Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 38
Filtrar
Más filtros

Tipo del documento
Intervalo de año de publicación
1.
Mol Cell ; 75(3): 605-619.e6, 2019 08 08.
Artículo en Inglés | MEDLINE | ID: mdl-31255466

RESUMEN

Accurate DNA replication is essential to preserve genomic integrity and prevent chromosomal instability-associated diseases including cancer. Key to this process is the cells' ability to stabilize and restart stalled replication forks. Here, we show that the EXD2 nuclease is essential to this process. EXD2 recruitment to stressed forks suppresses their degradation by restraining excessive fork regression. Accordingly, EXD2 deficiency leads to fork collapse, hypersensitivity to replication inhibitors, and genomic instability. Impeding fork regression by inactivation of SMARCAL1 or removal of RECQ1's inhibition in EXD2-/- cells restores efficient fork restart and genome stability. Moreover, purified EXD2 efficiently processes substrates mimicking regressed forks. Thus, this work identifies a mechanism underpinned by EXD2's nuclease activity, by which cells balance fork regression with fork restoration to maintain genome stability. Interestingly, from a clinical perspective, we discover that EXD2's depletion is synthetic lethal with mutations in BRCA1/2, implying a non-redundant role in replication fork protection.


Asunto(s)
ADN Helicasas/genética , Replicación del ADN/genética , Exodesoxirribonucleasas/genética , RecQ Helicasas/genética , Proteína BRCA1/genética , Proteína BRCA2/genética , Inestabilidad Genómica/genética , Células HeLa , Humanos , Neoplasias/genética , Mutaciones Letales Sintéticas/genética
2.
Nucleic Acids Res ; 51(12): 6337-6354, 2023 07 07.
Artículo en Inglés | MEDLINE | ID: mdl-37224534

RESUMEN

Accurate genome replication is essential for all life and a key mechanism of disease prevention, underpinned by the ability of cells to respond to replicative stress (RS) and protect replication forks. These responses rely on the formation of Replication Protein A (RPA)-single stranded (ss) DNA complexes, yet this process remains largely uncharacterized. Here, we establish that actin nucleation-promoting factors (NPFs) associate with replication forks, promote efficient DNA replication and facilitate association of RPA with ssDNA at sites of RS. Accordingly, their loss leads to deprotection of ssDNA at perturbed forks, impaired ATR activation, global replication defects and fork collapse. Supplying an excess of RPA restores RPA foci formation and fork protection, suggesting a chaperoning role for actin nucleators (ANs) (i.e. Arp2/3, DIAPH1) and NPFs (i.e, WASp, N-WASp) in regulating RPA availability upon RS. We also discover that ß-actin interacts with RPA directly in vitro, and in vivo a hyper-depolymerizing ß-actin mutant displays a heightened association with RPA and the same dysfunctional replication phenotypes as loss of ANs/NPFs, which contrasts with the phenotype of a hyper-polymerizing ß-actin mutant. Thus, we identify components of actin polymerization pathways that are essential for preventing ectopic nucleolytic degradation of perturbed forks by modulating RPA activity.


Asunto(s)
Actinas , Replicación del ADN , Actinas/genética , Proteína de Replicación A/genética , Proteína de Replicación A/metabolismo , ADN de Cadena Simple/genética , Chaperonas Moleculares/genética
3.
Nature ; 557(7703): 57-61, 2018 05.
Artículo en Inglés | MEDLINE | ID: mdl-29670289

RESUMEN

SAMHD1 was previously characterized as a dNTPase that protects cells from viral infections. Mutations in SAMHD1 are implicated in cancer development and in a severe congenital inflammatory disease known as Aicardi-Goutières syndrome. The mechanism by which SAMHD1 protects against cancer and chronic inflammation is unknown. Here we show that SAMHD1 promotes degradation of nascent DNA at stalled replication forks in human cell lines by stimulating the exonuclease activity of MRE11. This function activates the ATR-CHK1 checkpoint and allows the forks to restart replication. In SAMHD1-depleted cells, single-stranded DNA fragments are released from stalled forks and accumulate in the cytosol, where they activate the cGAS-STING pathway to induce expression of pro-inflammatory type I interferons. SAMHD1 is thus an important player in the replication stress response, which prevents chronic inflammation by limiting the release of single-stranded DNA from stalled replication forks.


Asunto(s)
Replicación del ADN , Interferón Tipo I/metabolismo , Proteína 1 que Contiene Dominios SAM y HD/metabolismo , Quinasa 1 Reguladora del Ciclo Celular (Checkpoint 1)/metabolismo , Citosol/metabolismo , ADN de Cadena Simple/metabolismo , Células HEK293 , Células HeLa , Humanos , Inflamación/inmunología , Inflamación/metabolismo , Inflamación/prevención & control , Interferón Tipo I/inmunología , Proteína Homóloga de MRE11/metabolismo , Proteínas de la Membrana/metabolismo , Nucleotidiltransferasas/metabolismo , RecQ Helicasas/metabolismo , Proteína 1 que Contiene Dominios SAM y HD/deficiencia
4.
Mol Cell ; 57(6): 1133-1141, 2015 Mar 19.
Artículo en Inglés | MEDLINE | ID: mdl-25794620

RESUMEN

The Bloom syndrome helicase BLM and topoisomerase-IIß-binding protein 1 (TopBP1) are key regulators of genome stability. It was recently proposed that BLM phosphorylation on Ser338 mediates its interaction with TopBP1, to protect BLM from ubiquitylation and degradation (Wang et al., 2013). Here, we show that the BLM-TopBP1 interaction does not involve Ser338 but instead requires BLM phosphorylation on Ser304. Furthermore, we establish that disrupting this interaction does not markedly affect BLM stability. However, BLM-TopBP1 binding is important for maintaining genome integrity, because in its absence cells display increased sister chromatid exchanges, replication origin firing and chromosomal aberrations. Therefore, the BLM-TopBP1 interaction maintains genome stability not by controlling BLM protein levels, but via another as-yet undetermined mechanism. Finally, we identify critical residues that mediate interactions between TopBP1 and MDC1, and between BLM and TOP3A/RMI1/RMI2. Taken together, our findings provide molecular insights into a key tumor suppressor and genome stability network.


Asunto(s)
Proteínas Portadoras/metabolismo , Proteínas de Unión al ADN/metabolismo , Inestabilidad Genómica , Proteínas Nucleares/metabolismo , RecQ Helicasas/metabolismo , Proteínas Adaptadoras Transductoras de Señales , Secuencia de Aminoácidos , Proteínas Portadoras/genética , Proteínas de Ciclo Celular , ADN-Topoisomerasas de Tipo I/genética , ADN-Topoisomerasas de Tipo I/metabolismo , Proteínas de Unión al ADN/genética , Células HeLa , Humanos , Datos de Secuencia Molecular , Mutación , Proteínas Nucleares/genética , Fosforilación , RecQ Helicasas/genética , Serina/metabolismo , Transactivadores/genética , Transactivadores/metabolismo
5.
Mol Cell ; 60(3): 351-61, 2015 Nov 05.
Artículo en Inglés | MEDLINE | ID: mdl-26593718

RESUMEN

DNA replication stress can cause chromosomal instability and tumor progression. One key pathway that counteracts replication stress and promotes faithful DNA replication consists of the Fanconi anemia (FA) proteins. However, how these proteins limit replication stress remains largely elusive. Here we show that conflicts between replication and transcription activate the FA pathway. Inhibition of transcription or enzymatic degradation of transcription-associated R-loops (DNA:RNA hybrids) suppresses replication fork arrest and DNA damage occurring in the absence of a functional FA pathway. Furthermore, we show that simple aldehydes, known to cause leukemia in FA-deficient mice, induce DNA:RNA hybrids in FA-depleted cells. Finally, we demonstrate that the molecular mechanism by which the FA pathway limits R-loop accumulation requires FANCM translocase activity. Failure to activate a response to physiologically occurring DNA:RNA hybrids may critically contribute to the heightened cancer predisposition and bone marrow failure of individuals with mutated FA proteins.


Asunto(s)
Daño del ADN , ADN Helicasas/metabolismo , Replicación del ADN , Proteínas del Grupo de Complementación de la Anemia de Fanconi/metabolismo , Inestabilidad Genómica , Ácidos Nucleicos Heterodúplex/metabolismo , Animales , ADN Helicasas/genética , Proteínas del Grupo de Complementación de la Anemia de Fanconi/genética , Células HeLa , Humanos , Leucemia/genética , Leucemia/metabolismo , Leucemia/patología , Ratones , Ratones Noqueados , Mutación , Ácidos Nucleicos Heterodúplex/genética
6.
Mol Cell ; 59(3): 462-77, 2015 Aug 06.
Artículo en Inglés | MEDLINE | ID: mdl-26166705

RESUMEN

Recognition and repair of damaged replication forks are essential to maintain genome stability and are coordinated by the combined action of the Fanconi anemia and homologous recombination pathways. These pathways are vital to protect stalled replication forks from uncontrolled nucleolytic activity, which otherwise causes irreparable genomic damage. Here, we identify BOD1L as a component of this fork protection pathway, which safeguards genome stability after replication stress. Loss of BOD1L confers exquisite cellular sensitivity to replication stress and uncontrolled resection of damaged replication forks, due to a failure to stabilize RAD51 at these forks. Blocking DNA2-dependent resection, or downregulation of the helicases BLM and FBH1, suppresses both catastrophic fork processing and the accumulation of chromosomal damage in BOD1L-deficient cells. Thus, our work implicates BOD1L as a critical regulator of genome integrity that restrains nucleolytic degradation of damaged replication forks.


Asunto(s)
Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Replicación del ADN , Recombinasa Rad51/genética , Recombinasa Rad51/metabolismo , Línea Celular , Supervivencia Celular , Daño del ADN , ADN Helicasas/metabolismo , Proteínas de Unión al ADN/metabolismo , Genoma Humano , Inestabilidad Genómica , Células HeLa , Humanos , RecQ Helicasas/metabolismo
7.
Am J Hum Genet ; 99(1): 125-38, 2016 07 07.
Artículo en Inglés | MEDLINE | ID: mdl-27374770

RESUMEN

DNA replication precisely duplicates the genome to ensure stable inheritance of genetic information. Impaired licensing of origins of replication during the G1 phase of the cell cycle has been implicated in Meier-Gorlin syndrome (MGS), a disorder defined by the triad of short stature, microtia, and a/hypoplastic patellae. Biallelic partial loss-of-function mutations in multiple components of the pre-replication complex (preRC; ORC1, ORC4, ORC6, CDT1, or CDC6) as well as de novo stabilizing mutations in the licensing inhibitor, GMNN, cause MGS. Here we report the identification of mutations in CDC45 in 15 affected individuals from 12 families with MGS and/or craniosynostosis. CDC45 encodes a component of both the pre-initiation (preIC) and CMG helicase complexes, required for initiation of DNA replication origin firing and ongoing DNA synthesis during S-phase itself, respectively, and hence is functionally distinct from previously identified MGS-associated genes. The phenotypes of affected individuals range from syndromic coronal craniosynostosis to severe growth restriction, fulfilling diagnostic criteria for Meier-Gorlin syndrome. All mutations identified were biallelic and included synonymous mutations altering splicing of physiological CDC45 transcripts, as well as amino acid substitutions expected to result in partial loss of function. Functionally, mutations reduce levels of full-length transcripts and protein in subject cells, consistent with partial loss of CDC45 function and a predicted limited rate of DNA replication and cell proliferation. Our findings therefore implicate the preIC as an additional protein complex involved in the etiology of MGS and connect the core cellular machinery of genome replication with growth, chondrogenesis, and cranial suture homeostasis.


Asunto(s)
Proteínas de Ciclo Celular/genética , Microtia Congénita/genética , Craneosinostosis/genética , Trastornos del Crecimiento/genética , Micrognatismo/genética , Mutación , Rótula/anomalías , Adolescente , Adulto , Alelos , Empalme Alternativo/genética , Secuencia de Aminoácidos , Amnios/citología , Proteínas de Ciclo Celular/química , Proteínas de Ciclo Celular/deficiencia , Proteínas de Ciclo Celular/metabolismo , Línea Celular , Células Cultivadas , Niño , Preescolar , Análisis Mutacional de ADN , Replicación del ADN , Exoma/genética , Exones/genética , Femenino , Estudios de Asociación Genética , Humanos , Masculino , Modelos Moleculares , Conformación Proteica , Síndrome , Adulto Joven
8.
Methods ; 108: 92-8, 2016 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-27102626

RESUMEN

Faithful duplication of genetic material during every cell division is essential to ensure accurate transmission of genetic information to daughter cells. DNA helicases play a crucial role in promoting this process by facilitating almost all transactions occurring on DNA, including DNA replication and repair. They are responsible not only for DNA double helix unwinding ahead of progressing replication forks but also for resolution of secondary structures like G4 quadruplexes, HJ branch migration, double HJ dissolution, protein displacement, strand annealing and many more. Their importance in maintaining genome stability is underscored by the fact that many human disorders, including cancer, are associated with mutations in helicase genes. Here we outline how DNA fibre fluorography, a straightforward and inexpensive approach, can be employed to study the in vivo function of helicases in DNA replication and the maintenance of genome stability at a single molecule level. This approach directly visualizes the progression of individual replication forks within living cells and hence provides quantitative information on various aspects of DNA synthesis, such as replication fork processivity (replication speed), fork stalling, origin usage and fork termination.


Asunto(s)
ADN Helicasas/genética , Replicación del ADN/genética , Ingeniería Genética/métodos , ADN Helicasas/química , Reparación del ADN/genética , ADN de Cadena Simple/química , ADN de Cadena Simple/genética , G-Cuádruplex , Inestabilidad Genómica/genética , Humanos
9.
Hum Mol Genet ; 21(9): 2005-16, 2012 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-22279085

RESUMEN

FANCM is the most highly conserved protein within the Fanconi anaemia (FA) tumour suppressor pathway. However, although FANCM contains a helicase domain with translocase activity, this is not required for its role in activating the FA pathway. Instead, we show here that FANCM translocaseactivity is essential for promoting replication fork stability. We demonstrate that cells expressing translocase-defective FANCM show altered global replication dynamics due to increased accumulation of stalled forks that subsequently degenerate into DNA double-strand breaks, leading to ATM activation, CTBP-interacting protein (CTIP)-dependent end resection and homologous recombination repair. Accordingly, abrogation of ATM or CTIP function in FANCM-deficient cells results in decreased cell survival. We also found that FANCM translocase activity protects cells from accumulating 53BP1-OPT domains, which mark lesions resulting from problems arising during replication. Taken together, these data show that FANCM plays an essential role in maintaining chromosomal integrity by promoting the recovery of stalled replication forks and hence preventing tumourigenesis.


Asunto(s)
ADN Helicasas/metabolismo , Replicación del ADN/fisiología , Proteínas de Transporte de Nucleótidos/metabolismo , Animales , Proteínas de la Ataxia Telangiectasia Mutada , Proteínas de Ciclo Celular/metabolismo , Línea Celular , Roturas del ADN de Doble Cadena , ADN Helicasas/antagonistas & inhibidores , ADN Helicasas/genética , Reparación del ADN , Replicación del ADN/genética , Proteínas de Unión al ADN/metabolismo , Anemia de Fanconi/genética , Anemia de Fanconi/metabolismo , Técnicas de Inactivación de Genes , Células HEK293 , Células HeLa , Recombinación Homóloga , Humanos , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Modelos Biológicos , Proteínas de Transporte de Nucleótidos/antagonistas & inhibidores , Proteínas de Transporte de Nucleótidos/genética , Proteínas Serina-Treonina Quinasas/metabolismo , ARN Interferente Pequeño/genética , Proteínas Supresoras de Tumor/metabolismo , Proteína 1 de Unión al Supresor Tumoral P53
10.
EMBO J ; 29(4): 806-18, 2010 Feb 17.
Artículo en Inglés | MEDLINE | ID: mdl-20057355

RESUMEN

Fanconi anaemia is a chromosomal instability disorder associated with cancer predisposition and bone marrow failure. Among the 13 identified FA gene products only one, the DNA translocase FANCM, has homologues in lower organisms, suggesting a conserved function in DNA metabolism. However, a precise role for FANCM in DNA repair remains elusive. Here, we show a novel function for FANCM that is distinct from its role in the FA pathway: promoting replication fork restart and simultaneously limiting the accumulation of RPA-ssDNA. We show that in DT40 cells this process is controlled by ATR and PLK1, and that in the absence of FANCM, stalled replication forks are unable to resume DNA synthesis and genome duplication is ensured by excess origin firing. Unexpectedly, we also uncover an early role for FANCM in ATR-mediated checkpoint signalling by promoting chromatin retention of TopBP1. Failure to retain TopBP1 on chromatin impacts on the ability of ATR to phosphorylate downstream molecular targets, including Chk1 and SMC1. Our data therefore indicate a fundamental role for FANCM in the maintenance of genome integrity during S phase.


Asunto(s)
Proteínas de Ciclo Celular/metabolismo , ADN Helicasas/metabolismo , Replicación del ADN/fisiología , Proteínas Serina-Treonina Quinasas/metabolismo , Animales , Proteínas de la Ataxia Telangiectasia Mutada , Proteínas Aviares/deficiencia , Proteínas Aviares/genética , Proteínas Aviares/metabolismo , Línea Celular , Quinasa 1 Reguladora del Ciclo Celular (Checkpoint 1) , Pollos , Cromatina/metabolismo , ADN Helicasas/deficiencia , ADN Helicasas/genética , Reparación del ADN , Proteínas de Unión al ADN/metabolismo , Activación Enzimática , Proteínas Quinasas/metabolismo , Proteínas Proto-Oncogénicas/metabolismo , Fase S , Transducción de Señal , Estrés Fisiológico , Proteínas Supresoras de Tumor/metabolismo , Quinasa Tipo Polo 1
11.
Cancer Cell ; 7(2): 114-5, 2005 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-15710323

RESUMEN

The autosomal recessive disease Fanconi anemia (FA) causes bone marrow failure and a hugely increased propensity to develop cancer. Cells from FA patients are prone to chromosome breakage, indicating that FA gene products are required to ensure genomic integrity. Most of the identified FA proteins are components of a nuclear complex whose principal function is to activate FANCD2 by monoubiquitination. Monoubiquitinated FANCD2 accumulates at sites of genome damage, where it probably functions to facilitate DNA repair. A recent paper in Molecular Cell (Nijmanet al., 2005) reports the identification of an enzyme that is responsible for regulating the FA pathway by deactivating FANCD2.


Asunto(s)
Anemia de Fanconi/metabolismo , Genes Supresores de Tumor , Células de la Médula Ósea/metabolismo , Núcleo Celular/metabolismo , Daño del ADN , Reparación del ADN , Proteína del Grupo de Complementación D2 de la Anemia de Fanconi , Humanos , Modelos Biológicos , Proteínas Nucleares/metabolismo , ARN Interferente Pequeño/metabolismo , Ubiquitina/metabolismo
12.
Nat Commun ; 14(1): 2428, 2023 04 27.
Artículo en Inglés | MEDLINE | ID: mdl-37105990

RESUMEN

Telomerase-independent cancer proliferation via the alternative lengthening of telomeres (ALT) relies upon two distinct, largely uncharacterized, break-induced-replication (BIR) processes. How cancer cells initiate and regulate these terminal repair mechanisms is unknown. Here, we establish that the EXD2 nuclease is recruited to ALT telomeres to direct their maintenance. We demonstrate that EXD2 loss leads to telomere shortening, elevated telomeric sister chromatid exchanges, C-circle formation as well as BIR-mediated telomeric replication. We discover that EXD2 fork-processing activity triggers a switch between RAD52-dependent and -independent ALT-associated BIR. The latter is suppressed by EXD2 but depends specifically on the fork remodeler SMARCAL1 and the MUS81 nuclease. Thus, our findings suggest that processing of stalled replication forks orchestrates elongation pathway choice at ALT telomeres. Finally, we show that co-depletion of EXD2 with BLM, DNA2 or POLD3 confers synthetic lethality in ALT cells, identifying EXD2 as a potential druggable target for ALT-reliant cancers.


Asunto(s)
Neoplasias , Telomerasa , Humanos , Homeostasis del Telómero , Replicación del ADN , Acortamiento del Telómero , Reparación del ADN , Telomerasa/genética , Telómero/genética , Telómero/metabolismo , Neoplasias/genética , ADN Helicasas/genética , ADN Helicasas/metabolismo
13.
Nat Commun ; 14(1): 341, 2023 01 20.
Artículo en Inglés | MEDLINE | ID: mdl-36670096

RESUMEN

The transcriptional response to genotoxic stress involves gene expression arrest, followed by recovery of mRNA synthesis (RRS) after DNA repair. We find that the lack of the EXD2 nuclease impairs RRS and decreases cell survival after UV irradiation, without affecting DNA repair. Overexpression of wild-type, but not nuclease-dead EXD2, restores RRS and cell survival. We observe that UV irradiation triggers the relocation of EXD2 from mitochondria to the nucleus. There, EXD2 is recruited to chromatin where it transiently interacts with RNA Polymerase II (RNAPII) to promote the degradation of nascent mRNAs synthesized at the time of genotoxic attack. Reconstitution of the EXD2-RNAPII partnership on a transcribed DNA template in vitro shows that EXD2 primarily interacts with an elongation-blocked RNAPII and efficiently digests mRNA. Overall, our data highlight a crucial step in the transcriptional response to genotoxic attack in which EXD2 interacts with elongation-stalled RNAPII on chromatin to potentially degrade the associated nascent mRNA, allowing transcription restart after DNA repair.


Asunto(s)
Daño del ADN , Reparación del ADN , Cromatina/genética , Transcripción Genética , ARN Polimerasa II/genética , ARN Polimerasa II/metabolismo , ARN Mensajero/genética
14.
bioRxiv ; 2023 Jan 12.
Artículo en Inglés | MEDLINE | ID: mdl-36711944

RESUMEN

Accurate genome replication is essential for all life and a key mechanism of disease prevention, underpinned by the ability of cells to respond to replicative stress (RS) and protect replication forks. These responses rely on the formation of Replication Protein A (RPA)-single stranded (ss) DNA complexes, yet this process remains largely uncharacterized. Here we establish that actin nucleation-promoting factors (NPFs) associate with replication forks, promote efficient DNA replication and facilitate association of RPA with ssDNA at sites of RS. Accordingly, their loss leads to deprotection of ssDNA at perturbed forks, impaired ATR activation, global replication defects and fork collapse. Supplying an excess of RPA restores RPA foci formation and fork protection, suggesting a chaperoning role for actin nucleators (ANs) (i.e., Arp2/3, DIAPH1) and NPFs (i.e, WASp, N-WASp) in regulating RPA availability upon RS. We also discover that ß-actin interacts with RPA directly in vitro , and in vivo a hyper-depolymerizing ß-actin mutant displays a heightened association with RPA and the same dysfunctional replication phenotypes as loss of ANs/NPFs, which contrasts with the phenotype of a hyper-polymerizing ß-actin mutant. Thus, we identify components of actin polymerization pathways that are essential for preventing ectopic nucleolytic degradation of perturbed forks by modulating RPA activity.

15.
Nat Genet ; 55(8): 1311-1323, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37524790

RESUMEN

SF3B1 hotspot mutations are associated with a poor prognosis in several tumor types and lead to global disruption of canonical splicing. Through synthetic lethal drug screens, we identify that SF3B1 mutant (SF3B1MUT) cells are selectively sensitive to poly (ADP-ribose) polymerase inhibitors (PARPi), independent of hotspot mutation and tumor site. SF3B1MUT cells display a defective response to PARPi-induced replication stress that occurs via downregulation of the cyclin-dependent kinase 2 interacting protein (CINP), leading to increased replication fork origin firing and loss of phosphorylated CHK1 (pCHK1; S317) induction. This results in subsequent failure to resolve DNA replication intermediates and G2/M cell cycle arrest. These defects are rescued through CINP overexpression, or further targeted by a combination of ataxia-telangiectasia mutated and PARP inhibition. In vivo, PARPi produce profound antitumor effects in multiple SF3B1MUT cancer models and eliminate distant metastases. These data provide the rationale for testing the clinical efficacy of PARPi in a biomarker-driven, homologous recombination proficient, patient population.


Asunto(s)
Neoplasias , Inhibidores de Poli(ADP-Ribosa) Polimerasas , Humanos , Inhibidores de Poli(ADP-Ribosa) Polimerasas/farmacología , Inhibidores de Poli(ADP-Ribosa) Polimerasas/uso terapéutico , Mutación , Factores de Transcripción/genética , Neoplasias/tratamiento farmacológico , Neoplasias/genética , Proteína BRCA1/genética , Línea Celular Tumoral , Factores de Empalme de ARN/genética , Fosfoproteínas/genética
16.
Nat Commun ; 13(1): 3743, 2022 06 29.
Artículo en Inglés | MEDLINE | ID: mdl-35768435

RESUMEN

Perturbation in the replication-stress response (RSR) and DNA-damage response (DDR) causes genomic instability. Genomic instability occurs in Wiskott-Aldrich syndrome (WAS), a primary immunodeficiency disorder, yet the mechanism remains largely uncharacterized. Replication protein A (RPA), a single-strand DNA (ssDNA) binding protein, has key roles in the RSR and DDR. Here we show that human WAS-protein (WASp) modulates RPA functions at perturbed replication forks (RFs). Following genotoxic insult, WASp accumulates at RFs, associates with RPA, and promotes RPA:ssDNA complexation. WASp deficiency in human lymphocytes destabilizes RPA:ssDNA-complexes, impairs accumulation of RPA, ATR, ETAA1, and TOPBP1 at genotoxin-perturbed RFs, decreases CHK1 activation, and provokes global RF dysfunction. las17 (yeast WAS-homolog)-deficient S. cerevisiae also show decreased ScRPA accumulation at perturbed RFs, impaired DNA recombination, and increased frequency of DNA double-strand break (DSB)-induced single-strand annealing (SSA). Consequently, WASp (or Las17)-deficient cells show increased frequency of DSBs upon genotoxic insult. Our study reveals an evolutionarily conserved, essential role of WASp in the DNA stress-resolution pathway, such that WASp deficiency provokes RPA dysfunction-coupled genomic instability.


Asunto(s)
Roturas del ADN de Doble Cadena , Replicación del ADN , ADN de Cadena Simple , Proteína de Replicación A , Proteínas de Saccharomyces cerevisiae , Proteína del Síndrome de Wiskott-Aldrich , Animales , Antígenos de Superficie/metabolismo , Reparación del ADN , ADN de Cadena Simple/genética , ADN de Cadena Simple/metabolismo , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Inestabilidad Genómica , Humanos , Unión Proteica , Proteína de Replicación A/genética , Proteína de Replicación A/metabolismo , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteína del Síndrome de Wiskott-Aldrich/genética , Proteína del Síndrome de Wiskott-Aldrich/metabolismo
17.
Cell Rep ; 41(10): 111749, 2022 12 06.
Artículo en Inglés | MEDLINE | ID: mdl-36476850

RESUMEN

Co-transcriptional R loops arise from stalling of RNA polymerase, leading to the formation of stable DNA:RNA hybrids. Unresolved R loops promote genome instability but are counteracted by helicases and nucleases. Here, we show that branchpoint translocases are a third class of R-loop-displacing enzyme in vitro. In cells, deficiency in the Fanconi-anemia-associated branchpoint translocase FANCM causes R-loop accumulation, particularly after treatment with DNA:RNA-hybrid-stabilizing agents. This correlates with FANCM localization at R-loop-prone regions of the genome. Moreover, other branchpoint translocases associated with human disease, such as SMARCAL1 and ZRANB3, and those from lower organisms can also remove R loops in vitro. Branchpoint translocases are more potent than helicases in resolving R loops, indicating their evolutionary important role in R-loop suppression. In human cells, FANCM, SMARCAL1, and ZRANB3 depletion causes additive effects on R-loop accumulation and DNA damage. Our work reveals a mechanistic basis for R-loop displacement that is linked to genome stability.


Asunto(s)
Estructuras R-Loop , ARN , Humanos , ADN Helicasas/genética
18.
Stem Cell Reports ; 17(6): 1395-1410, 2022 06 14.
Artículo en Inglés | MEDLINE | ID: mdl-35623353

RESUMEN

Impaired replication has been previously linked to growth retardation and microcephaly; however, why the brain is critically affected compared with other organs remains elusive. Here, we report the differential response between early neural progenitors (neuroepithelial cells [NECs]) and fate-committed neural progenitors (NPs) to replication licensing defects. Our results show that, while NPs can tolerate altered expression of licensing factors, NECs undergo excessive replication stress, identified by impaired replication, increased DNA damage, and defective cell-cycle progression, leading eventually to NEC attrition and microcephaly. NECs that possess a short G1 phase license and activate more origins than NPs, by acquiring higher levels of DNA-bound MCMs. In vivo G1 shortening in NPs induces DNA damage upon impaired licensing, suggesting that G1 length correlates with replication stress hypersensitivity. Our findings propose that NECs possess distinct cell-cycle characteristics to ensure fast proliferation, although these inherent features render them susceptible to genotoxic stress.


Asunto(s)
Microcefalia , Células-Madre Neurales , Encéfalo/metabolismo , Proteínas de Ciclo Celular/metabolismo , Daño del ADN , Replicación del ADN , Humanos , Microcefalia/genética , Células-Madre Neurales/metabolismo , Origen de Réplica
19.
Cancer Res ; 82(21): 3962-3973, 2022 11 02.
Artículo en Inglés | MEDLINE | ID: mdl-36273494

RESUMEN

Gastric cancer represents the third leading cause of global cancer mortality and an area of unmet clinical need. Drugs that target the DNA damage response, including ATR inhibitors (ATRi), have been proposed as novel targeted agents in gastric cancer. Here, we sought to evaluate the efficacy of ATRi in preclinical models of gastric cancer and to understand how ATRi resistance might emerge as a means to identify predictors of ATRi response. A positive selection genome-wide CRISPR-Cas9 screen identified candidate regulators of ATRi resistance in gastric cancer. Loss-of-function mutations in either SMG8 or SMG9 caused ATRi resistance by an SMG1-mediated mechanism. Although ATRi still impaired ATR/CHK1 signaling in SMG8/9-defective cells, other characteristic responses to ATRi exposure were not seen, such as changes in ATM/CHK2, γH2AX, phospho-RPA, or 53BP1 status or changes in the proportions of cells in S- or G2-M-phases of the cell cycle. Transcription/replication conflicts (TRC) elicited by ATRi exposure are a likely cause of ATRi sensitivity, and SMG8/9-defective cells exhibited a reduced level of ATRi-induced TRCs, which could contribute to ATRi resistance. These observations suggest ATRi elicits antitumor efficacy in gastric cancer but that drug resistance could emerge via alterations in the SMG8/9/1 pathway. SIGNIFICANCE: These findings reveal how cancer cells acquire resistance to ATRi and identify pathways that could be targeted to enhance the overall effectiveness of these inhibitors.


Asunto(s)
Antineoplásicos , Neoplasias Gástricas , Humanos , Antineoplásicos/farmacología , Proteínas de la Ataxia Telangiectasia Mutada/metabolismo , Inhibidores de Proteínas Quinasas , Proteínas Serina-Treonina Quinasas , Péptidos y Proteínas de Señalización Intracelular/metabolismo
20.
Nucleic Acids Res ; 37(13): 4360-70, 2009 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-19465393

RESUMEN

FANCM, the most highly conserved component of the Fanconi Anaemia (FA) pathway can resolve recombination intermediates and remodel synthetic replication forks. However, it is not known if these activities are relevant to how this conserved protein activates the FA pathway and promotes DNA crosslink repair. Here we use chicken DT40 cells to systematically dissect the function of the helicase and nuclease domains of FANCM. Our studies reveal that these domains contribute distinct roles in the tolerance of crosslinker, UV light and camptothecin-induced DNA damage. Although the complete helicase domain is critical for crosslink repair, a predicted inactivating mutation of the Walker B box domain has no impact on FA pathway associated functions. However, this mutation does result in elevated sister chromatid exchanges (SCE). Furthermore, our genetic dissection indicates that FANCM functions with the Blm helicase to suppress spontaneous SCE events. Overall our results lead us to reappraise the role of helicase domain associated activities of FANCM with respect to the activation of the FA pathway, crosslink repair and in the resolution of recombination intermediates.


Asunto(s)
Proteínas Aviares/química , ADN Helicasas/química , Reparación del ADN , Proteínas del Grupo de Complementación de la Anemia de Fanconi/química , Intercambio de Cromátides Hermanas , Alelos , Secuencias de Aminoácidos , Animales , Proteínas Aviares/genética , Proteínas Aviares/metabolismo , Línea Celular , Pollos , ADN Helicasas/genética , ADN Helicasas/metabolismo , Proteínas del Grupo de Complementación de la Anemia de Fanconi/genética , Proteínas del Grupo de Complementación de la Anemia de Fanconi/metabolismo , Prueba de Complementación Genética , Fenotipo , Mutación Puntual , Estructura Terciaria de Proteína
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA