/metabolismo , Mediciones Luminiscentes , Mycobacterium tuberculosis/genética , Mycobacterium tuberculosis/virología , Tuberculosis Resistente a Múltiples Medicamentos/microbiología , Tuberculosis Pulmonar/microbiología
3.
Anal Chem ; 92(16): 11305-11309, 2020 08 18.
Artículo en Inglés | MEDLINE | ID: mdl-32605363

RESUMEN

The SARS-CoV-2 pandemic has created an unprecedented need for rapid diagnostic testing to enable the efficient treatment and mitigation of COVID-19. The primary diagnostic tool currently employed is reverse transcription polymerase chain reaction (RT-PCR), which can have good sensitivity and excellent specificity. Unfortunately, implementation costs and logistical problems with reagents during the global SARS-CoV-2 pandemic have hindered its universal on demand adoption. Lateral flow assays (LFAs) represent a class of diagnostic that, if sufficiently clinically sensitive, may fill many of the gaps in the current RT-PCR testing regime, especially in low- and middle-income countries (LMICs). To date, many serology LFAs have been developed, though none meet the performance requirements necessary for diagnostic use cases, primarily due to the relatively long delay between infection and seroconversion. However, on the basis of previously reported results from SARS-CoV-1, antigen-based SARS-CoV-2 assays may have significantly better clinical sensitivity than serology assays. To date, only a very small number of antigen-detecting LFAs have been developed. Development of a half-strip LFA is a useful first step in the development of any LFA format. In this work, we present a half-strip LFA using commercially available antibodies for the detection of SARS-CoV-2. We have tested this LFA in buffer and measured an LOD of 0.65 ng/mL (95% CI of 0.53 to 0.77 ng/mL) ng/mL with recombinant antigen using an optical reader with sensitivity equivalent to a visual read. Further development, including evaluating the appropriate sample matrix, will be required for this assay approach to be made useful in a point of care setting, though this half-strip LFA may serve as a useful starting point for others developing similar tests.


Asunto(s)
Betacoronavirus/metabolismo , Infecciones por Coronavirus/diagnóstico , Inmunoensayo/métodos , Nucleocápside/inmunología , Neumonía Viral/diagnóstico , Sistemas de Atención de Punto , Anticuerpos Antivirales/sangre , Antígenos/inmunología , Betacoronavirus/aislamiento & purificación , COVID-19 , Infecciones por Coronavirus/virología , Humanos , Límite de Detección , Pandemias , Neumonía Viral/virología , SARS-CoV-2
4.
Anal Chem ; 92(5): 3535-3543, 2020 03 03.
Artículo en Inglés | MEDLINE | ID: mdl-31999432

RESUMEN

Immunoassays are important for the detection of proteins to enable disease identification and monitor treatment, but many immunoassays suffer from sensitivity limitations. The development of digital assays has enabled highly sensitive biomarker detection and quantification, but the necessary devices typically require precisely controlled volumes to reduce biases in concentration estimates from compartment size variation. These constraints have led to systems that are often expensive, cumbersome, and challenging to operate, confining many digital assays to centralized laboratories. To overcome these limitations, we have developed a simplified digital immunoassay performed in polydisperse droplets that are prepared without any specialized equipment. This polydisperse digital droplet immunoassay (ddIA) uses proximity ligation to remove the need for wash steps and simplifies the system to a single reagent addition step. Using interleukin-8 (IL-8) as an example analyte, we demonstrated the concept with samples in buffer and diluted whole blood with limits of detection of 0.793 pM and 1.54 pM, respectively. The development of a one-pot, washless assay greatly improves usability compared to traditional immunoassays or digital-based systems that rely heavily on wash steps and can be run with common and readily available laboratory equipment such as a heater and simple fluorescent microscope. We also developed a stochastic model with physically meaningful parameters that can be utilized to optimize the assay and enable quantification without standard curves, after initial characterization of the parameters. Our polydisperse ddIA assay serves as an example of sensitive, lower-cost, and simpler immunoassays suitable for both laboratory and point-of-care applications.


Asunto(s)
Inmunoensayo/instrumentación , Dispositivos Laboratorio en un Chip , Interleucina-8/análisis , Límite de Detección
5.
Sensors (Basel) ; 20(7)2020 Mar 31.
Artículo en Inglés | MEDLINE | ID: mdl-32244369

RESUMEN

A sanitized drinking water supply is an unconditional requirement for public health and the overall prosperity of humanity. Potential microbial and chemical contaminants of drinking water have been identified by a joint effort between the World Health Organization (WHO) and the United Nations Children's Fund (UNICEF), who together establish guidelines that define, in part, that the presence of Escherichia coli (E. coli) in drinking water is an indication of inadequate sanitation and a significant health risk. As E. coli is a nearly ubiquitous resident of mammalian gastrointestinal tracts, no detectable counts in 100 mL of drinking water is the standard used worldwide as an indicator of sanitation. The currently accepted EPA method relies on filtration, followed by growth on selective media, and requires 24-48 h from sample to results. In response, we developed a rapid bacteriophage-based detection assay with detection limit capabilities comparable to traditional methods in less than a quarter of the time. We coupled membrane filtration with selective enrichment using genetically engineered bacteriophages to identify less than 20 colony forming units (CFU) E. coli in 100 mL drinking water within 5 h. The combination of membrane filtration with phage infection produced a novel assay that demonstrated a rapid, selective, and sensitive detection of an indicator organism in large volumes of drinking water as recommended by the leading world regulatory authorities.


Asunto(s)
Bacteriófagos/genética , Técnicas Biosensibles , Agua Potable/análisis , Escherichia coli/aislamiento & purificación , Medios de Cultivo , Agua Potable/microbiología , Escherichia coli/patogenicidad , Ingeniería Genética , Humanos , Jeringas , Microbiología del Agua/normas , Abastecimiento de Agua
6.
Analyst ; 144(24): 7209-7219, 2019 Dec 02.
Artículo en Inglés | MEDLINE | ID: mdl-31663521

RESUMEN

In digital assays, devices are typically considered to require precisely controlled volumes since variation in compartment volumes causes biases in concentration estimates. To enable more possibilities in device design, we derived two methods to accurately calculate target concentrations from raw results when the compartment volume may vary and may not follow known parametrically described distributions. The Digital Variable Volume (dvv) method uses volumes of ON compartments (those with positive signals) and the total sample volume, while the Digital Variable Volume Approximation (dvva) method uses the number of ON compartments, the total number of compartments, and a set of separately measured volumes. We verified the trueness of the dvv and dvva methods using simulated assays where volumes followed an empirical distribution (based on measured droplet volumes) and well known distributions with a wide range of standard deviations. We applied both methods to digital PCR experiments with polydisperse volumes, and also derived equations to estimate standard errors and limits of detection. The dvv method allows the compartment volume to follow any distribution in each assay run, the dvva method allows for quantification without in-assay volume measurements, and both methods potentially enable new designs of digital assays.

7.
Anal Chem ; 90(15): 9374-9380, 2018 08 07.
Artículo en Inglés | MEDLINE | ID: mdl-29985594

RESUMEN

Nucleic acid amplification technology, such as polymerase chain reaction (PCR), has enabled highly sensitive and specific disease detection and quantification, leading to more accurate diagnosis and treatment regimens. Lab-on-a-chip applications have developed methods to partition single biomolecules, such as DNA and RNA, into picoliter-sized droplets. These individual reaction vessels lead to digitization of PCR enabling improved time to detection and direct quantification of nucleic acids without a standard curve, therefore simplifying assay analysis. Though impactful, these improvements have generally been restricted to centralized laboratories with trained personnel and expensive equipment. To address these limitations and make this technology more applicable for a variety of settings, we have developed a statistical framework to apply to droplet PCR performed in polydisperse droplets prepared without any specialized equipment. The polydisperse droplet system allows for accurate quantification of droplet digital PCR (ddPCR) and reverse transcriptase droplet digital PCR (RT-ddPCR) that is comparable to commercially available systems such as BioRad's ddPCR. Additionally, this approach is compatible with a range of input sample volumes, extending the assay dynamic range beyond that of commercial ddPCR systems. In this work, we show that these ddPCR assays can reduce overall assay time while still providing quantitative results. We also report a multiplexed ddPCR assay and demonstrate proof-of-concept methods for rapid droplet preparation in multiple samples simultaneously. Our simple polydisperse droplet preparation and statistical framework can be extended to a variety of settings for the quantification of nucleic acids in complex samples.


Asunto(s)
Dispositivos Laboratorio en un Chip , Reacción en Cadena de la Polimerasa/métodos , ADN/análisis , Emulsiones , ARN/análisis
8.
Anal Chem ; 90(11): 6643-6650, 2018 06 05.
Artículo en Inglés | MEDLINE | ID: mdl-29683653

RESUMEN

Lateral flow assays (LFAs) are widely used for yes/no detection of analytes, but they are not well-suited for quantification. We show that the sensitivity of the test line in a lateral flow assay can be tuned to appear at a specific sample concentration by varying the density of capture molecules at the test line and that when test lines tuned for different responses are combined into a single test strip, lines appear at specific thresholds of sample concentration. We also developed a model based on mass-action kinetics that accurately described test line signal and shape over a wide matrix of capture molecules and sample concentrations in single-line strips. The model was used to design a three-line test strip with lines designed to appear at logarithmically spaced sample concentrations, and the experiments showed a remarkable match to predictions. The response of this "graded ladder bar" format is due to the effect of test line concentration on capture efficiency at each test line, not on sample depletion effects, and the effect is maintained whether a system is under kinetic or equilibrium control. These features enable design of nonlinear responses (logarithmic here) and suggest robustness for different systems. Thus, the graded ladder bar format could be a useful tool for applications requiring quantification of sample concentrations over a wide dynamic range.

9.
Analyst ; 143(12): 2828-2836, 2018 Jun 11.
Artículo en Inglés | MEDLINE | ID: mdl-29781480

RESUMEN

Microbiological culture remains the most sensitive method for detecting viable and infectious bacteria, but these methods often require at least 24 hours to visibly identify bacterial growth. Lab-on-a-chip applications have utilized methods to isolate bacteria in picoliter-sized reaction vessels, resulting in digitized signals that offer improved time-to-detection and improved quantification. Although a great improvement, these approaches typically require expensive and specialized equipment, trained laboratory personnel, and maximum addressable volumes that can be orders of magnitude less than needed for clinically relevant limits of detection. To address these limitations, we have developed a simple method for preparing and semi-quantitatively analyzing small-volume droplets for performing digital culture, allowing for the detection of bacteria. This work includes a description of the method, characterization of resulting droplet sizes, comparison to traditional culture, and a statistical framework to quantify results. Though polydisperse, the droplet size distribution was consistent over different experiments, and there was a correlation between the observed number of positive droplets and the bulk concentration that can serve as a calibration curve for samples with unknown droplet size distributions. This statistical framework enables the simplification of droplet preparation and allows for accurate quantification even with polydisperse droplet sizes. The application of this method can also be extended to a variety of settings for the detection or quantification of bacteria in complex samples.


Asunto(s)
Bacterias/aislamiento & purificación , Técnicas Bacteriológicas/métodos , Dispositivos Laboratorio en un Chip , Bioensayo , Emulsiones
10.
J Am Chem Soc ; 135(39): 14775-83, 2013 Oct 02.
Artículo en Inglés | MEDLINE | ID: mdl-24060606

RESUMEN

In this article, we describe a nonlinear threshold chemistry based on enzymatic inhibition and demonstrate how it can be coupled with microfluidics to convert a chemical concentration (analog input) into patterns of ON or OFF reaction outcomes (chemical digital readout). Quantification of small changes in concentration is needed in a number of assays, such as that for cystatin C, where a 1.5-fold increase in concentration may indicate the presence of acute kidney injury or progression of chronic kidney disease. We developed an analog-to-digital chemical signal conversion that gives visual readout and applied it to an assay for cystatin C as a model target. The threshold chemistry is based on enzymatic inhibition and gives sharper responses with tighter inhibition. The chemistry described here uses acetylcholinesterase (AChE) and produces an unambiguous color change when the input is above a predetermined threshold concentration. An input gives a pattern of ON/OFF responses when subjected to a monotonic sequence of threshold concentrations, revealing the input concentration at the point of transition from OFF to ON outcomes. We demonstrated that this threshold chemistry can detect a 1.30-fold increase in concentration at 22 °C and that it is robust to experimental fluctuations: it provided the same output despite changes in temperature (22-34 °C) and readout time (10-fold range). We applied this threshold chemistry to diagnostics by coupling it with a traditional sandwich immunoassay for serum cystatin C. Because one quantitative measurement comprises several assays, each with its own threshold concentration, we used a microfluidic SlipChip device to process 12 assays in parallel, detecting a 1.5-fold increase (from 0.64 (49 nM) to 0.96 mg/L (74 nM)) of cystatin C in serum. We also demonstrated applicability to analysis of patient serum samples and the ability to image results using a cell phone camera. This work indicates that combining developments in nonlinear chemistries with microfluidics may lead to development of user-friendly diagnostic assays with simple readouts.


Asunto(s)
Técnicas Analíticas Microfluídicas/instrumentación , Acetilcolinesterasa/metabolismo , Inhibidores de la Colinesterasa/farmacología , Cistatina C/sangre , Pruebas de Enzimas/instrumentación , Diseño de Equipo , Humanos , Inmunoensayo/instrumentación , Sensibilidad y Especificidad
11.
Lab Chip ; 24(1): 63-73, 2023 12 20.
Artículo en Inglés | MEDLINE | ID: mdl-37987330

RESUMEN

There is great enthusiasm for using loop-mediated isothermal amplification (LAMP) in point-of-care nucleic acid amplification tests (POC NAATs), as an alternative to PCR. While isothermal amplification techniques like LAMP eliminate the need for rapid temperature cycling in a portable format, these systems are still plagued by requirements for dedicated optical detection apparatus for analysis and manual off-chip sample processing. Here, we developed a new microfluidic system for LAMP-based POC NAATs to address these limitations. The new system combines digital microfluidics (DMF) with distance-based detection (DBD) for direct signal readout. This is the first report of the use of (i) LAMP or (ii) DMF with DBD - thus, we describe a number of characterization steps taken to determine optimal combinations of reagents, materials, and processes for reliable operation. For example, DBD was found to be quite sensitive to background signals from low molecular weight LAMP products; thus, a Capto™ adhere bead-based clean-up procedure was developed to isolate the desirable high-molecular-weight products for analysis. The new method was validated by application to detection of SARS-CoV-2 in saliva. The method was able to distinguish between saliva containing no virus, saliva containing a low viral load (104 genome copies per mL), and saliva containing a high viral load (108 copies per mL), all in an automated system that does not require detection apparatus for analysis. We propose that the combination of DMF with distance-based detection may be a powerful one for implementing a variety of POC NAATs or for other applications in the future.


Asunto(s)
Microfluídica , Ácidos Nucleicos , Técnicas de Amplificación de Ácido Nucleico , Reacción en Cadena de la Polimerasa , Sistemas de Atención de Punto , Pruebas en el Punto de Atención , Técnicas de Diagnóstico Molecular/métodos
12.
Sci Rep ; 12(1): 7741, 2022 05 11.
Artículo en Inglés | MEDLINE | ID: mdl-35562180

RESUMEN

Inadequate drinking water quality is among the major causes of preventable mortality, predominantly in young children. Identifying contaminated water sources remains a significant challenge, especially where resources are limited. The current methods for measuring Escherichia coli (E. coli), the WHO preferred indicator for measuring fecal contamination of water, involve overnight incubation and require specialized training. In 2016, UNICEF released a Target Product Profile (TPP) to incentivize product innovations to detect low levels of viable E. coli in water samples in the field in less than 6 h. Driven by this challenge, we developed a phage-based assay to detect and semi-quantify E. coli. We formulated a phage cocktail containing a total of 8 phages selected against an extensive bacterial strain library and recombined with the sensitive NanoLuc luciferase reporter. The assay was optimized to be processed in a microfluidic chip designed in-house and was tested against locally sourced sewage samples and on drinking water sources in Nairobi, Kenya. With this assay, combined with the microfluidic chip platform, we propose a complete automated solution to detect and semi-quantify E. coli at less than 10 MPN/100 mL in 5.5 h by minimally trained personnel.


Asunto(s)
Bacteriófagos , Agua Potable , Bacterias , Escherichia coli , Kenia , Luciferasas
13.
Lab Chip ; 22(11): 2155-2164, 2022 05 31.
Artículo en Inglés | MEDLINE | ID: mdl-35521688

RESUMEN

Current quantification methods of Escherichia coli (E. coli) contamination in water samples involve long incubation, laboratory equipment and facilities, or complex processes that require specialized training for accurate operation and interpretation. To address these limitations, we have developed a microfluidic device and portable instrument prototypes capable of performing a rapid and highly sensitive bacteriophage-based assay to detect E. coli cells with detection limit comparable to traditional methods in a fraction of the time. The microfluidic device combines membrane filtration and selective enrichment using T7-NanoLuc-CBM, a genetically engineered bacteriophage, to identify 4.1 E. coli CFU in 100 mL of drinking water within 5.5 hours. The microfluidic device was designed and tested to process up to 100 mL of real-world drinking water samples with turbidities below 10 NTU. Prototypes of custom instrumentation, compatible with our valveless microfluidic device and capable of performing all of the assay's units of operation with minimal user intervention, demonstrated similar assay performance to that obtained on the benchtop assay. This research is the first step towards a faster, portable, and semi-automated, phage-based microfluidic platform for improved in-field water quality monitoring in low-resource settings.


Asunto(s)
Bacteriófagos , Agua Potable , Escherichia coli , Dispositivos Laboratorio en un Chip , Luciferasas
14.
Am J Trop Med Hyg ; 106(3): 850-852, 2022 01 17.
Artículo en Inglés | MEDLINE | ID: mdl-35026727

RESUMEN

Rapid diagnostic tests (RDTs) for Plasmodium falciparum commonly detect histidine-rich protein 2 (HRP-2), but HRP-2 deletions are increasingly recognized. We evaluated a prototype test detecting parasite lactate dehydrogenase (pLDH) and compared it to commercially available RDTs at a health facility in Uganda, using quantitative polymerase chain reaction as a gold standard. The prototype pLDH test had a high sensitivity for infections with at least 100 parasites/µL (98%), comparable to HRP-2, and greater than an existing pLDH RDT (89%). Specificity for the prototype test was 99.5%, which is greater than the HRP-2 tests (93-95%). Therefore, the prototype pLDH test may be an attractive alternative malaria diagnostic.


Asunto(s)
Malaria Falciparum , Malaria , Antígenos de Protozoos/análisis , Pruebas Diagnósticas de Rutina , Humanos , L-Lactato Deshidrogenasa/análisis , Malaria/diagnóstico , Malaria Falciparum/diagnóstico , Malaria Falciparum/parasitología , Microscopía , Plasmodium falciparum , Reacción en Cadena de la Polimerasa , Proteínas Protozoarias/genética , Proteínas Protozoarias/metabolismo , Sensibilidad y Especificidad , Uganda
15.
J Am Chem Soc ; 133(39): 15721-9, 2011 Oct 05.
Artículo en Inglés | MEDLINE | ID: mdl-21888347

RESUMEN

The closing of the nuclear fuel cycle is an unsolved problem of great importance. Separating radionuclides produced in a nuclear reactor is useful both for the storage of nuclear waste and for recycling of nuclear fuel. These separations can be performed by designing appropriate chelation chemistries and liquid-liquid extraction schemes, such as in the TALSPEAK process (Trivalent Actinide-Lanthanide Separation by Phosphorus reagent Extraction from Aqueous Komplexes). However, there are no approved methods for the industrial scale reprocessing of civilian nuclear fuel in the United States. One bottleneck in the design of next-generation solvent extraction-based nuclear fuel reprocessing schemes is a lack of interfacial mass transfer rate constants obtained under well-controlled conditions for lanthanide and actinide ligand complexes; such rate constants are a prerequisite for mechanistic understanding of the extraction chemistries involved and are of great assistance in the design of new chemistries. In addition, rate constants obtained under conditions of known interfacial area have immediate, practical utility in models required for the scaling-up of laboratory-scale demonstrations to industrial-scale solutions. Existing experimental techniques for determining these rate constants suffer from two key drawbacks: either slow mixing or unknown interfacial area. The volume of waste produced by traditional methods is an additional, practical concern in experiments involving radioactive elements, both from disposal cost and experimenter safety standpoints. In this paper, we test a plug-based microfluidic system that uses flowing plugs (droplets) in microfluidic channels to determine absolute interfacial mass transfer rate constants under conditions of both rapid mixing and controlled interfacial area. We utilize this system to determine, for the first time, the rate constants for interfacial transfer of all lanthanides, minus promethium, plus yttrium, under TALSPEAK process conditions, as a first step toward testing the molecular mechanism of this separation process.


Asunto(s)
Fraccionamiento Químico/instrumentación , Elementos de la Serie de los Lantanoides/aislamiento & purificación , Técnicas Analíticas Microfluídicas/instrumentación , Energía Nuclear , Radioquímica/instrumentación , Solventes/química , Elementos de Series Actinoides/química , Diseño de Equipo , Cinética , Elementos de la Serie de los Lantanoides/química , Compuestos Orgánicos/química , Fósforo/química , Agua/química
16.
PLoS One ; 16(11): e0258819, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34758052

RESUMEN

Inexpensive, simple, rapid diagnostics are necessary for efficient detection, treatment, and mitigation of COVID-19. Assays for SARS-CoV2 using reverse transcription polymerase chain reaction (RT-PCR) offer good sensitivity and excellent specificity, but are expensive, slowed by transport to centralized testing laboratories, and often unavailable. Antigen-based assays are inexpensive and can be rapidly mass-produced and deployed at point-of-care, with lateral flow assays (LFAs) being the most common format. While various manufacturers have produced commercially available SARS-Cov2 antigen LFAs, access to validated tests remains difficult or cost prohibitive in low-and middle-income countries. Herein, we present a visually read open-access LFA (OA-LFA) using commercially-available antibodies and materials for the detection of SARS-CoV-2. The LFA yielded a Limit of Detection (LOD) of 4 TCID50/swab of gamma irradiated SARS-CoV-2 virus, meeting the acceptable analytical sensitivity outlined by in World Health Organization target product profile. The open-source architecture presented in this manuscript provides a template for manufacturers around the globe to rapidly design a SARS-CoV2 antigen test.


Asunto(s)
Antígenos Virales/inmunología , Prueba de COVID-19/métodos , COVID-19/diagnóstico , COVID-19/inmunología , Proteínas de la Nucleocápside de Coronavirus/inmunología , SARS-CoV-2/inmunología , COVID-19/virología , Humanos , Límite de Detección , Sistemas de Atención de Punto , ARN Viral/inmunología , Sensibilidad y Especificidad
17.
PLoS One ; 16(8): e0256352, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34403456

RESUMEN

Rapid tests for SARS-COV-2 infection are important tools for pandemic control, but current rapid tests are based on proprietary designs and reagents. We report clinical validation results of an open-access lateral flow assay (OA-LFA) design using commercially available materials and reagents, along with RT-qPCR and commercially available comparators (BinaxNOW® and Sofia®). Adult patients with suspected COVID-19 based on clinical signs and symptoms, and with symptoms ≤7 days duration, underwent anterior nares (AN) sampling for the OA-LFA, Sofia®, BinaxNOW ™, and RT-qPCR, along with nasopharyngeal (NP) RT-qPCR. Results indicate a positive predictive agreement with NP sampling as 69% (60% -78%) OA-LFA, 74% (64% - 82%) Sofia®, and 82% (73% - 88%) BinaxNOW™. The implication for these results is that we provide an open-access LFA design that meets the minimum WHO target product profile for a rapid test, that virtually any diagnostic manufacturer could produce.


Asunto(s)
Antígenos Virales/análisis , COVID-19/diagnóstico , Inmunoensayo , SARS-CoV-2/metabolismo , Área Bajo la Curva , COVID-19/virología , Humanos , Nasofaringe/virología , Sistemas de Atención de Punto , ARN Viral/análisis , ARN Viral/metabolismo , Curva ROC , Reacción en Cadena en Tiempo Real de la Polimerasa , SARS-CoV-2/aislamiento & purificación , Sensibilidad y Especificidad
18.
ACS Omega ; 6(39): 25116-25123, 2021 Oct 05.
Artículo en Inglés | MEDLINE | ID: mdl-34608447

RESUMEN

The global COVID-19 pandemic has created an urgent demand for large numbers of inexpensive, accurate, rapid, point-of-care diagnostic tests. Analyte-based assays are suitably rapid and inexpensive and can be rapidly mass-produced, but for sufficiently accurate performance, they require highly optimized antibodies and assay conditions. We used an automated liquid handling system, customized to handle arrays of lateral flow (immuno)assays (LFAs) in a high-throughput screen, to identify anti-nucleocapsid antibodies that will perform optimally in an LFA. We tested 1021 anti-nucleocapsid antibody pairs as LFA capture and detection reagents with the goal of highlighting pairs that have the greatest affinity for the nucleocapsid protein of SARS-CoV-2 within the LFA format. In contrast to traditional antibody screening methods (e.g., ELISA, bio-layer interferometry), the method described here integrates real-time reaction kinetics with transport in, and immobilization directly onto, nitrocellulose. We have identified several candidate antibody pairs that are suitable for further development of an LFA for SARS-CoV-2.

19.
ACS Omega ; 6(31): 20139-20148, 2021 Aug 10.
Artículo en Inglés | MEDLINE | ID: mdl-34373846

RESUMEN

Severe acute respiratory coronavirus-2 (SARS-CoV-2) is a novel viral pathogen and therefore a challenge to accurately diagnose infection. Asymptomatic cases are common and so it is difficult to accurately identify infected cases to support surveillance and case detection. Diagnostic test developers are working to meet the global demand for accurate and rapid diagnostic tests to support disease management. However, the focus of many of these has been on molecular diagnostic tests, and more recently serologic tests, for use in primarily high-income countries. Low- and middle-income countries typically have very limited access to molecular diagnostic testing due to fewer resources. Serologic testing is an inappropriate surrogate as the early stages of infection are not detected and misdiagnosis will promote continued transmission. Detection of infection via direct antigen testing may allow for earlier diagnosis provided such a method is sensitive. Leading SARS-CoV-2 biomarkers include spike protein, nucleocapsid protein, envelope protein, and membrane protein. This research focuses on antibodies to SARS-CoV-2 spike protein due to the number of monoclonal antibodies that have been developed for therapeutic research but also have potential diagnostic value. In this study, we assessed the performance of antibodies to the spike glycoprotein, acquired from both commercial and private groups in multiplexed liquid immunoassays, with concurrent testing via a half-strip lateral flow assays (LFA) to indicate antibodies with potential in LFA development. These processes allow for the selection of pairs of high-affinity antispike antibodies that are suitable for liquid immunoassays and LFA, some of which with sensitivity into the low picogram range with the liquid immunoassay formats with no cross-reactivity to other coronavirus S antigens. Discrepancies in optimal ranking were observed with the top pairs used in the liquid and LFA formats. These findings can support the development of SARS-CoV-2 LFAs and diagnostic tools.

20.
PLoS One ; 16(5): e0251422, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33999938

RESUMEN

Oral swab analysis (OSA) has been shown to detect Mycobacterium tuberculosis (MTB) DNA in patients with pulmonary tuberculosis (TB). In previous analyses, qPCR testing of swab samples collected from tongue dorsa was up to 93% sensitive relative to sputum GeneXpert, when 2 swabs per patient were tested. The present study modified sample collection methods to increase sample biomass and characterized the viability of bacilli present in tongue swabs. A qPCR targeting conserved bacterial ribosomal rRNA gene (rDNA) sequences was used to quantify bacterial biomass in samples. There was no detectable reduction in total bacterial rDNA signal over the course of 10 rapidly repeated tongue samplings, indicating that swabs collect only a small portion of the biomass available for testing. Copan FLOQSwabs collected ~2-fold more biomass than Puritan PurFlock swabs, the best brand used previously (p = 0.006). FLOQSwabs were therefore evaluated in patients with possible TB in Uganda. A FLOQSwab was collected from each patient upon enrollment (Day 1) and, in a subset of sputum GeneXpert Ultra-positive patients, a second swab was collected on the following day (Day 2). Swabs were tested for MTB DNA by manual IS6110-targeted qPCR. Relative to sputum GeneXpert Ultra, single-swab sensitivity was 88% (44/50) on Day 1 and 94.4% (17/18) on Day 2. Specificity was 79.2% (42/53). Among an expanded sample of Ugandan patients, 62% (87/141) had colony-forming bacilli in their tongue dorsum swab samples. These findings will help guide further development of this promising TB screening method.


Asunto(s)
Mycobacterium tuberculosis/aislamiento & purificación , Tuberculosis Pulmonar/diagnóstico , Adolescente , Adulto , ADN Ribosómico/genética , Femenino , Genes Bacterianos , Humanos , Masculino , Mycobacterium tuberculosis/genética , Reacción en Cadena de la Polimerasa , ARN Bacteriano/genética , ARN Ribosómico/genética , Manejo de Especímenes , Tuberculosis Pulmonar/epidemiología , Tuberculosis Pulmonar/microbiología , Uganda/epidemiología , Adulto Joven
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA