Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 40
Filtrar
Más filtros

Bases de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Dig Dis Sci ; 2024 Jul 13.
Artículo en Inglés | MEDLINE | ID: mdl-39001959

RESUMEN

BACKGROUND: Spinal cord injury (SCI) disrupts intestinal barrier function, thereby increasing antigen permeation and leading to poor outcomes. Despite the intestinal tract's anatomic and physiologic heterogeneity, studies following SCI have not comprehensively addressed intestinal pathophysiology with regional specificity. AIMS AND METHODS: We used an experimental model of high thoracic SCI to investigate (1) regional mucosal oxidative stress using dihydroethidium labeling; (2) regional paracellular permeability to small- and large-molecular probes via Ussing chamber; (3) regional intestinal tight junction (TJ) protein expression; and (4) hindgut perfusion via the caudal mesenteric artery. RESULTS: Dihydroethidium staining was significantly elevated within duodenal mucosa at 3-day post-SCI. Molar flux of [14C]-urea was significantly elevated in duodenum and proximal colon at 3-day post-SCI, while molar flux of [3H]-inulin was significantly elevated only in duodenum at 3-day post-SCI. Barrier permeability was mirrored by a significant increase in the expression of pore-forming TJ protein claudin-2 in duodenum and proximal colon at 3-day post-SCI. Claudin-2 expression remained significantly elevated in proximal colon at 3-week post-SCI. Expression of the barrier-forming TJ protein occludin was significantly reduced in duodenum at 3-day post-SCI. Caudal mesenteric artery flow was unchanged by SCI at 3 days or 3 weeks despite significant reductions in mean arterial pressure. CONCLUSION: These data show that T3-SCI provokes elevated mucosal oxidative stress, altered expression of TJ proteins, and elevated intestinal barrier permeability in the proximal intestine. In contrast, mucosal oxidative stress and intestinal barrier permeability were unchanged in the hindgut after SCI. This regional heterogeneity may result from differential sensitivity to reduced mesenteric perfusion, though further studies are required to establish a causal link. Understanding regional differences in intestinal pathophysiology is essential for developing effective treatments and standards of care for individuals with SCI.

2.
Am J Pathol ; 191(5): 872-884, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-33607043

RESUMEN

Defective intestinal tight junction (TJ) barrier is an important pathogenic factor of inflammatory bowel disease. To date, no effective therapies that specifically target the intestinal TJ barrier are available. The purpose of this study was to identify probiotic bacterial species or strains that induce a rapid and sustained enhancement of intestinal TJ barrier and protect against the development of intestinal inflammation by targeting the TJ barrier. After high-throughput screening of >20 Lactobacillus and other probiotic bacterial species or strains, a specific strain of Lactobacillus acidophilus, referred to as LA1, uniquely produced a marked enhancement of the intestinal TJ barrier. LA1 attached to the apical membrane surface of intestinal epithelial cells in a Toll-like receptor (TLR)-2-dependent manner and caused a rapid increase in enterocyte TLR-2 membrane expression and TLR-2/TLR-1 and TLR-2/TLR-6 hetero-complex-dependent enhancement in intestinal TJ barrier function. Oral administration of LA1 caused a rapid enhancement in mouse intestinal TJ barrier, protected against a dextran sodium sulfate (DSS) increase in intestinal permeability, and prevented the DSS-induced colitis in a TLR-2- and intestinal TJ barrier-dependent manner. In conclusion, we report for the first time that a specific strain of LA causes a strain-specific enhancement of intestinal TJ barrier through a novel mechanism that involves the TLR-2 receptor complex and protects against the DSS-induced colitis by targeting the intestinal TJ barrier.


Asunto(s)
Colitis/prevención & control , Inflamación/prevención & control , Lactobacillus acidophilus/fisiología , Probióticos , Receptor Toll-Like 2/metabolismo , Animales , Colitis/inducido químicamente , Colitis/microbiología , Colitis/patología , Sulfato de Dextran/efectos adversos , Células Epiteliales/patología , Intestinos/efectos de los fármacos , Intestinos/patología , Ratones , Ratones Endogámicos C57BL , Permeabilidad/efectos de los fármacos , Uniones Estrechas/efectos de los fármacos , Uniones Estrechas/patología , Receptor Toll-Like 2/genética
3.
J Biol Chem ; 295(25): 8602-8612, 2020 06 19.
Artículo en Inglés | MEDLINE | ID: mdl-32385106

RESUMEN

Insulin-like growth factor 2 mRNA-binding protein 1 (IGF2BP1) is an mRNA-binding protein that has an oncofetal pattern of expression. It is also expressed in intestinal tissue, suggesting that it has a possible role in intestinal homeostasis. To investigate this possibility, here we generated Villin CreERT2:Igf2bp1flox/flox mice, which enabled induction of an IGF2BP1 knockout specifically in intestinal epithelial cells (IECs) of adult mice. Using gut barrier and epithelial permeability assays and several biochemical approaches, we found that IGF2BP1 ablation in the adult intestinal epithelium causes mild active colitis and mild-to-moderate active enteritis. Moreover, the IGF2BP1 deletion aggravated dextran sodium sulfate-induced colitis. We also found that IGF2BP1 removal compromises barrier function of the intestinal epithelium, resulting from altered protein expression at tight junctions. Mechanistically, IGF2BP1 interacted with the mRNA of the tight-junction protein occludin (Ocln), stabilizing Ocln mRNA and inducing expression of occludin in IECs. Furthermore, ectopic occludin expression in IGF2BP1-knockdown cells restored barrier function. We conclude that IGF2BP1-dependent regulation of occludin expression is an important mechanism in intestinal barrier function maintenance and in the prevention of colitis.


Asunto(s)
Ocludina/metabolismo , Permeabilidad , Proteínas de Unión al ARN/metabolismo , Animales , Línea Celular , Colitis/inducido químicamente , Colitis/mortalidad , Colitis/patología , Colon/patología , Humanos , Mucosa Intestinal/citología , Mucosa Intestinal/metabolismo , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Ocludina/genética , Unión Proteica , Interferencia de ARN , ARN Mensajero/metabolismo , ARN Interferente Pequeño/metabolismo , Proteínas de Unión al ARN/antagonistas & inhibidores , Proteínas de Unión al ARN/genética , Índice de Severidad de la Enfermedad , Tasa de Supervivencia , Proteínas de Uniones Estrechas/metabolismo , Regulación hacia Arriba
4.
Int J Mol Sci ; 22(15)2021 Jul 28.
Artículo en Inglés | MEDLINE | ID: mdl-34360835

RESUMEN

Defective intestinal tight junction (TJ) barrier is a hallmark in the pathogenesis of inflammatory bowel disease (IBD). To date, there are no effective therapies that specifically target the intestinal TJ barrier. Among the various probiotic bacteria, Bifidobacterium, is one of the most widely studied to have beneficial effects on the intestinal TJ barrier. The main purpose of this study was to identify Bifidobacterium species that cause a sustained enhancement in the intestinal epithelial TJ barrier and can be used therapeutically to target the intestinal TJ barrier and to protect against or treat intestinal inflammation. Our results showed that Bifidobacterium bifidum caused a marked, sustained enhancement in the intestinal TJ barrier in Caco-2 monolayers. The Bifidobacterium bifidum effect on TJ barrier was strain-specific, and only the strain designated as BB1 caused a maximal enhancement in TJ barrier function. The mechanism of BB1 enhancement of intestinal TJ barrier required live bacterial cell/enterocyte interaction and was mediated by the BB1 attachment to Toll-like receptor-2 (TLR-2) at the apical membrane surface. The BB1 enhancement of the intestinal epithelial TJ barrier function was mediated by the activation of the p38 kinase pathway, but not the NF-κB signaling pathway. Moreover, the BB1 caused a marked enhancement in mouse intestinal TJ barrier in a TLR-2-dependent manner and protected against dextran sodium sulfate (DSS)-induced increase in mouse colonic permeability, and treated the DSS-induced colitis in a TJ barrier-dependent manner. These studies show that probiotic bacteria BB1 causes a strain-specific enhancement of the intestinal TJ barrier through a novel mechanism involving BB1 attachment to the enterocyte TLR-2 receptor complex and activation of p38 kinase pathway.


Asunto(s)
Bifidobacterium bifidum/fisiología , Colitis/microbiología , Mucosa Intestinal/microbiología , Transducción de Señal , Uniones Estrechas , Receptor Toll-Like 2/metabolismo , Animales , Células CACO-2 , Colitis/prevención & control , Humanos , Mucosa Intestinal/metabolismo , Ratones , FN-kappa B , Permeabilidad , Probióticos
5.
Am J Pathol ; 189(4): 797-812, 2019 04.
Artículo en Inglés | MEDLINE | ID: mdl-30711488

RESUMEN

Lipopolysaccharides (LPSs) are a major component of Gram-negative bacterial cell wall and play an important role in promoting intestinal inflammatory responses. Recent studies have shown that physiologically relevant concentrations of LPS (0 to 2000 pg/mL) cause an increase in intestinal epithelial tight junction (TJ) permeability without causing cell death. However, the intracellular pathways and the mechanisms that mediate LPS-induced increase in intestinal TJ permeability remain unclear. The aim was to delineate the intracellular pathways that mediate the LPS-induced increase in intestinal permeability using in vitro and in vivo intestinal epithelial models. LPS-induced increase in intestinal epithelial TJ permeability was preceded by an activation of transforming growth factor-ß-activating kinase-1 (TAK-1) and canonical NF-κB (p50/p65) pathways. The siRNA silencing of TAK-1 inhibited the activation of NF-κB p50/p65. The siRNA silencing of TAK-1 and p65/p50 subunit inhibited the LPS-induced increase in intestinal TJ permeability and the increase in myosin light chain kinase (MLCK) expression, confirming the regulatory role of TAK-1 and NF-κB p65/p50 in up-regulating MLCK expression and the subsequent increase in TJ permeability. The data also showed that toll-like receptor (TLR)-4/myeloid differentiation primary response (MyD)88 pathway was crucial upstream regulator of TAK-1 and NF-κB p50/p65 activation. In conclusion, activation of TAK-1 by the TLR-4/MyD88 signal transduction pathway and MLCK by NF-κB p65/p50 regulates the LPS-induced increase in intestinal epithelial TJ permeability.


Asunto(s)
Proteínas de Unión al Calcio/metabolismo , Permeabilidad de la Membrana Celular/efectos de los fármacos , Quinasa I-kappa B/metabolismo , Mucosa Intestinal/fisiología , Lipopolisacáridos/farmacología , Quinasas Quinasa Quinasa PAM/metabolismo , Quinasa de Cadena Ligera de Miosina/metabolismo , Animales , Células CACO-2 , Proteínas de Unión al Calcio/genética , Femenino , Regulación de la Expresión Génica/efectos de los fármacos , Humanos , Quinasa I-kappa B/genética , Mucosa Intestinal/efectos de los fármacos , Quinasas Quinasa Quinasa PAM/genética , Masculino , Ratones Endogámicos C57BL , Quinasa de Cadena Ligera de Miosina/genética , FN-kappa B/genética , FN-kappa B/metabolismo , Transducción de Señal , Uniones Estrechas/efectos de los fármacos , Receptor Toll-Like 4/genética , Receptor Toll-Like 4/metabolismo
6.
Am J Physiol Cell Physiol ; 316(5): C753-C765, 2019 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-30892937

RESUMEN

A defective tight junction (TJ) barrier is a key pathogenic factor for inflammatory bowel disease. Previously, we have shown that autophagy, a cell survival mechanism, enhances intestinal epithelial TJ barrier function. Autophagy-related protein-6 (ATG6/beclin 1), a key protein in the autophagy pathway, also plays a role in the endocytic pathway. The constitutive role of beclin 1 in the intestinal TJ barrier is not known. In Caco-2 cells, beclin 1 was found to be coimmunoprecipitated with the TJ protein occludin and colocalized with occludin on the membrane. Treatment of Caco-2 cells with beclin 1 peptide [transactivating regulatory protein (Tat)-beclin 1] reduced TJ barrier function. Activation of beclin 1 increased occludin endocytosis and reduced total occludin protein level. In contrast, beclin 1 siRNA transfection enhanced Caco-2 TJ barrier function. In pharmacologic and genetic autophagy inhibition studies, the constitutive function of beclin 1 in the TJ barrier was found to be autophagy independent. However, de novo induction of autophagy with starvation or rapamycin prevented Tat-beclin 1-induced increase in TJ permeability and reduction in occludin level. Induction of autophagy also resulted in reduced beclin 1-occludin association. In mouse colon, beclin 1 colocalized with occludin on the epithelial membrane. Perfusion of mouse colon with beclin 1 peptide caused an increase in colonic TJ permeability that was prevented by in vivo induction of autophagy. These findings show that beclin 1 plays a constitutive, autophagy-independent role in the regulation of intestinal TJ barrier function via endocytosis of occludin. Autophagy terminates constitutive beclin 1 function in the TJ barrier and enhances the TJ barrier.


Asunto(s)
Autofagia/fisiología , Beclina-1/fisiología , Mucosa Intestinal/fisiología , Uniones Estrechas/fisiología , Animales , Células CACO-2 , Femenino , Humanos , Mucosa Intestinal/citología , Masculino , Ratones , Ratones Endogámicos C57BL
7.
Am J Pathol ; 187(12): 2698-2710, 2017 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-29157665

RESUMEN

Lipopolysaccharides (LPSs) are a major component of the Gram-negative bacterial cell wall and play an important role in mediating intestinal inflammatory responses in inflammatory bowel disease. Although recent studies suggested that physiologically relevant concentrations of LPS (0 to 1 ng/mL) cause an increase in intestinal epithelial tight junction (TJ) permeability, the mechanisms that mediate an LPS-induced increase in intestinal TJ permeability remain unclear. Herein, we show that myosin light chain kinase (MLCK) plays a central role in the LPS-induced increase in TJ permeability. Filter-grown Caco-2 intestinal epithelial monolayers and C57BL/6 mice were used as an in vitro and in vivo intestinal epithelial model system, respectively. LPS caused a dose- and time-dependent increase in MLCK expression and kinase activity in Caco-2 monolayers. The pharmacologic MLCK inhibition and siRNA-induced knock-down of MLCK inhibited the LPS-induced increase in Caco-2 TJ permeability. The LPS increase in TJ permeability was mediated by toll-like receptor 4 (TLR-4)/MyD88 signal-transduction pathway up-regulation of MLCK expression. The LPS-induced increase in mouse intestinal permeability also required an increase in MLCK expression. The LPS-induced increase in intestinal permeability was inhibited in MLCK-/- and TLR-4-/- mice. These data show, for the first time, that the LPS-induced increase in intestinal permeability was mediated by TLR-4/MyD88 signal-transduction pathway up-regulation of MLCK. Therapeutic targeting of these pathways can prevent an LPS-induced increase in intestinal permeability.


Asunto(s)
Mucosa Intestinal/metabolismo , Lipopolisacáridos/toxicidad , Factor 88 de Diferenciación Mieloide/metabolismo , Quinasa de Cadena Ligera de Miosina/metabolismo , Uniones Estrechas/metabolismo , Receptor Toll-Like 4/metabolismo , Animales , Células CACO-2 , Humanos , Inflamación/metabolismo , Mucosa Intestinal/efectos de los fármacos , Ratones , Ratones Endogámicos C57BL , Permeabilidad/efectos de los fármacos , Transducción de Señal/efectos de los fármacos , Transducción de Señal/fisiología , Uniones Estrechas/efectos de los fármacos
8.
Exp Cell Res ; 352(1): 113-122, 2017 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-28161538

RESUMEN

Previous studies have demonstrated that the chloride channel ClC-2 plays a critical role in intestinal epithelial tight junction (TJ) barrier function via intracellular trafficking of TJ protein occludin. To study the mechanism of ClC-2-mediated TJ barrier function and intracellular trafficking of occludin, we established ClC-2 over-expressing Caco-2 cell line (Caco-2CLCN2) by full length ClC-2 ORF transfection. ClC-2 over-expression (Caco-2CLCN2) significantly enhanced TJ barrier (increased TER by ≥2 times and reduced inulin flux by 50%) compared to control Caco-2pEZ cells. ClC-2 over-expression (Caco-2CLCN2) increased occludin protein level compared to control Caco-2pEZ cells. Surface biotinylation assay revealed reduced steady state endocytosis of occludin in Caco-2CLCN2 cells. Furthermore, ClC-2 over-expression led to reduction in caveolin-1 protein level and diminishment of caveolae assembly. Caveolae disruption increased TJ permeability in control but not ClC-2 over-expressing Caco-2CLCN2 cells. Selective ClC-2 channel blocker GaTx2 caused an increase in caveolin-1 protein level and reduced occludin level. Delivery of cell permeable caveolin-1 scaffolding domain reduced the occludin protein level. Over all, these results suggest that ClC- 2 enhances TJ barrier function in intestinal epithelial cells via regulation of caveolin-1 and caveolae-mediated trafficking of occludin.


Asunto(s)
Caveolas/metabolismo , Caveolina 1/metabolismo , Canales de Cloruro/metabolismo , Células Epiteliales/metabolismo , Mucosa Intestinal/metabolismo , Ocludina/metabolismo , Uniones Estrechas/metabolismo , Western Blotting , Canales de Cloruro CLC-2 , Permeabilidad de la Membrana Celular , Proliferación Celular , Células Cultivadas , Endocitosis/fisiología , Células Epiteliales/citología , Técnica del Anticuerpo Fluorescente , Humanos , Intestinos/citología , Transporte de Proteínas
9.
Worlds Poult Sci J ; 74(2): 347-360, 2018 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-29805185

RESUMEN

The gut has great importance for the commercial success of poultry production. Numerous ion transporters, exchangers, and channels are present on both the apical and the basolateral membrane of intestinal epithelial cells, and their differential expression along the crypt-villus axis within the various intestinal segments ensures efficient intestinal absorption and effective barrier function. Recent studies have shown that intensive production systems, microbial exposure, and nutritional management significantly affect intestinal physiology and intestinal ion transport. Dysregulation of normal intestinal ion transport is manifested as diarrhoea, malabsorption, and intestinal inflammation resulting into poor production efficiency. This review discusses the basic mechanisms involved in avian intestinal ion transport and the impact of development during growth, nutritional and environmental alterations, and intestinal microbial infections on it. The effect of intestinal microbial infections on avian intestinal ion transport depends on factors such as host immunity, pathogen virulence, and the mucosal organisation of the particular intestinal segment.

10.
J Immunol ; 195(10): 4999-5010, 2015 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-26466961

RESUMEN

Gut-derived bacterial LPS plays an essential role in inducing intestinal and systemic inflammatory responses and have been implicated as a pathogenic factor in necrotizing enterocolitis and inflammatory bowel disease. The defective intestinal tight junction barrier was shown to be an important factor contributing to the development of intestinal inflammation. LPS, at physiological concentrations, causes an increase in intestinal tight junction permeability (TJP) via a TLR4-dependent process; however, the intracellular mechanisms that mediate LPS regulation of intestinal TJP remain unclear. The aim of this study was to investigate the adaptor proteins and the signaling interactions that mediate LPS modulation of intestinal tight junction barrier using in vitro and in vivo model systems. LPS caused a TLR4-dependent activation of membrane-associated adaptor protein focal adhesion kinase (FAK) in Caco-2 monolayers. LPS caused an activation of both MyD88-dependent and -independent pathways. Small interfering RNA silencing of MyD88 prevented an LPS-induced increase in TJP. LPS caused MyD88-dependent activation of IL-1R-associated kinase 4. TLR4, FAK, and MyD88 were colocalized. Small interfering silencing of TLR4 inhibited TLR4-associated FAK activation, and FAK knockdown prevented MyD88 activation. In vivo studies also confirmed that the LPS-induced increase in mouse intestinal permeability was associated with FAK and MyD88 activation; knockdown of intestinal epithelial FAK prevented an LPS-induced increase in intestinal permeability. Additionally, high-dose LPS-induced intestinal inflammation was dependent on the TLR4/FAK/MyD88 signal transduction axis. To our knowledge, our data show for the first time that the LPS-induced increases in intestinal TJP and intestinal inflammation were regulated by TLR4-dependent activation of the FAK/MyD88/IL-1R-associated kinase 4 signaling pathway.


Asunto(s)
Quinasa 1 de Adhesión Focal/inmunología , Lipopolisacáridos/farmacología , Factor 88 de Diferenciación Mieloide/inmunología , Transducción de Señal/efectos de los fármacos , Uniones Estrechas/inmunología , Receptor Toll-Like 4/inmunología , Animales , Células CACO-2 , Activación Enzimática/efectos de los fármacos , Activación Enzimática/genética , Activación Enzimática/inmunología , Quinasa 1 de Adhesión Focal/genética , Humanos , Intestinos/inmunología , Ratones , Ratones Noqueados , Factor 88 de Diferenciación Mieloide/genética , Permeabilidad/efectos de los fármacos , Transducción de Señal/genética , Transducción de Señal/inmunología , Uniones Estrechas/genética , Receptor Toll-Like 4/genética
11.
J Biol Chem ; 290(11): 7234-46, 2015 Mar 13.
Artículo en Inglés | MEDLINE | ID: mdl-25616664

RESUMEN

Autophagy is an intracellular degradation pathway and is considered to be an essential cell survival mechanism. Defects in autophagy are implicated in many pathological processes, including inflammatory bowel disease. Among the innate defense mechanisms of intestinal mucosa, a defective tight junction (TJ) barrier has been postulated as a key pathogenic factor in the causation and progression of inflammatory bowel disease by allowing increased antigenic permeation. The cross-talk between autophagy and the TJ barrier has not yet been described. In this study, we present the novel finding that autophagy enhances TJ barrier function in Caco-2 intestinal epithelial cells. Nutrient starvation-induced autophagy significantly increased transepithelial electrical resistance and reduced the ratio of sodium/chloride paracellular permeability. Nutrient starvation reduced the paracellular permeability of small-sized urea but not larger molecules. The role of autophagy in the modulation of paracellular permeability was confirmed by pharmacological induction as well as pharmacological and genetic inhibition of autophagy. Consistent with the autophagy-induced reduction in paracellular permeability, a marked decrease in the level of the cation-selective, pore-forming TJ protein claudin-2 was observed after cell starvation. Starvation reduced the membrane presence of claudin-2 and increased its cytoplasmic, lysosomal localization. Therefore, our data show that autophagy selectively reduces epithelial TJ permeability of ions and small molecules by lysosomal degradation of the TJ protein claudin-2.


Asunto(s)
Autofagia , Claudina-2/metabolismo , Células Epiteliales/citología , Mucosa Intestinal/citología , Proteolisis , Uniones Estrechas/metabolismo , Células CACO-2 , Células Epiteliales/metabolismo , Humanos , Mucosa Intestinal/metabolismo , Permeabilidad
12.
Am J Physiol Gastrointest Liver Physiol ; 309(12): G988-97, 2015 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-26514773

RESUMEN

Recent studies have implicated a pathogenic role for matrix metalloproteinases 9 (MMP-9) in inflammatory bowel disease. Although loss of epithelial barrier function has been shown to be a key pathogenic factor for the development of intestinal inflammation, the role of MMP-9 in intestinal barrier function remains unclear. The aim of this study was to investigate the role of MMP-9 in intestinal barrier function and intestinal inflammation. Wild-type (WT) and MMP-9(-/-) mice were subjected to experimental dextran sodium sulfate (DSS) colitis by administration of 3% DSS in drinking water for 7 days. The mouse colonic permeability was measured in vivo by recycling perfusion of the entire colon using fluorescently labeled dextran. The DSS-induced increase in the colonic permeability was accompanied by an increase in intestinal epithelial cell MMP-9 expression in WT mice. The DSS-induced increase in intestinal permeability and the severity of DSS colitis was found to be attenuated in MMP-9(-/-) mice. The colonic protein expression of myosin light chain kinase (MLCK) and phospho-MLC was found to be significantly increased after DSS administration in WT mice but not in MMP-9(-/-) mice. The DSS-induced increase in colonic permeability and colonic inflammation was attenuated in MLCK(-/-) mice and MLCK inhibitor ML-7-treated WT mice. The DSS-induced increase in colonic surface epithelial cell MLCK mRNA was abolished in MMP-9(-/-) mice. Lastly, increased MMP-9 protein expression was detected within the colonic surface epithelial cells in ulcerative colitis cases. These data suggest a role of MMP-9 in modulation of colonic epithelial permeability and inflammation via MLCK.


Asunto(s)
Colitis/enzimología , Colon/enzimología , Sulfato de Dextran , Mucosa Intestinal/enzimología , Metaloproteinasa 9 de la Matriz/metabolismo , Uniones Estrechas/enzimología , Animales , Colitis/inducido químicamente , Colitis/genética , Colitis/patología , Colitis/prevención & control , Colon/efectos de los fármacos , Colon/patología , Modelos Animales de Enfermedad , Mucosa Intestinal/efectos de los fármacos , Mucosa Intestinal/patología , Metaloproteinasa 9 de la Matriz/análisis , Metaloproteinasa 9 de la Matriz/deficiencia , Metaloproteinasa 9 de la Matriz/genética , Ratones Endogámicos C57BL , Ratones Noqueados , Cadenas Ligeras de Miosina/metabolismo , Quinasa de Cadena Ligera de Miosina/antagonistas & inhibidores , Quinasa de Cadena Ligera de Miosina/genética , Quinasa de Cadena Ligera de Miosina/metabolismo , Permeabilidad , Fosforilación , Inhibidores de Proteínas Quinasas/farmacología , Índice de Severidad de la Enfermedad , Transducción de Señal , Proteínas de Uniones Estrechas/metabolismo , Uniones Estrechas/efectos de los fármacos , Uniones Estrechas/patología , Factores de Tiempo
13.
Hepatol Commun ; 8(7)2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38896071

RESUMEN

Recently renamed, metabolic dysfunction-associated steatotic liver disease remains a leading cause of chronic liver disease worldwide. Regular physical activity is recommended as a treatment for all with this condition because it is highly efficacious, especially when exercise training is undertaken with a specific goal in mind. Despite decades of research demonstrating exercise's efficacy, key questions remain about the mechanism of benefit and most efficacious dose, as well as the independent impact on liver histology. To answer these questions, we present the design of a 16-week randomized controlled clinical trial of 45 adults aged 18-69 years with metabolic dysfunction-associated steatohepatitis. The primary aim of this study is to better understand the dose required and mechanisms to explain how exercise impacts multiple clinical end points in metabolic dysfunction-associated steatohepatitis. The primary outcome is MRI-measured liver fat. Secondary outcomes include other biomarkers of liver fibroinflammation, liver histology, and mechanistic pathways, as well as cardiometabolic risk and quality of life. This is the first study to compare different doses of exercise training to determine if there is a differential impact on imaging and serum biomarkers as well as liver histology.


Asunto(s)
Ejercicio Físico , Humanos , Persona de Mediana Edad , Adulto , Anciano , Adolescente , Masculino , Femenino , Adulto Joven , Terapia por Ejercicio/métodos , Hígado , Imagen por Resonancia Magnética , Enfermedad del Hígado Graso no Alcohólico/terapia , Biomarcadores/sangre , Calidad de Vida
14.
J Crohns Colitis ; 17(3): 433-449, 2023 Apr 03.
Artículo en Inglés | MEDLINE | ID: mdl-36219473

RESUMEN

BACKGROUND AND AIMS: Functional loss of the gut epithelium's paracellular tight junction [TJ] barrier and defective autophagy are factors potentiating inflammatory bowel disease [IBD]. Previously, we showed the role of autophagy in enhancing the intestinal TJ barrier via pore-forming claudin-2 degradation. How autophagy regulates the TJ barrier-forming proteins remains unknown. Here, we investigated the role of autophagy in the regulation of occludin, a principal TJ component involved in TJ barrier enhancement. RESULTS: Autophagy induction using pharmacological activators and nutrient starvation increased total occludin levels in intestinal epithelial cells, mouse colonocytes and human colonoids. Autophagy induction enriched membrane occludin levels and reduced paracellular permeability of macromolecules. Autophagy-mediated TJ barrier enhancement was contingent on the presence of occludin as OCLN-/- nullified its TJ barrier-enhancing effect against macromolecular flux. Autophagy inhibited the constitutive degradation of occludin by preventing its caveolar endocytosis from the membrane and protected against inflammation-induced TJ barrier loss. Autophagy enhanced the phosphorylation of ERK-1/2 and inhibition of these kinases in Caco-2 cells and human colonic mucosa prevented the macromolecular barrier-enhancing effects of autophagy. In vivo, autophagy induction by rapamycin enhanced occludin levels in wild-type mouse intestines and protected against lipopolysaccharide- and tumour necrosis factor-α-induced TJ barrier loss. Disruption of autophagy with acute Atg7 knockout in adult mice decreased intestinal occludin levels, increasing baseline colonic TJ permeability and exacerbating the effect of experimental colitis. CONCLUSION: Our data suggest a novel role of autophagy in promoting the intestinal TJ barrier by increasing occludin levels in an ERK1/2 mitogen-activated protein kinase-dependent mechanism.


Asunto(s)
Mucosa Intestinal , Uniones Estrechas , Humanos , Ratones , Animales , Uniones Estrechas/metabolismo , Ocludina/metabolismo , Células CACO-2 , Mucosa Intestinal/metabolismo , Proteínas de Uniones Estrechas , Autofagia , Permeabilidad
15.
Cell Rep ; 42(7): 112705, 2023 07 25.
Artículo en Inglés | MEDLINE | ID: mdl-37393618

RESUMEN

Defects in intestinal epithelial tight junctions (TJs) allow paracellular permeation of noxious luminal antigens and are important pathogenic factors in inflammatory bowel disease (IBD). We show that alpha-tocopherylquinone (TQ), a quinone-structured oxidation product of vitamin E, consistently enhances the intestinal TJ barrier by increasing barrier-forming claudin-3 (CLDN3) and reducing channel-forming CLDN2 in Caco-2 cell monolayers (in vitro), mouse models (in vivo), and surgically resected human colons (ex vivo). TQ reduces colonic permeability and ameliorates colitis symptoms in multiple colitis models. TQ, bifunctionally, activates both aryl hydrocarbon receptor (AhR) and nuclear factor erythroid 2-related factor 2 (Nrf2) pathways. Genetic deletion studies reveal that TQ-induced AhR activation transcriptionally increases CLDN3 via xenobiotic response element (XRE) in the CLDN3 promoter. Conversely, TQ suppresses CLDN2 expression via Nrf2-mediated STAT3 inhibition. TQ offers a naturally occurring, non-toxic intervention for enhancement of the intestinal TJ barrier and adjunct therapeutics to treat intestinal inflammation.


Asunto(s)
Claudinas , Colitis , Ratones , Animales , Humanos , Claudinas/metabolismo , Células CACO-2 , Factor 2 Relacionado con NF-E2/metabolismo , Mucosa Intestinal/metabolismo , Uniones Estrechas/metabolismo , Receptores de Hidrocarburo de Aril/genética , Colitis/metabolismo , Vitamina E/metabolismo , Permeabilidad
16.
J Crohns Colitis ; 17(4): 565-579, 2023 Apr 19.
Artículo en Inglés | MEDLINE | ID: mdl-36322638

RESUMEN

BACKGROUND: Proton pump inhibitors [PPIs] are widely used to treat a number of gastro-oesophageal disorders. PPI-induced elevation in intragastric pH may alter gastrointestinal physiology. The tight junctions [TJs] residing at the apical intercellular contacts act as a paracellular barrier. TJ barrier dysfunction is an important pathogenic factor in inflammatory bowel disease [IBD]. Recent studies suggest that PPIs may promote disease flares in IBD patients. The role of PPIs in intestinal permeability is not clear. AIM: The aim of the present study was to study the effect of PPIs on the intestinal TJ barrier function. METHODS: Human intestinal epithelial cell culture and organoid models and mouse IBD models of dextran sodium sulphate [DSS] and spontaneous enterocolitis in IL-10-/- mice were used to study the role of PPIs in intestinal permeability. RESULTS: PPIs increased TJ barrier permeability via an increase in a principal TJ regulator, myosin light chain kinase [MLCK] activity and expression, in a p38 MAPK-dependent manner. The PPI-induced increase in extracellular pH caused MLCK activation via p38 MAPK. Long-term PPI administration in mice exaggerated the increase in intestinal TJ permeability and disease severity in two independent models of DSS colitis and IL-10-/- enterocolitis. The TJ barrier disruption by PPIs was prevented in MLCK-/- mice. Human database studies revealed increased hospitalizations associated with PPI use in IBD patients. CONCLUSIONS: Our results suggest that long-term use of PPIs increases intestinal TJ permeability and exaggerates experimental colitis via an increase in MLCK expression and activity.


Asunto(s)
Colitis , Enterocolitis , Enfermedades Inflamatorias del Intestino , Humanos , Ratones , Animales , Inhibidores de la Bomba de Protones/farmacología , Interleucina-10/metabolismo , Mucosa Intestinal/metabolismo , Uniones Estrechas/metabolismo , Células CACO-2 , Colitis/patología , Enfermedades Inflamatorias del Intestino/metabolismo , Enterocolitis/metabolismo , Proteínas Quinasas p38 Activadas por Mitógenos/metabolismo , Proteínas Quinasas p38 Activadas por Mitógenos/farmacología , Permeabilidad
17.
Mucosal Immunol ; 16(6): 826-842, 2023 12.
Artículo en Inglés | MEDLINE | ID: mdl-37716509

RESUMEN

This study investigated the role of Alpha-tocopherylquinone (TQ) in regulating the intestinal immune system and the underlying mechanisms. In the experimental dextran sodium sulfate and T cell-mediated colitis models, TQ significantly reduced the mRNA levels of interleukin (IL)-6, IL-1ß, IL-17A, IL-23, and tumor necrosis factor (TNF)-α and the abundance of proinflammatory macrophages, T helper (Th)17 cells, and ILC3s in the colons of wild-type mice. TQ also prevented lipopolysaccharide (LPS)-induced activation of NFκB and signal transducer and activator of transcription (Stat)-3 pathways in the human macrophage U937 cells. Pharmacological inhibition or CRISPR-Cas-9-mediated knockout of Aryl hydrocarbon Receptor (AhR) prevented the anti-inflammatory effects of TQ in the LPS-treated U937 cells. Furthermore, TQ reduced the mRNA levels of the LPS-induced pro-inflammatory cytokines in the WT but not Ahr-/- mice splenocytes. TQ also reduced IL-6R protein levels and IL-6-induced Stat-3 activation in Jurkat cells and in vitro differentiation of Th17 cells from wild-type but not Ahr-/- mice naive T cells. Additionally, TQ prevented the pro-inflammatory effects of LPS on macrophages and stimulation of T cells in human PBMCs and significantly reduced the abundance of tumor necrosis factor-α, IL-1ß, and IL-6hi inflammatory macrophages and Th17 cells in surgically resected Crohn's disease (CD) tissue. Our study shows that TQ is a naturally occurring, non-toxic, and effective immune modulator that activates AhR and suppresses the Stat-3-NFκB signaling.


Asunto(s)
Citocinas , Interleucina-6 , Ratones , Humanos , Animales , Citocinas/metabolismo , Interleucina-6/metabolismo , Receptores de Hidrocarburo de Aril/genética , Receptores de Hidrocarburo de Aril/metabolismo , Lipopolisacáridos , Inflamación , Factor de Necrosis Tumoral alfa , ARN Mensajero/metabolismo
18.
Am J Physiol Cell Physiol ; 302(1): C178-87, 2012 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-21956164

RESUMEN

Previously, we have demonstrated that the chloride channel ClC-2 modulates intestinal mucosal barrier function. In the present study, we investigated the role of ClC-2 in epithelial barrier development and maintenance in Caco-2 cells. During early monolayer formation, silencing of ClC-2 with small interfering (si)RNA led to a significant delay in the development of transepithelial resistance (TER) and disruption of occludin localization. Proteomic analysis employing liquid chromatography-mass spectrometry /mass spectrometry revealed association of ClC-2 with key proteins involved in intracellular trafficking, including caveolin-1 and Rab5. In ClC-2 siRNA-treated cells, occludin colocalization with caveolin-1 was diffuse and in the subapical region. Subapically distributed occludin in ClC-2 siRNA-treated cells showed marked colocalization with Rab5. To study the link between ClC-2 and trafficking of occludin in confluent epithelial monolayers, a Caco-2 cell clone expressing ClC-2 short hairpin (sh)RNA was established. Disruption of caveolae with methyl-ß-cyclodextrin (MßCD) caused a marked drop in TER and profound redistribution of caveolin-1-occludin coimmunofluorescence in ClC-2 shRNA cells. In ClC-2 shRNA cells, focal aggregations of Rab5-occludin coimmunofluorescence were present within the cytoplasm. Wortmannin caused an acute fall in TER in ClC-2 shRNA cells and subapical, diffuse redistribution of Rab5-occludin coimmunofluorescence in ClC-2 shRNA cells. An endocytosis and recycling assay for occludin revealed higher basal rate of endocytosis of occludin in ClC-2 shRNA cells. Wortmannin significantly reduced the rate of recycling of occludin in ClC-2 shRNA cells. These data clearly indicate that ClC-2 plays an important role in the modulation of tight junctions by influencing caveolar trafficking of the tight junction protein occludin.


Asunto(s)
Canales de Cloruro/fisiología , Líquido Intracelular/metabolismo , Proteínas de la Membrana/metabolismo , Uniones Estrechas/fisiología , Canales de Cloruro CLC-2 , Células CACO-2 , Caveolas/metabolismo , Caveolas/fisiología , Comunicación Celular/fisiología , Canales de Cloruro/metabolismo , Humanos , Líquido Intracelular/fisiología , Proteínas de la Membrana/fisiología , Ocludina , Transporte de Proteínas/fisiología , Uniones Estrechas/metabolismo
19.
J Immunol ; 185(8): 4729-37, 2010 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-20855879

RESUMEN

The intestinal epithelium is constantly exposed to inducers of reactive oxygen species (ROS), such as commensal microorganisms. Levels of ROS are normally maintained at nontoxic levels, but dysregulation of ROS is involved in intestinal inflammatory diseases. In this article, we report that TGF-ß-activated kinase 1 (TAK1) is a key regulator of ROS in the intestinal epithelium. tak1 gene deletion in the mouse intestinal epithelium caused tissue damage involving enterocyte apoptosis, disruption of tight junctions, and inflammation. Disruption of TNF signaling, which is a major intestinal damage inducer, rescued the inflammatory conditions but not apoptosis or disruption of tight junctions in the TAK1-deficient intestinal epithelium, suggesting that TNF is not a primary inducer of the damage noted in TAK1-deficient intestinal epithelium. We found that TAK1 deficiency resulted in reduced expression of several antioxidant-responsive genes and reduced the protein level of a key antioxidant transcription factor NF-E2-related factor 2, which resulted in accumulation of ROS. Exogenous antioxidant treatment reduced apoptosis and disruption of tight junctions in the TAK1-deficient intestinal epithelium. Thus, TAK1 signaling regulates ROS through transcription factor NF-E2-related factor 2, which is important for intestinal epithelial integrity.


Asunto(s)
Inmunidad Mucosa/fisiología , Mucosa Intestinal/enzimología , Quinasas Quinasa Quinasa PAM/metabolismo , Factor 2 Relacionado con NF-E2/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Transducción de Señal , Animales , Western Blotting , Epitelio/enzimología , Epitelio/inmunología , Expresión Génica , Regulación de la Expresión Génica/inmunología , Inmunohistoquímica , Mucosa Intestinal/inmunología , Quinasas Quinasa Quinasa PAM/inmunología , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Factor 2 Relacionado con NF-E2/inmunología , Estrés Oxidativo/inmunología , Especies Reactivas de Oxígeno/inmunología , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa
20.
BMC Pharmacol ; 12: 3, 2012 May 03.
Artículo en Inglés | MEDLINE | ID: mdl-22553939

RESUMEN

BACKGROUND: Linaclotide has been proposed as a treatment for the same gastrointestinal indications for which lubiprostone has been approved, chronic idiopathic constipation and irritable bowel syndrome with constipation. Stressors damage the epithelial cell barrier and cellular homeostasis leading to loss of these functions. Effects of active linaclotide on repair of barrier and cell function in pig jejunum after ischemia and in T84 cells after treatment with proinflammatory cytokines, interferon-γ and tumor necrosis factor-α were examined. Comparison with effects of lubiprostone, known to promote repair of barrier function was carried out. RESULTS: In ischemia-damaged pig jejunum, using measurements of transepithelial resistance, (3)H-mannitol fluxes, short-circuit current (Cl(-) secretion) and occludin localization, active linaclotide failed to effectively promote repair of the epithelial barrier or recovery of short-circuit current, whereas lubiprostone promoted barrier repair and increased short-circuit current. In control pig jejunum, 1 µM linaclotide and 1 µM lubiprostone both caused similar increases in short-circuit current (Cl(-) secretion). In T84 cells, using measurements of transepithelial resistance, fluxes of fluorescent macromolecules, occludin and mitochondrial membrane potential, active linaclotide was virtually ineffective against damage caused by interferon-γ and tumor necrosis factor-α, while lubiprostone protected or promoted repair of epithelial barrier and cell function. Barrier protection/repair by lubiprostone was inhibited by methadone, a ClC-2 inhibitor. Linaclotide, but not lubiprostone increased [cGMP]i as expected and [Ca(2+)]i and linaclotide depolarized while lubiprostone hyperpolarized the T84 plasma membrane potential suggesting that lubiprostone may lead to greater cellular stability compared to linaclotide. In T84 cells, as found with linaclotide but not with lubiprostone, transepithelial resistance was slightly but significantly decreased by guanylin, STa and 8-bromo cGMP and fluorescent dextran fluxes were increased by guanylin. However the physiological implications of these small but statistically significant changes remain unclear. CONCLUSIONS: Considering the physiological importance of epithelial barrier function and cell integrity and the known impact of stressors, the finding that lubiprostone, but not active linaclotide, exhibits the additional distinct property of effective protection or repair of the epithelial barrier and cell function after stress suggests potential clinical importance for patients with impaired or compromised barrier function such as might occur in IBS.


Asunto(s)
Alprostadil/análogos & derivados , Células Epiteliales/efectos de los fármacos , Fármacos Gastrointestinales/farmacología , Péptidos/farmacología , Alprostadil/farmacología , Animales , Calcio/fisiología , Línea Celular Tumoral , Permeabilidad de la Membrana Celular/efectos de los fármacos , Células Epiteliales/fisiología , Femenino , Homeostasis/efectos de los fármacos , Humanos , Técnicas In Vitro , Interferón gamma/farmacología , Isquemia/fisiopatología , Yeyuno/efectos de los fármacos , Yeyuno/fisiología , Lubiprostona , Masculino , Potenciales de la Membrana/efectos de los fármacos , Ocludina/metabolismo , Porcinos , Factor de Necrosis Tumoral alfa/farmacología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA