Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 63
Filtrar
1.
Appl Environ Microbiol ; : e0087424, 2024 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-38940563

RESUMEN

Farnesol salvage, a two-step pathway converting farnesol to farnesyl pyrophosphate (FPP), occurs in bacteria, plants, and animals. This paper investigates the presence of this pathway in fungi. Through bioinformatics, biochemistry, and physiological analyses, we demonstrate its absence in the yeasts Saccharomyces cerevisiae and Candida albicans, suggesting a likely absence across fungi. We screened 1,053 fungal genomes, including 34 from C. albicans, for potential homologs to four genes (Arabidopsis thaliana AtFOLK, AtVTE5, AtVTE6, and Plasmodium falciparum PfPOLK) known to accomplish farnesol/prenol salvage in other organisms. Additionally, we showed that 3H-farnesol was not converted to FPP or any other phosphorylated prenol, and exogenous farnesol was not metabolized within 90 minutes at any phase of growth and did not rescue cells from the toxic effects of atorvastatin, but it did elevate the levels of intracellular farnesol (Fi). All these experiments were conducted with C. albicans. In sum, we found no evidence for farnesol salvage in fungi. IMPORTANCE: The absence of farnesol salvage constitutes a major difference in the metabolic capabilities of fungi. In terms of fungal physiology, the lack of farnesol salvage pathways relates to how farnesol acts as a quorum-sensing molecule in Candida albicans and why farnesol should be investigated for use in combination with other known antifungal antibiotics. Its absence is essential for a model (K. W. Nickerson et al., Microbiol Mol Biol Rev 88:e00081-22, 2024), wherein protein farnesylation, protein chaperones, and the unfolded protein response are combined under the unifying umbrella of a cell's intracellular farnesol (Fi). In terms of human health, farnesol should have at least two different modes of action depending on whether those cells have farnesol salvage. Because animals have farnesol salvage, we can now see the importance of dietary prenols as well as the potential importance of farnesol in treating neurodegenerative diseases such as Parkinson's disease, Alzheimer's disease, and multiple sclerosis.

2.
Infect Immun ; 91(12): e0038423, 2023 Dec 12.
Artículo en Inglés | MEDLINE | ID: mdl-37975682

RESUMEN

Candida albicans is a lifelong member of the mycobiome causing mucosal candidiasis and life-threatening, systemic, and intra-abdominal disease in immunocompromised and transplant patients. Despite the clinical importance of intra-abdominal candidiasis with mortality rates between 40% and 70%, the contribution of fungal virulence factors and host immune responses to disease has not been extensively studied. Secretion of the quorum-sensing molecule, farnesol, acts as a virulence factor for C. albicans during systemic infection, while inducing local, protective innate immune responses in oral models of infection. Previously, we reported that farnesol recruits macrophages to the peritoneal cavity in mice, suggesting a role for farnesol in innate immune responses. Here, we expand on our initial findings, showing that farnesol profoundly alters the peritoneal cavity microenvironment promoting innate inflammation. Intra-peritoneal injection of farnesol stimulates rapid local death of resident peritoneal cells followed by recruitment of neutrophils and inflammatory macrophages into the peritoneal cavity and peritoneal mesothelium associated with an early increase in chemokines followed by proinflammatory cytokines. These rapid inflammatory responses to farnesol significantly increase morbidity and mortality of mice with intra-abdominal candidiasis associated with increased formation of peritoneal adhesions, despite similar rates of fungal clearance from the peritoneal cavity and retro-peritoneal organs. C. albicans ddp3Δ/ddp3Δ knockout and reconstituted strains recapitulate these findings. This indicates that farnesol may be detrimental to the host during intra-abdominal infections. Importantly, our results highlight a need to understand how C. albicans virulence factors modulate the host immune response within the peritoneum, an exceedingly common site of Candida infection.


Asunto(s)
Candidiasis , Infecciones Intraabdominales , Humanos , Animales , Ratones , Candida albicans , Farnesol/farmacología , Cavidad Peritoneal/patología , Candidiasis/microbiología , Factores de Virulencia
3.
Appl Microbiol Biotechnol ; 106(19-20): 6759-6773, 2022 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-36107213

RESUMEN

The dimorphic fungus Candida albicans is a commensal and opportunistic fungal pathogen of humans. It secretes at least four small lipophilic molecules, farnesol and three aromatic fusel alcohols. Farnesol has been identified as both a quorum sensing molecule (QSM) and a virulence factor. Our gas chromatography (GC)-based assay for these molecules exhibits high throughput, prevention of analyte loss by avoiding filtration and rotary evaporation, simultaneous cell lysis and analyte extraction by ethyl acetate, and the ability to compare whole cultures with their cell pellets and supernatants. Farnesol synthesis and secretion were separable phenomena and pellet:supernatant ratios for farnesol were high, up to 12:1. The assay was validated in terms of precision, specificity, ruggedness, accuracy, solution stability, detection limits (DL), quantitation limits (QL), and dynamic range. The DL for farnesol was 0.02 ng/µl (0.09 µM). Measurement quality was assessed by the relative error of the whole culture versus the sum of pellet and supernatant fractions (WPS). C. albicans strain SC5314 grown at 30 °C in complex and defined media (YPD and mRPMI) was assayed in biological triplicate 17 times over 3 days. Farnesol and the three aromatic fusel alcohols can be measured in the same assay. The levels of all four are greatly altered by the growth medium chosen. Significantly, the three fusel alcohols are synthesized during stationary phase, not during growth. They are secreted quickly without being retained in the cell pellet and may accumulate up to mM concentrations. KEY POINTS: • Quantitative analysis of both intra- and extracellular farnesol, and aromatic fusel oils. • High throughput, whole culture assay with simultaneous lysis and extraction. • Farnesol secretion and synthesis are distinct and separate events.


Asunto(s)
Candida albicans , Farnesol , Alcohol Bencilo , Humanos , Aceites , Percepción de Quorum , Factores de Virulencia
4.
J Phycol ; 57(4): 1199-1211, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-33713347

RESUMEN

Animals and fungi produce cholesterol and ergosterol, respectively, while plants produce the phytosterols stigmasterol, campesterol, and ß-sitosterol in various combinations. The recent sequencing of many algal genomes allows the detailed reconstruction of the sterol metabolic pathways. Here, we characterized sterol synthesis in two sequenced Chlorella spp., the free-living C. sorokiniana, and symbiotic C. variabilis NC64A. Chlamydomonas reinhardtii was included as an internal control and Coccomyxa subellipsoidea as a plant-like outlier. We found that ergosterol was the major sterol produced by Chlorella spp. and C. reinhardtii, while C. subellipsoidea produced the three phytosterols found in plants. In silico analysis of the C. variabilis NC64A, C. sorokiniana, and C. subellipsoidea genomes identified 22 homologs of sterol biosynthetic genes from Arabidopsis thaliana, Saccharomyces cerevisiae, and C. reinhardtii. The presence of CAS1, CPI1, and HYD1 in the four algal genomes suggests the higher plant cycloartenol branch for sterol biosynthesis, confirming that algae and fungi use different pathways for ergosterol synthesis. Phylogenetic analysis for 40 oxidosqualene cyclases (OSCs) showed that the nine algal OSCs clustered with the cycloartenol cyclases, rather than the lanosterol cyclases, with the OSC for C. subellipsoidea positioned in between the higher plants and the eight other algae. With regard to why C. subellipsoidea produced phytosterols instead of ergosterol, we identified 22 differentially conserved positions where C. subellipsoidea CAS and A. thaliana CAS1 have one amino acid while the three ergosterol producing algae have another. Together, these results emphasize the position of the unicellular algae as an evolutionary transition point for sterols.


Asunto(s)
Chlorella , Fitosteroles , Animales , Biología Computacional , Ergosterol , Filogenia , Esteroles
5.
Phytother Res ; 33(2): 319-326, 2019 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-30375074

RESUMEN

Novel treatments are needed to prevent candidiasis/candidemia infection due to the emergence of Candida species resistant to current antifungals. Considering the yeast-to-hyphae switch is a critical factor to Candida albicans virulence, phenols common in plant sources have been reported to demonstrating their ability to prevent dimorphism. Therefore, phenols present in many agricultural waste stress (ferulic (FA) and gallic (GA) acid) were initially screened in isolation for their yeast-to-hyphae inhibitory properties at times 3, 6, and 24 hr. Both FA and GA inhibited 50% of hyphae formation inhibitory concentration (IC50 ) but at a concentration of 8.0 ± 0.09 and 90.6 ± 1.05 mM, respectively, at 24 hr. However, the inhibitory effect of FA increased by 1.9-2.6 fold when combined with different GA concentrations. GA and FA values decreased even lower when sinapic acid (SA) was added as a third component. As evidenced by concave isobolograms and combination indexes less than 1, both GA:F A and GA:FA:SA combinations acted synergistically to inhibit 50% hyphae formation at 24 hr. Lastly, acetylation of histone H3 lysine 56 acetylation (H3K56) was higher in response to the triple phenolic cocktail (using the IC50 24 hr inhibitory concentration level) comparable with the nontreated samples, indicating that the phenols inhibited hyphal growth in part by targeting H3K56 acetylation.


Asunto(s)
Antifúngicos/farmacología , Candida albicans/efectos de los fármacos , Histona Acetiltransferasas/metabolismo , Histonas/metabolismo , Hifa/efectos de los fármacos , Acetilación/efectos de los fármacos , Candida albicans/fisiología , Candidiasis/metabolismo , Candidiasis/microbiología , Ácidos Cumáricos/farmacología , Sinergismo Farmacológico , Ácido Gálico/farmacología , Hifa/crecimiento & desarrollo , Pruebas de Sensibilidad Microbiana , Regulación hacia Arriba/efectos de los fármacos , Virulencia/efectos de los fármacos
6.
Mol Microbiol ; 103(4): 567-575, 2017 02.
Artículo en Inglés | MEDLINE | ID: mdl-27987234

RESUMEN

Candida albicans excretes E,E-farnesol as a virulence factor and quorum sensing molecule that prevents the yeast to hyphal conversion. Polke et al. (2016) identified eed1Δ/Δ as the first farnesol hypersensitive mutant of C. albicans. eed1Δ/Δ also excretes 10X more farnesol and while able to form hyphae, it cannot maintain hyphae. This mutant enables new research into unanswered questions, including the existence of potential farnesol receptors and transporters, regulation of farnesol synthesis, and relationships among farnesol, germ tube formation and hyphal maintenance. The eed1 farnesol hypersensitivity can be explained by higher internal concentrations of farnesol or lower thresholds for response. One possibility invokes misexpression of a transporter. Saccharomyces cerevisiae and C. albicans have transporters for farnesylated peptides, like the a-factor pheromone, which could potentially also transport farnesol for virulence and quorum sensing. Significantly, these transporters are repressed in MTLa/MTLα C. albicans. An evolutionary pressure for C. albicans to become diploid could derive from its use of farnesol. Alternatively, maintenance of hyphal growth may increase the farnesol response threshold. Finally, Dpp1p, Dpp2p and Dpp3p are non-specific pyrophosphatases responsible for farnesol synthesis. Changes in expression of these enzymes do not explain differences in farnesol levels implicating involvement of additional factors like a scaffolding molecule.


Asunto(s)
Candida albicans/crecimiento & desarrollo , Candida albicans/metabolismo , Farnesol/metabolismo , Candida albicans/genética , Proteínas Fúngicas/genética , Regulación Fúngica de la Expresión Génica , Hifa/crecimiento & desarrollo , Percepción de Quorum/fisiología , Transducción de Señal , Factores de Virulencia/metabolismo
7.
J Biol Chem ; 289(3): 1662-74, 2014 Jan 17.
Artículo en Inglés | MEDLINE | ID: mdl-24302734

RESUMEN

Methylglyoxal is a cytotoxic reactive carbonyl compound produced by central metabolism. Dedicated glyoxalases convert methylglyoxal to d-lactate using multiple catalytic strategies. In this study, the DJ-1 superfamily member ORF 19.251/GLX3 from Candida albicans is shown to possess glyoxalase activity, making this the first demonstrated glutathione-independent glyoxalase in fungi. The crystal structure of Glx3p indicates that the protein is a monomer containing the catalytic triad Cys(136)-His(137)-Glu(168). Purified Glx3p has an in vitro methylglyoxalase activity (Km = 5.5 mM and kcat = 7.8 s(-1)) that is significantly greater than that of more distantly related members of the DJ-1 superfamily. A close Glx3p homolog from Saccharomyces cerevisiae (YDR533C/Hsp31) also has glyoxalase activity, suggesting that fungal members of the Hsp31 clade of the DJ-1 superfamily are all probable glutathione-independent glyoxalases. A homozygous glx3 null mutant in C. albicans strain SC5314 displays greater sensitivity to millimolar levels of exogenous methylglyoxal, elevated levels of intracellular methylglyoxal, and carbon source-dependent growth defects, especially when grown on glycerol. These phenotypic defects are complemented by restoration of the wild-type GLX3 locus. The growth defect of Glx3-deficient cells in glycerol is also partially complemented by added inorganic phosphate, which is not observed for wild-type or glucose-grown cells. Therefore, C. albicans Glx3 and its fungal homologs are physiologically relevant glutathione-independent glyoxalases that are not redundant with the previously characterized glutathione-dependent GLO1/GLO2 system. In addition to its role in detoxifying glyoxals, Glx3 and its close homologs may have other important roles in stress response.


Asunto(s)
Aldehído Oxidorreductasas/metabolismo , Candida albicans/enzimología , Piruvaldehído/metabolismo , Estrés Fisiológico/fisiología , Aldehído Oxidorreductasas/genética , Candida albicans/genética , Crioprotectores/farmacología , Sitios Genéticos/fisiología , Glicerol/farmacocinética , Proteínas de Choque Térmico/genética , Proteínas de Choque Térmico/metabolismo , Mutación , Saccharomyces cerevisiae/enzimología , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Homología de Secuencia de Aminoácido , Estrés Fisiológico/efectos de los fármacos
8.
Infect Immun ; 83(10): 3857-64, 2015 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-26195556

RESUMEN

The polymorphic commensal fungus Candida albicans causes life-threatening disease via bloodstream and intra-abdominal infections in immunocompromised and transplant patients. Although host immune evasion is a common strategy used by successful human fungal pathogens, C. albicans provokes recognition by host immune cells less capable of destroying it. To accomplish this, C. albicans white cells secrete a low-molecular-weight chemoattractive stimulant(s) of macrophages, a phagocyte that they are able to survive within and eventually escape from. C. albicans opaque cells do not secrete this chemoattractive stimulant(s). We report here a physiological mechanism that contributes to the differences in the interaction of C. albicans white and opaque cells with macrophages. E,E-Farnesol, which is secreted by white cells only, is a potent stimulator of macrophage chemokinesis, whose activity is enhanced by yeast cell wall components and aromatic alcohols. E,E-farnesol results in up to an 8.5-fold increase in macrophage migration in vitro and promotes a 3-fold increase in the peritoneal infiltration of macrophages in vivo. Therefore, modulation of farnesol secretion to stimulate host immune recognition by macrophages may help explain why this commensal is such a successful pathogen.


Asunto(s)
Candida albicans/fisiología , Candidiasis/microbiología , Farnesol/inmunología , Macrófagos/citología , Percepción de Quorum , Animales , Candida albicans/genética , Candida albicans/inmunología , Candidiasis/inmunología , Movimiento Celular , Células Cultivadas , Factores Quimiotácticos/inmunología , Femenino , Humanos , Macrófagos/inmunología , Ratones , Ratones Endogámicos C57BL
9.
Eukaryot Cell ; 12(9): 1281-92, 2013 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-23873867

RESUMEN

Quorum sensing by farnesol in Candida albicans inhibits filamentation and may be directly related to its ability to cause both mucosal and systemic diseases. The Ras1-cyclic AMP signaling pathway is a target for farnesol inhibition. However, a clear understanding of the downstream effectors of the morphological farnesol response has yet to be unraveled. To address this issue, we screened a library for mutants that fail to respond to farnesol. Six mutants were identified, and the czf1Δ/czf1Δ mutant was selected for further characterization. Czf1 is a transcription factor that regulates filamentation in embedded agar and also white-to-opaque switching. We found that Czf1 is required for filament inhibition by farnesol under at least three distinct environmental conditions: on agar surfaces, in liquid medium, and when embedded in a semisolid agar matrix. Since Efg1 is a transcription factor of the Ras1-cyclic AMP signaling pathway that interacts with and regulates Czf1, an efg1Δ/efg1Δ czf1Δ/czf1Δ mutant was tested for filament inhibition by farnesol. It exhibited an opaque-cell-like temperature-dependent morphology, and it was killed by low farnesol levels that are sublethal to wild-type cells and both efg1Δ/efg1Δ and czf1Δ/czf1Δ single mutants. These results highlight a new role for Czf1 as a downstream effector of the morphological response to farnesol, and along with Efg1, Czf1 is involved in the control of farnesol-mediated cell death in C. albicans.


Asunto(s)
Candida albicans/metabolismo , Proteínas de Unión al ADN/metabolismo , Farnesol/farmacología , Proteínas Fúngicas/metabolismo , Percepción de Quorum , Factores de Transcripción/metabolismo , Candida albicans/efectos de los fármacos , Candida albicans/genética , Candida albicans/fisiología , Proteínas de Unión al ADN/genética , Proteínas Fúngicas/genética , Calor , Mutación , Factores de Transcripción/genética
10.
Biotechnol Lett ; 36(7): 1503-13, 2014 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-24737073

RESUMEN

Quorum sensing (QS) activity in Ophiostoma fungi has not been described. We have examined the growth conditions on the control of dimorphism in Ophiostoma floccosum, an attractive biocontrol agent against blue-stain fungi, and its relationship with QS activity. In a defined culture medium with L-proline as the N source, a high inoculum size (10(7) c.f.u. ml(-1)) was the principal factor that promoted yeast-like growth. Inoculum size effect can be explained by the secretion of a QS molecule(s) (QSMs) responsible for inducing yeast morphology. QSM candidates were extracted from spent medium and their structure was determined by GC-MS. Three cyclic sesquiterpenes were found. The most abundant molecule, and therefore the principal candidate to be the QSM responsible for yeast growth of O. floccosum, was 1,1,4a-trimethyl-5,6-dimethylene-decalin (C15H24). Other two compounds were also detected.


Asunto(s)
Regulación Fúngica de la Expresión Génica , Sustancias de Crecimiento/análisis , Micelio/crecimiento & desarrollo , Ophiostoma/citología , Ophiostoma/fisiología , Percepción de Quorum , Sesquiterpenos/análisis , Medios de Cultivo/química , Cromatografía de Gases y Espectrometría de Masas , Ophiostoma/genética , Ophiostoma/crecimiento & desarrollo
11.
Microbiol Mol Biol Rev ; 88(1): e0008122, 2024 Mar 27.
Artículo en Inglés | MEDLINE | ID: mdl-38436263

RESUMEN

SUMMARYFarnesol was first identified as a quorum-sensing molecule, which blocked the yeast to hyphal transition in Candida albicans, 22 years ago. However, its interactions with Candida biology are surprisingly complex. Exogenous (secreted or supplied) farnesol can also act as a virulence factor during pathogenesis and as a fungicidal agent triggering apoptosis in other competing fungi. Farnesol synthesis is turned off both during anaerobic growth and in opaque cells. Distinctly different cellular responses are observed as exogenous farnesol levels are increased from 0.1 to 100 µM. Reported changes include altered morphology, stress response, pathogenicity, antibiotic sensitivity/resistance, and even cell lysis. Throughout, there has been a dearth of mechanisms associated with these observations, in part due to the absence of accurate measurement of intracellular farnesol levels (Fi). This obstacle has recently been overcome, and the above phenomena can now be viewed in terms of changing Fi levels and the percentage of farnesol secreted. Critically, two aspects of isoprenoid metabolism present in higher organisms are absent in C. albicans and likely in other yeasts. These are pathways for farnesol salvage (converting farnesol to farnesyl pyrophosphate) and farnesylcysteine cleavage, a necessary step in the turnover of farnesylated proteins. Together, these developments suggest a unifying model, whereby high, threshold levels of Fi regulate which target proteins are farnesylated or the extent to which they are farnesylated. Thus, we suggest that the diversity of cellular responses to farnesol reflects the diversity of the proteins that are or are not farnesylated.


Asunto(s)
Candida albicans , Farnesol , Farnesol/metabolismo , Percepción de Quorum , Proteínas Fúngicas/metabolismo , Factores de Virulencia/metabolismo
12.
FEMS Yeast Res ; 13(6): 529-39, 2013 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-23718707

RESUMEN

Candida albicans is an opportunistic fungal pathogen in humans. It is a polymorphic fungus: it can live as yeasts, hyphae, or pseudohyphae. Biotin is required for cell growth and fatty acid metabolism because it is used as a cofactor for carboxylases such as acetyl-CoA carboxylase, and pyruvate carboxylase. In addition, we have discovered that biotin is used to modify histones in C. albicans. Biotinylation was detected by Western blots using a monoclonal antibiotin HRP-conjugated antibody as well as with qTOF and LC/MS/MS mass spectrometry. As a precaution, the antibiotin antibody was dialyzed against neutravidin prior to use. During this study, we observed that three histones, H2A, H2B, and H4, were biotinylated at many lysine residues in an apparently nonsite-specific manner. Roughly, equivalent levels of acetylation, methylation, and phosphorylation were found in histones from biotin-replete and biotin-starved cells, but histone biotinylation was only observed for cells grown in excess biotin. The function of histone biotinylation in C. albicans is still unknown but, because C. albicans is a natural biotin auxotroph, a storage reservoir for biotin is attractive. Techniques used to detect histone biotinylation in C. albicans did not detect any histone biotinylation in Saccharomyces cerevisiae.


Asunto(s)
Candida albicans/metabolismo , Histonas/metabolismo , Procesamiento Proteico-Postraduccional , Biotinilación , Western Blotting , Cromatografía Liquida , Lisina/metabolismo , Espectrometría de Masas en Tándem
13.
J Invertebr Pathol ; 114(3): 234-40, 2013 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-23999243

RESUMEN

The European (Ostrinia nubilalis Hübner) and Asian corn borers (Ostrinia furnacalis Guenée) are closely related and display similar sensitivity to Cry1 toxins. In this study, we compared the binding patterns of Cry1Ab and Cry1F toxins between both Ostrinia spp., as well as the expression of putative cadherin- and aminopeptidase-N (APN)-like protein receptors. Additionally, cDNA sequences of these putative toxin receptors from both Ostrinia species were compared. Ligand blots for both species indicated a similar binding pattern for Cry1Ab with the strongest immunoreactive band at 260 kDa in both species. In addition, similar expression of the putative cadherin- and APN-like protein receptors were observed at 260 and 135 kDa, respectively. A high degree of similarity (98% amino acid sequence identity) of cDNA sequences for both putative receptor sequences was observed. The Cry1F ligand blot revealed that O. furnacalis and O. nubilalis BBMV exhibited slightly different binding patterns, with strong binding to putative proteins at 150 and 140 kDa, respectively. Both proteins appeared to also bind Cry1Ab, although the signal intensity was much reduced with Cry1Ab. O. furnacalis showed an additional but weaker band at 210 kDa relative to the 150 kDa band. Diatraea saccharalis (Fabricius), which was used as an outgroup species, exhibited different binding patterns than either Ostrinia species, with both Cry1Ab and Cry1F toxins binding to a 210 kDa protein. These results support the previous experiments indicating that O. nubilalis and O. furnacalis share similar patterns of susceptibility to Cry toxins.


Asunto(s)
Proteínas Bacterianas/metabolismo , Endotoxinas/metabolismo , Proteínas Hemolisinas/metabolismo , Proteínas de Insectos/metabolismo , Proteínas de la Membrana/metabolismo , Mariposas Nocturnas/metabolismo , Animales , Toxinas de Bacillus thuringiensis , Proteínas Bacterianas/química , Endotoxinas/química , Proteínas Hemolisinas/química , Control de Insectos , Proteínas de Insectos/química , Proteínas de la Membrana/química , Microvellosidades
14.
Front Physiol ; 14: 1207567, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38054042

RESUMEN

Aims: Farnesol was identified 20 years ago in a search for Candida albicans quorum sensing molecules (QSM), but there is still uncertainty regarding many aspects of its mode of action including whether it employs farnesol transport mechanisms other than diffusion. Based on the structural similarity between farnesol and the farnesylated portion of the MTL a pheromone, we explored the effects of ploidy and mating type locus (MTL) on the antifungal activity of exogenous farnesol. Methods and results: We approached this question by examining five MTL a and five MTLα haploid strains with regard to their farnesol sensitivity in comparison to six heterozygous MTL a/ α diploids. We examined the haploid and diploid strains for percent cell death after exposure of exponentially growing cells to 0-200 µM farnesol. The heterozygous (MTL a/α) diploids were tolerant of exogenous farnesol whereas the MTL a and MTLα haploids were on average 2- and 4-times more sensitive, respectively. In the critical range from 10-40 µM farnesol their cell death values were in the ratio of 1:2:4. Very similar results were obtained with two matched sets of MAT a, MATα, and MAT a/α Saccharomyces cerevisiae strains. Conclusion: We propose that the observed MTL dependence of farnesol is based on differentially regulated mechanisms of entry and efflux which determine the actual cellular concentration of farnesol. The mechanisms by which pathogens such as C. albicans tolerate the otherwise lethal effects of farnesol embrace a wide range of physiological functions, including MTL type, ubiquinone type (UQ6-UQ9), energy availability, and aerobic/anaerobic status.

15.
G3 (Bethesda) ; 13(10)2023 09 30.
Artículo en Inglés | MEDLINE | ID: mdl-37522561

RESUMEN

Candida albicans is an efficient colonizer of human gastrointestinal tracts and skin and is an opportunistic pathogen. C. albicans exhibits morphological plasticity, and the ability to switch between yeast and filamentous morphologies is associated with virulence. One regulator of this switch is the quorum sensing molecule farnesol that is produced by C. albicans throughout growth. However, the synthesis, secretion, regulation, and turnover of farnesol are not fully understood. To address this, we used our improved farnesol assay to screen a transcription regulator knockout library for differences in farnesol accumulation in whole cultures, pellets, and supernatants. All screened mutants produced farnesol and they averaged 9.2× more farnesol in the pellet than the supernatant. Nineteen mutants had significant differences with ten mutants producing more farnesol than their SN152+ wild-type control strain while nine produced less. Seven mutants exhibited greater secretion of farnesol while two exhibited less. We examined the time course for farnesol accumulation in six mutants with the greatest accumulation differences and found that those differences persisted throughout growth and they were not time dependent. Significantly, two high-accumulating mutants did not exhibit the decay in farnesol levels during stationary phase characteristic of wild-type C. albicans, suggesting that a farnesol modification/degradation mechanism is absent in these mutants. Identifying these transcriptional regulators provides new insight into farnesol's physiological functions regarding cell cycle progression, white-opaque switching, yeast-mycelial dimorphism, and response to cellular stress.


Asunto(s)
Candida albicans , Farnesol , Humanos , Candida albicans/metabolismo , Farnesol/metabolismo , Percepción de Quorum/genética , Regulación Fúngica de la Expresión Génica
16.
Eukaryot Cell ; 10(11): 1448-54, 2011 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-21890817

RESUMEN

Biofilms of Candida albicans include both yeast cells and hyphae. Prior studies indicated that a zap1Δ/Δ mutant, defective in zinc regulator Zap1, has increased accumulation of yeast cells in biofilms. This altered yeast-hypha balance may arise from internal regulatory alterations or from an effect on the production of diffusible quorum-sensing (QS) molecules. Here, we develop biosensor reporter strains that express yeast-specific YWP1-RFP or hypha-specific HWP1-RFP, along with a constitutive TDH3-GFP normalization standard. Seeding these biosensor strains into biofilms allows a biological activity assay of the surrounding biofilm milieu. A zap1Δ/Δ biofilm induces the yeast-specific YWP1-RFP reporter in a wild-type biosensor strain, as determined by both quantitative reverse transcription-PCR (qRT-PCR) gene expression measurements and confocal microscopy. Remediation of the zap1Δ/Δ zinc uptake defect through zinc transporter gene ZRT2 overexpression reverses induction of the yeast-specific YWP1-RFP reporter. Gas chromatography-mass spectrometry (GC-MS) measurements of known organic QS molecules show that the zap1Δ/Δ mutant accumulates significantly less farnesol than wild-type or complemented strains and that ZRT2 overexpression does not affect farnesol accumulation. Farnesol is a well-characterized inhibitor of hypha formation; hence, a reduction in farnesol levels in zap1Δ/Δ biofilms is unexpected. Our findings argue that a Zap1- and zinc-dependent signal affects the yeast-hypha balance and that it is operative in the low-farnesol environment of the zap1Δ/Δ biofilm. In addition, our results indicate that Zap1 is a positive regulator of farnesol accumulation.


Asunto(s)
Biopelículas/crecimiento & desarrollo , Candida albicans/fisiología , Proteínas Fúngicas/metabolismo , Transducción de Señal , Candida albicans/efectos de los fármacos , Candida albicans/genética , Candida albicans/metabolismo , Proteínas de Transporte de Catión/biosíntesis , Farnesol/análisis , Farnesol/metabolismo , Farnesol/farmacología , Proteínas Fúngicas/biosíntesis , Proteínas Fúngicas/genética , Cromatografía de Gases y Espectrometría de Masas , Regulación Fúngica de la Expresión Génica/efectos de los fármacos , Hifa/genética , Hifa/metabolismo , Glicoproteínas de Membrana/biosíntesis , Percepción de Quorum/efectos de los fármacos , Percepción de Quorum/genética
17.
Microbiol Resour Announc ; 11(9): e0047822, 2022 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-35920671

RESUMEN

Phage SN1 infects Sphaerotilus natans and Pseudomonas aeruginosa strains. Its genome consists of 61,858 bp (64.3% GC) and 89 genes, including 32 with predicted functions. SN1 genome is very similar to Pseudomonas phage M6, which contains hypermodified thymidines. Genome analyses revealed similar base-modifying genes as those found in M6.

18.
BMC Evol Biol ; 11: 80, 2011 Mar 29.
Artículo en Inglés | MEDLINE | ID: mdl-21447149

RESUMEN

BACKGROUND: Urea amidolyase breaks down urea into ammonia and carbon dioxide in a two-step process, while another enzyme, urease, does this in a one step-process. Urea amidolyase has been found only in some fungal species among eukaryotes. It contains two major domains: the amidase and urea carboxylase domains. A shorter form of urea amidolyase is known as urea carboxylase and has no amidase domain. Eukaryotic urea carboxylase has been found only in several fungal species and green algae. In order to elucidate the evolutionary origin of urea amidolyase and urea carboxylase, we studied the distribution of urea amidolyase, urea carboxylase, as well as other proteins including urease, across kingdoms. RESULTS: Among the 64 fungal species we examined, only those in two Ascomycota classes (Sordariomycetes and Saccharomycetes) had the urea amidolyase sequences. Urea carboxylase was found in many but not all of the species in the phylum Basidiomycota and in the subphylum Pezizomycotina (phylum Ascomycota). It was completely absent from the class Saccharomycetes (phylum Ascomycota; subphylum Saccharomycotina). Four Sordariomycetes species we examined had both the urea carboxylase and the urea amidolyase sequences. Phylogenetic analysis showed that these two enzymes appeared to have gone through independent evolution since their bacterial origin. The amidase domain and the urea carboxylase domain sequences from fungal urea amidolyases clustered strongly together with the amidase and urea carboxylase sequences, respectively, from a small number of beta- and gammaproteobacteria. On the other hand, fungal urea carboxylase proteins clustered together with another copy of urea carboxylases distributed broadly among bacteria. The urease proteins were found in all the fungal species examined except for those of the subphylum Saccharomycotina. CONCLUSIONS: We conclude that the urea amidolyase genes currently found only in fungi are the results of a horizontal gene transfer event from beta-, gamma-, or related species of proteobacteria. The event took place before the divergence of the subphyla Pezizomycotina and Saccharomycotina but after the divergence of the subphylum Taphrinomycotina. Urea carboxylase genes currently found in fungi and other limited organisms were also likely derived from another ancestral gene in bacteria. Our study presented another important example showing plastic and opportunistic genome evolution in bacteria and fungi and their evolutionary interplay.


Asunto(s)
Ligasas de Carbono-Nitrógeno/genética , Evolución Molecular , Hongos/enzimología , Hongos/genética , Bacterias/enzimología , Bacterias/genética , Ligasas de Carbono-Nitrógeno/química , Hongos/metabolismo , Transferencia de Gen Horizontal , Filogenia , Estructura Terciaria de Proteína , Homología de Secuencia de Aminoácido
19.
Microbiology (Reading) ; 157(Pt 1): 270-279, 2011 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-20884691

RESUMEN

Hemiascomycetes, including the pathogen Candida albicans, acquire nitrogen from urea using the urea amidolyase Dur1,2, whereas all other higher fungi use primarily the nickel-containing urease. Urea metabolism via Dur1,2 is important for resistance to innate host immunity in C. albicans infections. To further characterize urea metabolism in C. albicans we examined the function of seven putative urea transporters. Gene disruption established that Dur3, encoded by orf 19.781, is the predominant transporter. [(14)C]Urea uptake was energy-dependent and decreased approximately sevenfold in a dur3Δ mutant. DUR1,2 and DUR3 expression was strongly induced by urea, whereas the other putative transporter genes were induced less than twofold. Immediate induction of DUR3 by urea was independent of its metabolism via Dur1,2, but further slow induction of DUR3 required the Dur1,2 pathway. We investigated the role of the GATA transcription factors Gat1 and Gln3 in DUR1,2 and DUR3 expression. Urea induction of DUR1,2 was reduced in a gat1Δ mutant, strongly reduced in a gln3Δ mutant, and abolished in a gat1Δ gln3Δ double mutant. In contrast, DUR3 induction by urea was preserved in both single mutants but reduced in the double mutant, suggesting that additional signalling mechanisms regulate DUR3 expression. These results establish Dur3 as the major urea transporter in C. albicans and provide additional insights into the control of urea utilization by this pathogen.


Asunto(s)
Candida albicans/enzimología , Ligasas de Carbono-Nitrógeno/metabolismo , Regulación Fúngica de la Expresión Génica , Proteínas de Transporte de Membrana/biosíntesis , Urea/metabolismo , Animales , Candida albicans/genética , Candida albicans/patogenicidad , Candidiasis/microbiología , Candidiasis/mortalidad , Radioisótopos de Carbono/metabolismo , Fungemia/microbiología , Fungemia/mortalidad , Técnicas de Inactivación de Genes , Ratones , Mutagénesis Insercional , Coloración y Etiquetado/métodos , Análisis de Supervivencia , Transactivadores/metabolismo , Factores de Transcripción/metabolismo , Virulencia , Transportadores de Urea
20.
Antimicrob Agents Chemother ; 54(2): 940-2, 2010 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-19933803

RESUMEN

Farnesol interacts with Candida albicans as both a quorum-sensing molecule and toxic agent, but confusion abounds regarding which conditions promote these distinct responses. Farnesol sensitivity was measured when inoculum cell history and size, temperature, and growth media were altered. Parameters for farnesol tolerance/sensitivity were defined, validating previous studies and identifying new variables, such as energy availability. This study clearly defines what farnesol concentrations are lethal to C. albicans, based on environmental conditions.


Asunto(s)
Antifúngicos/farmacología , Candida albicans/efectos de los fármacos , Candida albicans/crecimiento & desarrollo , Farnesol/farmacología , Regulación Fúngica de la Expresión Génica/efectos de los fármacos , Temperatura
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA