Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
1.
Int J Obes (Lond) ; 45(1): 247-257, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-32433604

RESUMEN

BACKGROUND/OBJECTIVES: Maternal glycaemia promotes fetal adiposity. Inositol, an insulin sensitizer, has been trialled for gestational diabetes prevention. The placenta has been implicated in how maternal hyperglycaemia generates fetal pathophysiology, but no studies have examined whether placental inositol biology is altered with maternal hyperglycaemia, nor whether such alterations impact fetal physiology. We aimed to investigate whether the effects of maternal glycaemia on offspring birthweight and adiposity at birth differed across placental inositol levels. METHODS: Using longitudinal data from the Growing Up in Singapore Towards healthy Outcomes cohort, maternal fasting glucose (FPG) and 2-hour plasma glucose (2hPG) were obtained in pregnant women by a 75-g oral glucose tolerance test around 26 weeks' gestation. Relative placental inositol was quantified by liquid chromatography-mass spectrometry. Primary outcomes were birthweight (n = 884) and abdominal adipose tissue (AAT) volumes measured by neonatal MRI scanning in a subset (n = 262) of term singleton pregnancies. Multiple linear regression analyses were performed. RESULTS: Placental inositol was lower in those with higher 2hPG, no exposure to tobacco smoke antenatally, with vaginal delivery and shorter gestation. Positive associations of FPG with birthweight (adjusted ß [95% CI] 164.8 g [109.1, 220.5]) and AAT (17.3 ml [11.9, 22.6] per mmol glucose) were observed, with significant interactions between inositol tertiles and FPG in relation to these outcomes (p < 0.05). Stratification by inositol tertiles showed that each mmol/L increase in FPG was associated with increased birthweight and AAT volume among cases within the lowest (birthweight = 174.2 g [81.2, 267.2], AAT = 21.0 ml [13.1, 28.8]) and middle inositol tertiles (birthweight = 202.0 g [103.8, 300.1], AAT = 19.7 ml [9.7, 29.7]). However, no significant association was found among cases within the highest tertile (birthweight = 81.0 g [-21.2, 183.2], AAT = 0.8 ml [-8.4, 10.0]). CONCLUSIONS: High placental inositol may protect the fetus from the pro-adipogenic effects of maternal glycaemia. Studies are warranted to investigate whether prenatal inositol supplementation can increase placental inositol and reduce fetal adiposity.


Asunto(s)
Adiposidad/fisiología , Diabetes Gestacional/epidemiología , Inositol/análisis , Placenta/química , Adulto , Peso al Nacer/fisiología , Glucemia/análisis , Femenino , Humanos , Recién Nacido , Estudios Longitudinales , Masculino , Embarazo , Adulto Joven
2.
Appl Environ Microbiol ; 87(11)2021 05 11.
Artículo en Inglés | MEDLINE | ID: mdl-33741628

RESUMEN

MalF has been shown to be required for virulence in the important avian pathogen Mycoplasma gallisepticum To characterize the function of MalF, predicted to be part of a putative ABC transporter, we compared metabolite profiles of a mutant with a transposon inserted in malF (MalF-deficient ST mutant 04-1; ΔmalF) with those of wild-type bacteria using gas chromatography-mass spectrometry and liquid chromatography-mass spectrometry. Of the substrates likely to be transported by an ABC transport system, glycerol was detected at significantly lower abundance in the ΔmalF mutant, compared to the wild type. Stable isotope labeling using [U-13C]glycerol and reverse transcription-quantitative PCR analysis indicated that MalF was responsible for the import of glycerol into M. gallisepticum and that, in the absence of MalF, the transcription of gtsA, which encodes a second transporter, GtsA, was upregulated, potentially to increase the import of glycerol-3-phosphate into the cell to compensate for the loss of MalF. The loss of MalF appeared to have a global effect on glycerol metabolism, suggesting that it may also play a regulatory role, and cellular morphology was also affected, indicating that the change to glycerol metabolism may have a broader effect on cellular organization. Overall, this study suggests that the reduced virulence of the ΔmalF mutant is due to perturbed glycerol uptake and metabolism and that the operon including malF should be reannotated as golABC to reflect its function in glycerol transport.IMPORTANCE Many mycoplasmas are pathogenic and cause disease in humans and animals. M. gallisepticum causes chronic respiratory disease in chickens and infectious sinusitis in turkeys, resulting in economic losses in poultry industries throughout the world. Expanding our knowledge about the pathogenesis of mycoplasma infections requires better understanding of the specific gene functions of these bacteria. In this study, we have characterized the metabolic function of a protein involved in the pathogenicity of M. gallisepticum, as well as its effect on expression of selected genes, cell phenotype, and H2O2 production. This study is a key step forward in elucidating why this protein plays a key role in virulence in chickens. This study also emphasizes the importance of functional characterization of mycoplasma proteins, using tools such as metabolomics, since prediction of function based on homology to other bacterial proteins is not always accurate.


Asunto(s)
Transportadoras de Casetes de Unión a ATP/genética , Proteínas Bacterianas/genética , Elementos Transponibles de ADN , Peróxido de Hidrógeno/metabolismo , Mycoplasma gallisepticum/genética , Mycoplasma gallisepticum/patogenicidad , Transportadoras de Casetes de Unión a ATP/metabolismo , Proteínas Bacterianas/metabolismo , Cromatografía Líquida de Alta Presión , Cromatografía de Gases y Espectrometría de Masas , Glicerol/metabolismo , Espectrometría de Masas , Mycoplasma gallisepticum/metabolismo , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Virulencia/genética
3.
Infect Immun ; 88(6)2020 05 20.
Artículo en Inglés | MEDLINE | ID: mdl-32205404

RESUMEN

The zoonotic bacterial pathogen Coxiella burnetii is the causative agent of Q fever, a febrile illness which can cause a serious chronic infection. C. burnetii is a unique intracellular bacterium which replicates within host lysosome-derived vacuoles. The ability of C. burnetii to replicate within this normally hostile compartment is dependent on the activity of the Dot/Icm type 4B secretion system. In a previous study, a transposon mutagenesis screen suggested that the disruption of the gene encoding the novel protein CBU2072 rendered C. burnetii incapable of intracellular replication. This protein, subsequently named EirA (essential for intracellular replication A), is indispensable for intracellular replication and virulence, as demonstrated by infection of human cell lines and in vivo infection of Galleria mellonella The putative N-terminal signal peptide is essential for protein function but is not required for localization of EirA to the bacterial inner membrane compartment and axenic culture supernatant. In the absence of EirA, C. burnetii remains viable but nonreplicative within the host phagolysosome, as coinfection with C. burnetii expressing native EirA rescues the replicative defect in the mutant strain. In addition, while the bacterial ultrastructure appears to be intact, there is an altered metabolic profile shift in the absence of EirA, suggesting that EirA may impact overall metabolism. Most strikingly, in the absence of EirA, Dot/Icm effector translocation was inhibited even when EirA-deficient C. burnetii replicated in the wild type (WT)-supported Coxiella containing vacuoles. EirA may therefore have a novel role in the control of Dot/Icm activity and represent an important new therapeutic target.


Asunto(s)
Proteínas Bacterianas/genética , Coxiella burnetii/fisiología , Interacciones Huésped-Patógeno , Fiebre Q/microbiología , Proteínas Bacterianas/metabolismo , Membrana Celular , Interacciones Huésped-Patógeno/genética , Humanos , Metaboloma , Metabolómica/métodos , Viabilidad Microbiana , Modelos Biológicos , Mutación , Transporte de Proteínas , Vacuolas/microbiología , Virulencia/genética , Factores de Virulencia/genética
4.
Blood ; 128(9): 1290-301, 2016 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-27465915

RESUMEN

The factors that determine red blood cell (RBC) lifespan and the rate of RBC aging have not been fully elucidated. In several genetic conditions, including sickle cell disease, thalassemia, and G6PD deficiency, erythrocyte lifespan is significantly shortened. Many of these diseases are also associated with protection from severe malaria, suggesting a role for accelerated RBC senescence and clearance in malaria resistance. Here, we report a novel, N-ethyl-N-nitrosourea-induced mutation that causes a gain of function in adenosine 5'-monophosphate deaminase (AMPD3). Mice carrying the mutation exhibit rapid RBC turnover, with increased erythropoiesis, dramatically shortened RBC lifespan, and signs of increased RBC senescence/eryptosis, suggesting a key role for AMPD3 in determining RBC half-life. Mice were also found to be resistant to infection with the rodent malaria Plasmodium chabaudi. We propose that resistance to P. chabaudi is mediated by increased RBC turnover and higher rates of erythropoiesis during infection.


Asunto(s)
AMP Desaminasa , Eritrocitos/inmunología , Inmunidad Innata , Malaria , Mutación , Plasmodium chabaudi/inmunología , AMP Desaminasa/genética , AMP Desaminasa/inmunología , Animales , Senescencia Celular/genética , Senescencia Celular/inmunología , Eritrocitos/parasitología , Eritropoyesis/genética , Eritropoyesis/inmunología , Etilnitrosourea/toxicidad , Semivida , Malaria/genética , Malaria/inmunología , Masculino , Ratones
5.
Cell Microbiol ; 19(4)2017 04.
Artículo en Inglés | MEDLINE | ID: mdl-27781359

RESUMEN

Host cell invasion, exit and parasite dissemination is critical to the pathogenesis of apicomplexan parasites such as Toxoplasma gondii and Plasmodium spp. These processes are regulated by intracellular Ca2+ signaling although the temporal dynamics of Ca2+ fluxes and down-stream second messenger pathways are poorly understood. Here, we use a genetically encoded biosensor, GFP-Calmodulin-M13-6 (GCaMP6), to capture Ca2+ flux in live Toxoplasma and investigate the role of Ca2+ signaling in egress and motility. Our analysis determines how environmental cues and signal activation influence intracellular Ca2+ flux, allowing placement of effector molecules within this pathway. Importantly, we have identified key interrelationships between cGMP and Ca2+ signaling that are required for activation of egress and motility. Furthermore, we extend this analysis to show that the Ca2+ Dependent Protein Kinases-TgCDPK1 and TgCDPK3-play a role in signal quenching before egress. This work highlights the interrelationships of second messenger pathways of Toxoplasma in space and time, which is likely required for pathogenesis of all apicomplexan species.


Asunto(s)
Señalización del Calcio , Toxoplasma/patogenicidad , Toxoplasmosis/parasitología , Células Cultivadas , GMP Cíclico/metabolismo , Proteínas Quinasas Dependientes de GMP Cíclico/metabolismo , Interacciones Huésped-Parásitos , Humanos , Toxoplasma/fisiología
6.
J Infect Dis ; 213(2): 276-86, 2016 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-26150544

RESUMEN

Detailed information on the mode of action of antimalarial drugs can be used to improve existing drugs, identify new drug targets, and understand the basis of drug resistance. In this study we describe the use of a time-resolved, mass spectrometry (MS)-based metabolite profiling approach to map the metabolic perturbations induced by a panel of clinical antimalarial drugs and inhibitors on Plasmodium falciparum asexual blood stages. Drug-induced changes in metabolite levels in P. falciparum-infected erythrocytes were monitored over time using gas chromatography-MS and liquid chromatography-MS and changes in specific metabolic fluxes confirmed by nonstationary [(13)C]-glucose labeling. Dihydroartemisinin (DHA) was found to disrupt hemoglobin catabolism within 1 hour of exposure, resulting in a transient decrease in hemoglobin-derived peptides. Unexpectedly, it also disrupted pyrimidine biosynthesis, resulting in increased [(13)C]-glucose flux toward malate production, potentially explaining the susceptibility of P. falciparum to DHA during early blood-stage development. Unique metabolic signatures were also found for atovaquone, chloroquine, proguanil, cycloguanil and methylene blue. We also show that this approach can be used to identify the mode of action of novel antimalarials, such as the compound Torin 2, which inhibits hemoglobin catabolism.


Asunto(s)
Antimaláricos/farmacología , Artemisininas/farmacología , Plasmodium falciparum/efectos de los fármacos , Atovacuona/farmacología , Cloroquina/farmacología , Fosfomicina/análogos & derivados , Fosfomicina/farmacología , Cromatografía de Gases y Espectrometría de Masas , Hemoglobinas/efectos de los fármacos , Hemoglobinas/metabolismo , Concentración 50 Inhibidora , Azul de Metileno/farmacología , Naftiridinas/farmacología , Plasmodium falciparum/metabolismo , Proguanil/farmacología , Triazinas/farmacología
7.
Antimicrob Agents Chemother ; 60(11): 6650-6663, 2016 11.
Artículo en Inglés | MEDLINE | ID: mdl-27572396

RESUMEN

High-throughput phenotypic screening of chemical libraries has resulted in the identification of thousands of compounds with potent antimalarial activity, although in most cases, the mechanism(s) of action of these compounds remains unknown. Here we have investigated the mode of action of 90 antimalarial compounds derived from the Malaria Box collection using high-coverage, untargeted metabolomics analysis. Approximately half of the tested compounds induced significant metabolic perturbations in in vitro cultures of Plasmodium falciparum In most cases, the metabolic profiles were highly correlated with known antimalarials, in particular artemisinin, the 4-aminoquinolines, or atovaquone. Select Malaria Box compounds also induced changes in intermediates in essential metabolic pathways, such as isoprenoid biosynthesis (i.e., 2-C-methyl-d-erythritol 2,4-cyclodiphosphate) and linolenic acid metabolism (i.e., traumatic acid). This study provides a comprehensive database of the metabolic perturbations induced by chemically diverse inhibitors and highlights the utility of metabolomics for triaging new lead compounds and defining specific modes of action, which will assist with the development and optimization of new antimalarial drugs.


Asunto(s)
Antimaláricos/farmacología , Redes y Vías Metabólicas/efectos de los fármacos , Terapia Molecular Dirigida/métodos , Plasmodium falciparum/efectos de los fármacos , Bibliotecas de Moléculas Pequeñas/farmacología , Aminoquinolinas/farmacología , Antimaláricos/química , Artemisininas/farmacología , Atovacuona/farmacología , Células Cultivadas , Cromatografía Liquida/métodos , Análisis por Conglomerados , Bases de Datos de Compuestos Químicos , Ácidos Dicarboxílicos/antagonistas & inhibidores , Ácidos Dicarboxílicos/metabolismo , Resistencia a Medicamentos/efectos de los fármacos , Eritrocitos/efectos de los fármacos , Eritrocitos/parasitología , Humanos , Metabolómica/métodos , Plasmodium falciparum/crecimiento & desarrollo , Plasmodium falciparum/metabolismo , Bibliotecas de Moléculas Pequeñas/química , Espectrometría de Masas en Tándem , Terpenos/antagonistas & inhibidores , Terpenos/metabolismo
8.
Sci Rep ; 14(1): 15829, 2024 Jul 09.
Artículo en Inglés | MEDLINE | ID: mdl-38982217

RESUMEN

Metabolomics is the study of small molecules (metabolites), within cells, tissues and biofluids. Maternal metabolites can provide important insight into the health and development of both mother and fetus throughout pregnancy. This study assessed metabolic profiles in the maternal circulation prior to and at the time of diagnosis of preeclampsia and fetal growth restriction. Maternal plasma samples were collected from two independent cohorts: (1) Established disease cohort: 50 participants diagnosed with early-onset preeclampsia (< 34 weeks' gestation), 14 with early-onset fetal growth restriction, and 25 gestation-matched controls. (2) Prospective cohort, collected at 36 weeks' gestation before diagnosis: 17 participants later developed preeclampsia, 49 delivered infants with fetal growth restriction (birthweight < 5th centile), and 72 randomly selected controls. Metabolic evaluation was performed by Metabolomics Australia on the Agilent 6545 QTOF Mass Spectrometer. In the established disease cohort, 77 metabolites were altered in circulation from participants with preeclampsia - increased L-cysteine (3.73-fold), L-cystine (3.28-fold), L-acetylcarnitine (2.57-fold), and carnitine (1.53-fold) (p < 0.05). There were 53 metabolites dysregulated in participants who delivered a fetal growth restriction infant-including increased levulinic acid, citric acid (1.93-fold), and creatine (1.14-fold) (p < 0.05). In the prospective cohort, 30 metabolites were altered in participants who later developed preeclampsia at term - reduced glutaric acid (0.85-fold), porphobilinogen (0.77-fold) and amininohippuric acid (0.82-fold) (p < 0.05) was observed. There were 5 metabolites altered in participants who later delivered a fetal growth restriction infant - including reduced 3-methoxybenzenepropanoic acid (p < 0.05). Downstream pathway analysis revealed aminoacyl-tRNA biosynthesis to be most significantly altered in the established cohort in preeclampsia (13/48 hits, p < 0.001) and fetal growth restriction (7/48 hits, p < 0.001). The predictive cohort showed no significant pathway alterations. This study observed altered metabolites in maternal plasma collected before and after diagnosis of a preeclampsia or fetal growth restriction. While a significant number of metabolites were altered with established disease, few changes were observed in the predictive cohort. Thus, metabolites measured in this study may not be useful as predictors of preeclampsia or fetal growth restriction.


Asunto(s)
Retardo del Crecimiento Fetal , Metabolómica , Preeclampsia , Humanos , Femenino , Embarazo , Preeclampsia/sangre , Preeclampsia/diagnóstico , Retardo del Crecimiento Fetal/sangre , Retardo del Crecimiento Fetal/diagnóstico , Adulto , Metabolómica/métodos , Estudios Prospectivos , Metaboloma , Biomarcadores/sangre , Estudios de Casos y Controles
9.
Sci Adv ; 10(10): eadj6834, 2024 Mar 08.
Artículo en Inglés | MEDLINE | ID: mdl-38457492

RESUMEN

Sleep deprivation enhances risk for serious injury and fatality on the roads and in workplaces. To facilitate future management of these risks through advanced detection, we developed and validated a metabolomic biomarker of sleep deprivation in healthy, young participants, across three experiments. Bi-hourly plasma samples from 2 × 40-hour extended wake protocols (for train/test models) and 1 × 40-hour protocol with an 8-hour overnight sleep interval were analyzed by untargeted liquid chromatography-mass spectrometry. Using a knowledge-based machine learning approach, five consistently important variables were used to build predictive models. Sleep deprivation (24 to 38 hours awake) was predicted accurately in classification models [versus well-rested (0 to 16 hours)] (accuracy = 94.7%/AUC 99.2%, 79.3%/AUC 89.1%) and to a lesser extent in regression (R2 = 86.1 and 47.8%) models for within- and between-participant models, respectively. Metabolites were identified for replicability/future deployment. This approach for detecting acute sleep deprivation offers potential to reduce accidents through "fitness for duty" or "post-accident analysis" assessments.


Asunto(s)
Privación de Sueño , Sueño , Humanos , Privación de Sueño/metabolismo , Vigilia , Metabolómica , Aprendizaje Automático
10.
Antimicrob Agents Chemother ; 57(6): 2768-79, 2013 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-23571546

RESUMEN

In vitro culture methods underpin many experimental approaches to biology and drug discovery. The modification of established cell culture methods to make them more biologically relevant or to optimize growth is traditionally a laborious task. Emerging metabolomic technology enables the rapid evaluation of intra- and extracellular metabolites and can be applied to the rational development of cell culture media. In this study, untargeted semiquantitative and targeted quantitative metabolomic analyses of fresh and spent media revealed the major nutritional requirements for the growth of bloodstream form Trypanosoma brucei. The standard culture medium (HMI11) contained unnecessarily high concentrations of 32 nutrients that were subsequently removed to make the concentrations more closely resemble those normally found in blood. Our new medium, Creek's minimal medium (CMM), supports in vitro growth equivalent to that in HMI11 and causes no significant perturbation of metabolite levels for 94% of the detected metabolome (<3-fold change; α = 0.05). Importantly, improved sensitivity was observed for drug activity studies in whole-cell phenotypic screenings and in the metabolomic mode of action assays. Four-hundred-fold 50% inhibitory concentration decreases were observed for pentamidine and methotrexate, suggesting inhibition of activity by nutrients present in HMI11. CMM is suitable for routine cell culture and offers important advantages for metabolomic studies and drug activity screening.


Asunto(s)
Medios de Cultivo/química , Ensayos Analíticos de Alto Rendimiento/métodos , Metaboloma/efectos de los fármacos , Metabolómica/métodos , Tripanocidas/farmacología , Trypanosoma brucei brucei/efectos de los fármacos , Animales , Humanos , Concentración 50 Inhibidora , Pruebas de Sensibilidad Parasitaria/métodos , Pentamidina/farmacología , Trypanosoma brucei brucei/crecimiento & desarrollo , Trypanosoma brucei brucei/metabolismo
11.
EBioMedicine ; 94: 104704, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37421807

RESUMEN

BACKGROUND: Lipids serve as multifunctional metabolites that have important implications for the pregnant mother and developing fetus. Abnormalities in lipids have emerged as potential risk factors for pregnancy diseases, such as preeclampsia and fetal growth restriction. The aim of this study was to assess the potential of lipid metabolites for detection of late-onset preeclampsia and fetal growth restriction. METHODS: We used a case-cohort of 144 maternal plasma samples at 36 weeks' gestation from patients before the diagnosis of late-onset preeclampsia (n = 22), delivery of a fetal growth restricted infant (n = 55, defined as <5th birthweight centile), gestation-matched controls (n = 72). We performed liquid chromatography-tandem mass spectrometry (LC-QQQ) -based targeted lipidomics to identify 421 lipids, and fitted logistic regression models for each lipid, correcting for maternal age, BMI, smoking, and gestational diabetes. FINDINGS: Phosphatidylinositol 32:1 (AUC = 0.81) and cholesterol ester 17:1 (AUC = 0.71) best predicted the risk of developing preeclampsia or delivering a fetal growth restricted infant, respectively. Five times repeated five-fold cross validation demonstrated the lipids alone did not out-perform existing protein biomarkers, soluble tyrosine kinase-1 (sFlt-1) and placental growth factor (PlGF) for the prediction of preeclampsia or fetal growth restriction. However, lipids combined with sFlt-1 and PlGF measurements improved disease prediction. INTERPRETATION: This study successfully identified 421 lipids in maternal plasma collected at 36 weeks' gestation from participants who later developed preeclampsia or delivered a fetal growth restricted infant. Our results suggest the predictive capacity of lipid measurements for gestational disorders holds the potential to improve non-invasive assessment of maternal and fetal health. FUNDING: This study was funded by a grant from National Health and Medical Research Council.

12.
Clin Transl Med ; 13(1): e1150, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36653319

RESUMEN

BACKGROUND: Low-density neutrophils (LDN) are a distinct subset of neutrophils rarely detected in healthy people but appear in the blood of patients with autoimmune diseases, including systemic lupus erythematosus (SLE), and are mobilised in response to granulocyte colony-stimulating factor (G-CSF). The aim of this study was to identify novel mechanisms responsible for the pathogenic capacity of LDN in SLE. METHODS: Neutrophils were isolated from donors treated with G-CSF, and whole-cell proteomic analysis was performed on LDN and normal-density neutrophils. RESULTS: CD98 is significantly upregulated in LDN from G-CSF donors and defines a subset of LDN within the blood of SLE patients. CD98 is a transmembrane protein that dimerises with L-type amino acid transporters. We show that CD98 is responsible for the increased bioenergetic capacity of LDN. CD98 on LDN mediates the uptake of essential amino acids that are used by mitochondria to produce adenosine triphosphate, especially in the absence of glucose. Inhibition of CD98 reduces the metabolic flexibility of this population, which may limit their pathogenic capacity. CD98+ LDN produce more proinflammatory cytokines and chemokines than their normal density counterparts and are resistant to apoptosis, which may also contribute to tissue inflammation and end organ damage in SLE. CONCLUSIONS: CD98 provides a phenotypic marker for LDN that facilitates identification of this population without density-gradient separation and represents a novel therapeutic target to limit its pathogenic capacity.


Asunto(s)
Proteína-1 Reguladora de Fusión , Lupus Eritematoso Sistémico , Neutrófilos , Humanos , Citocinas/metabolismo , Factor Estimulante de Colonias de Granulocitos/metabolismo , Neutrófilos/metabolismo , Proteómica , Proteína-1 Reguladora de Fusión/metabolismo
13.
Acta Neuropathol Commun ; 11(1): 15, 2023 01 18.
Artículo en Inglés | MEDLINE | ID: mdl-36653852

RESUMEN

Dysferlin is a Ca2+-activated lipid binding protein implicated in muscle membrane repair. Recessive variants in DYSF result in dysferlinopathy, a progressive muscular dystrophy. We showed previously that calpain cleavage within a motif encoded by alternatively spliced exon 40a releases a 72 kDa C-terminal minidysferlin recruited to injured sarcolemma. Herein we use CRISPR/Cas9 gene editing to knock out murine Dysf exon 40a, to specifically assess its role in membrane repair and development of dysferlinopathy. We created three Dysf exon 40a knockout (40aKO) mouse lines that each express different levels of dysferlin protein ranging from ~ 90%, ~ 50% and ~ 10-20% levels of wild-type. Histopathological analysis of skeletal muscles from all 12-month-old 40aKO lines showed virtual absence of dystrophic features and normal membrane repair capacity for all three 40aKO lines, as compared with dysferlin-null BLAJ mice. Further, lipidomic and proteomic analyses on 18wk old quadriceps show all three 40aKO lines are spared the profound lipidomic/proteomic imbalance that characterises dysferlin-deficient BLAJ muscles. Collective results indicate that membrane repair does not depend upon calpain cleavage within exon 40a and that ~ 10-20% of WT dysferlin protein expression is sufficient to maintain the muscle lipidome, proteome and membrane repair capacity to crucially prevent development of dysferlinopathy.


Asunto(s)
Proteínas de la Membrana , Distrofia Muscular de Cinturas , Ratones , Animales , Disferlina/genética , Disferlina/metabolismo , Ratones Noqueados , Proteínas de la Membrana/metabolismo , Calpaína/genética , Proteómica , Distrofia Muscular de Cinturas/patología , Músculo Esquelético/patología , Exones/genética
14.
Metabolites ; 13(11)2023 Nov 09.
Artículo en Inglés | MEDLINE | ID: mdl-37999235

RESUMEN

Matrix-assisted laser desorption/ionization mass spectrometry imaging allows for the study of metabolic activity in the tumor microenvironment of brain cancers. The detectable metabolites within these tumors are contingent upon the choice of matrix, deposition technique, and polarity setting. In this study, we compared the performance of three different matrices, two deposition techniques, and the use of positive and negative polarity in two different brain cancer types and across two species. Optimal combinations were confirmed by a comparative analysis of lipid and small-molecule abundance by using liquid chromatography-mass spectrometry and RNA sequencing to assess differential metabolites and enzymes between normal and tumor regions. Our findings indicate that in the tumor-bearing brain, the recrystallized α-cyano-4-hydroxycinnamic acid matrix with positive polarity offered superior performance for both detected metabolites and consistency with other techniques. Beyond these implications for brain cancer, our work establishes a workflow to identify optimal matrices for spatial metabolomics studies.

15.
Cell Death Dis ; 14(12): 787, 2023 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-38040704

RESUMEN

Lipotoxicity, the accumulation of lipids in non-adipose tissues, alters the metabolic transcriptome and mitochondrial metabolism in skeletal muscle. The mechanisms involved remain poorly understood. Here we show that lipotoxicity increased histone deacetylase 4 (HDAC4) and histone deacetylase 5 (HDAC5), which reduced the expression of metabolic genes and oxidative metabolism in skeletal muscle, resulting in increased non-oxidative glucose metabolism. This metabolic reprogramming was also associated with impaired apoptosis and ferroptosis responses, and preserved muscle cell viability in response to lipotoxicity. Mechanistically, increased HDAC4 and 5 decreased acetylation of p53 at K120, a modification required for transcriptional activation of apoptosis. Redox drivers of ferroptosis derived from oxidative metabolism were also reduced. The relevance of this pathway was demonstrated by overexpression of loss-of-function HDAC4 and HDAC5 mutants in skeletal muscle of obese db/db mice, which enhanced oxidative metabolic capacity, increased apoptosis and ferroptosis and reduced muscle mass. This study identifies HDAC4 and HDAC5 as repressors of skeletal muscle oxidative metabolism, which is linked to inhibition of cell death pathways and preservation of muscle integrity in response to lipotoxicity.


Asunto(s)
Histona Desacetilasas , Células Musculares , Ratones , Animales , Histona Desacetilasas/genética , Histona Desacetilasas/metabolismo , Células Musculares/metabolismo , Músculo Esquelético/metabolismo , Procesamiento Proteico-Postraduccional , Muerte Celular
16.
Nat Commun ; 14(1): 1530, 2023 03 18.
Artículo en Inglés | MEDLINE | ID: mdl-36934086

RESUMEN

Even in the setting of optimal resuscitation in high-income countries severe sepsis and septic shock have a mortality of 20-40%, with antibiotic resistance dramatically increasing this mortality risk. To develop a reference dataset enabling the identification of common bacterial targets for therapeutic intervention, we applied a standardized genomic, transcriptomic, proteomic and metabolomic technological framework to multiple clinical isolates of four sepsis-causing pathogens: Escherichia coli, Klebsiella pneumoniae species complex, Staphylococcus aureus and Streptococcus pyogenes. Exposure to human serum generated a sepsis molecular signature containing global increases in fatty acid and lipid biosynthesis and metabolism, consistent with cell envelope remodelling and nutrient adaptation for osmoprotection. In addition, acquisition of cholesterol was identified across the bacterial species. This detailed reference dataset has been established as an open resource to support discovery and translational research.


Asunto(s)
Sepsis , Infecciones Estafilocócicas , Humanos , Antibacterianos/uso terapéutico , Proteómica , Sepsis/microbiología , Bacterias , Escherichia coli , Klebsiella , Pruebas de Sensibilidad Microbiana
17.
Sci Adv ; 8(37): eabm9427, 2022 Sep 16.
Artículo en Inglés | MEDLINE | ID: mdl-36103522

RESUMEN

The mechanism of action of eprenetapopt (APR-246, PRIMA-1MET) as an anticancer agent remains unresolved, although the clinical development of eprenetapopt focuses on its reported mechanism of action as a mutant-p53 reactivator. Using unbiased approaches, this study demonstrates that eprenetapopt depletes cellular antioxidant glutathione levels by increasing its turnover, triggering a nonapoptotic, iron-dependent form of cell death known as ferroptosis. Deficiency in genes responsible for supplying cancer cells with the substrates for de novo glutathione synthesis (SLC7A11, SHMT2, and MTHFD1L), as well as the enzymes required to synthesize glutathione (GCLC and GCLM), augments the activity of eprenetapopt. Eprenetapopt also inhibits iron-sulfur cluster biogenesis by limiting the cysteine desulfurase activity of NFS1, which potentiates ferroptosis and may restrict cellular proliferation. The combination of eprenetapopt with dietary serine and glycine restriction synergizes to inhibit esophageal xenograft tumor growth. These findings reframe the canonical view of eprenetapopt from a mutant-p53 reactivator to a ferroptosis inducer.

18.
Transl Psychiatry ; 11(1): 107, 2021 02 04.
Artículo en Inglés | MEDLINE | ID: mdl-33542173

RESUMEN

While maternal mental health strongly influences neurodevelopment and health in the offspring, little is known about the determinants of inter-individual variation in the mental health of mothers. Likewise, the in utero biological pathways by which variation in maternal mental health affects offspring development remain to be defined. Previous studies implicate lipids, consistent with a known influence on cognitive and emotional function, but the relevance for maternal mental health and offspring neurodevelopment is unclear. This study characterizes the placental and circulatory lipids in antenatal depression, as well as socio-emotional outcomes in the offspring. Targeted liquid chromatography-mass spectrometry covering 470 lipid species was performed on placenta from 186 women with low (n = 70) or high (n = 116) levels of antenatal depressive symptoms assessed using the Edinburgh Postnatal Depression Scale at 26 weeks' gestation. Child socio-emotional outcomes were assessed from the Child Behavior Check List (CBCL) at 48 months. Seventeen placental lipid species showed an inverse association with antenatal EPDS scores. Specifically, lower levels of phospholipids containing LC-PUFAs: omega-3 docosapentaenoic acid (DPA), eicosapentaenoic acid (EPA), docosahexaenoic acid (DHA), and omega-6 arachidonic acid (AA) were significantly associated with depressive symptoms. Additional measurement of LC-PUFA in antenatal plasma samples at mid-gestation confirmed the reduced circulation of these specific fatty acids in mothers. Reduced concentration of the placental phospholipids also predicted poorer socio-emotional outcomes in the offspring. This study provides new insights into the role of the materno-fetal lipid cross-talk as a mechanism linking maternal mental health to that of the offspring. These findings show the potential utility of nutritional approaches among pregnant women with depressive symptoms to reduce offspring risk for later socio-emotional problems.


Asunto(s)
Depresión , Ácidos Grasos Omega-3 , Niño , Ácidos Docosahexaenoicos , Femenino , Humanos , Lipidómica , Placenta , Embarazo
19.
J Antimicrob Chemother ; 65(5): 974-80, 2010 May.
Artículo en Inglés | MEDLINE | ID: mdl-20233779

RESUMEN

OBJECTIVES: To assess support discs, comprising polyethylene terephthalate (PET), coated with different polymer/levofloxacin combinations for antimicrobial activity in an animal model of infection, in order to explore the use of specific polymer coatings incorporating levofloxacin as a means of reducing device-related infections. METHODS: Aliphatic polyester-polyurethanes containing different ratios of poly(lactic acid) diol and poly(caprolactone) diol were prepared, blended with levofloxacin and then used to coat support discs. The in vitro levofloxacin release profiles from these discs were measured in aqueous solution. Mice were surgically implanted with the coated discs placed subcutaneously and infection was initiated by injection of 10(6) cfu of Staphylococcus aureus into the subcutaneous pocket containing the implant. After 5, 10, 20 and 30 days, the discs were removed, and the number of bacteria adhering to the implant and the residual antimicrobial activity of the discs were determined. RESULTS: In vitro, the release of levofloxacin from the coated discs occurred at a constant rate and then reached a plateau at different timepoints, depending on the polymer preparation used. In vivo, none of the discs coated with polymer blends containing levofloxacin was colonized by S. aureus, whereas 94% of the discs coated with polymer alone were infected. All discs coated with levofloxacin-blended polymers displayed residual antimicrobial activity for at least 20 days post-implantation. CONCLUSIONS: Bioerodable polyester-polyurethane polymer coatings containing levofloxacin can prevent bacterial colonization of implants in an intra-operative model of device-related infections.


Asunto(s)
Antibacterianos/farmacología , Levofloxacino , Ofloxacino/farmacología , Polímeros/farmacología , Infecciones Relacionadas con Prótesis/prevención & control , Infecciones Estafilocócicas/prevención & control , Animales , Recuento de Colonia Microbiana , Modelos Animales de Enfermedad , Femenino , Cuerpos Extraños , Humanos , Ratones , Ratones Endogámicos BALB C , Staphylococcus aureus/efectos de los fármacos
20.
mSystems ; 5(4)2020 Aug 18.
Artículo en Inglés | MEDLINE | ID: mdl-32817384

RESUMEN

Vancomycin-resistant Enterococcus faecium (VREfm) is an emerging antibiotic-resistant pathogen. Strain-level investigations are beginning to reveal the molecular mechanisms used by VREfm to colonize regions of the human bowel. However, the role of commensal bacteria during VREfm colonization, in particular following antibiotic treatment, remains largely unknown. We employed amplicon 16S rRNA gene sequencing and metabolomics in a murine model system to try and investigate functional roles of the gut microbiome during VREfm colonization. First-order taxonomic shifts between Bacteroidetes and Tenericutes within the gut microbial community composition were detected both in response to pretreatment using ceftriaxone and to subsequent VREfm challenge. Using neural networking approaches to find cooccurrence profiles of bacteria and metabolites, we detected key metabolome features associated with butyric acid during and after VREfm colonization. These metabolite features were associated with Bacteroides, indicative of a transition toward a preantibiotic naive microbiome. This study shows the impacts of antibiotics on the gut ecosystem and the progression of the microbiome in response to colonization with VREfm. Our results offer insights toward identifying potential nonantibiotic alternatives to eliminate VREfm through metabolic reengineering to preferentially select for Bacteroides IMPORTANCE This study demonstrates the importance and power of linking bacterial composition profiling with metabolomics to find the interactions between commensal gut bacteria and a specific pathogen. Knowledge from this research will inform gut microbiome engineering strategies, with the aim of translating observations from animal models to human-relevant therapeutic applications.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA