Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 106
Filtrar
Más filtros

Bases de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Rapid Commun Mass Spectrom ; 38(15): e9830, 2024 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-38813850

RESUMEN

RATIONALE: Despite decades of implementation, the selection of optimal sample preparation conditions for matrix-assisted laser desorption/ionization (MALDI) imaging is still ambiguous due to the lack of a universal and comprehensive evaluation methodology. Thus, numerous experiments with different matrix application conditions accompany a translation of the method to novel sample types and matrices. METHODS: Mouse brain tissues were covered with 9-aminoacridine through sublimation, followed by recrystallization in vapors of 5% (v/v) methanol solution in water. The samples were analyzed by MALDI time-of-flight mass spectrometry, and the efficiency of lipid and small-molecule ionization was evaluated with different metrics. RESULTS: We first investigate the dependency of matrix density and recrystallization conditions on the thickness of an analyte-empty matrix layer to roughly evaluate the laser shot number required to obtain an intense signal with minimal noise. Then, we introduce metrics for the analysis of small imaging datasets (small sample regions) of model samples based on median quantity of peaks in spectra (medQP) and weighted median signal-to-noise ratio (wmSNR). The evaluation of small regions and taking median values for metrics help overcome the sample heterogeneity and allow for the simultaneous comparison of different acquisition parameters. CONCLUSIONS: Here, we propose a methodology based on gradual laser ablation of small regions of sample and further implementation of weighted signal-to-noise ratio to assess various matrix application conditions. The proposed approach helps reduce the number of test samples required to determine optimal sample preparation conditions and improve the overall quality of images.

2.
Int J Mol Sci ; 24(5)2023 Feb 26.
Artículo en Inglés | MEDLINE | ID: mdl-36902002

RESUMEN

The identification of drug metabolites formed with different in vitro systems by HPLC-MS is a standard step in preclinical research. In vitro systems allow modeling of real metabolic pathways of a drug candidate. Despite the emergence of various software and databases, identification of compounds is still a complex task. Measurement of the accurate mass, correlation of chromatographic retention times and fragmentation spectra are often insufficient for identification of compounds especially in the absence of reference materials. Metabolites can "slip under the nose", since it is often not possible to reliably confirm that a signal belongs to a metabolite and not to other compounds in complex systems. Isotope labeling has proved to be a tool that aids in small molecule identification. The introduction of heavy isotopes is done with isotope exchange reactions or with complicated synthetic schemes. Here, we present an approach based on the biocatalytic insertion of oxygen-18 isotope under the action of liver microsomes enzymes in the presence of 18O2. Using the local anesthetic bupivacaine as an example, more than 20 previously unknown metabolites were reliably discovered and annotated in the absence of the reference materials. In combination with high-resolution mass spectrometry and modern methods of mass spectrometric metabolism data processing, we demonstrated the ability of the proposed approach to increase the degree of confidence in interpretating metabolism data.


Asunto(s)
Microsomas Hepáticos , Espectrometría de Masas/métodos , Cromatografía Líquida de Alta Presión , Microsomas Hepáticos/metabolismo , Marcaje Isotópico/métodos
3.
Int J Mol Sci ; 24(20)2023 Oct 20.
Artículo en Inglés | MEDLINE | ID: mdl-37895078

RESUMEN

Mass spectrometry has been an essential technique for the investigation of the metabolic pathways of living organisms since its appearance at the beginning of the 20th century. Due to its capability to resolve isotopically labeled species, it can be applied together with stable isotope tracers to reveal the transformation of particular biologically relevant molecules. However, low-resolution techniques, which were used for decades, had limited capabilities for untargeted metabolomics, especially when a large number of compounds are labelled simultaneously. Such untargeted studies may provide new information about metabolism and can be performed with high-resolution mass spectrometry. Here, we demonstrate the capabilities of high-resolution mass spectrometry to obtain insights on the metabolism of a model plant, Lepidium sativum, germinated in D2O and H218O-enriched media. In particular, we demonstrated that in vivo labeling with heavy water helps to identify if a compound is being synthesized at a particular stage of germination or if it originates from seed content, and tandem mass spectrometry allows us to highlight the substructures with incorporated isotope labels. Additionally, we found in vivo labeling useful to distinguish between isomeric compounds with identical fragmentation patterns due to the differences in their formation rates that can be compared by the extent of heavy atom incorporation.


Asunto(s)
Metabolómica , Espectrometría de Masas en Tándem , Óxido de Deuterio , Marcaje Isotópico/métodos , Metabolómica/métodos , Espectrometría de Masas en Tándem/métodos , Plantas/metabolismo , Isótopos/metabolismo
4.
Int J Mol Sci ; 24(14)2023 Jul 21.
Artículo en Inglés | MEDLINE | ID: mdl-37511483

RESUMEN

The administration of low doses of D2O to living organisms was used for decades for the investigation of metabolic pathways and for the measurement of the turnover rate for specific compounds. Usually, the investigation of the deuterium uptake in lipids is performed by measuring the deuteration level of the palmitic acid residue using GC-MS instruments, and to our knowledge, the application of the modern untargeted LC-MS/MS lipidomics approaches was only reported a few times. Here, we investigated the deuterium uptake for >500 lipids for 13 organs and body liquids of mice (brain, lung, heart, liver, kidney, spleen, plasma, urine, etc.) after 4 days of 100% D2O administration. The maximum deuteration level was observed in the liver, plasma, and lung, while in the brain and heart, the deuteration level was lower. Using MS/MS, we demonstrated the incorporation of deuterium in palmitic and stearic fragments in lipids (PC, PE, TAG, PG, etc.) but not in the corresponding free forms. Our results were analyzed based on the metabolic pathways of lipids.


Asunto(s)
Lipidómica , Espectrometría de Masas en Tándem , Ratones , Animales , Deuterio/química , Cromatografía Liquida/métodos , Espectrometría de Masas en Tándem/métodos , Lipidómica/métodos , Ácido Palmítico
5.
Analyst ; 147(14): 3180-3185, 2022 Jul 12.
Artículo en Inglés | MEDLINE | ID: mdl-35713507

RESUMEN

In-ESI H/D exchange is a convenient technique for analyzing small-molecular complex mixtures. However, such experiments do not yield sufficient levels of exchange or require an elevated temperature of the ion transfer capillary. Increased temperature may result in unexpected additional exchanges of -CH groups that may complicate the interpretation of the H/D exchange data used for identification. Gas-phase H/D exchange depends on the gas-phase basicity of the deuterating agent. In-ESI exchange involves both droplet-phase and gas-phase mechanisms, depending on a particular ion source setup and the deuterating agent used. Therefore, the addition of strong bases to the reaction mixture should facilitate in-ESI exchange. This work aimed to investigate the capabilities of different amines to improve in-ESI H/D exchange compared with pure D2O and to choose an amine modifier to increase the extent of H/D exchange. It was shown that such additives substantially enhanced the extent of H/D exchange in small molecules, peptides, and proteins even without heating the capillary. It was found that the extent of exchange increases in the following order: tertiary amines < secondary amines < primary amines. Therefore, we suggest that amines act as deuterating agents after being exchanged with D2O. These findings may improve H/D exchange applications, especially in small molecule analysis. The observation of improved H/D exchange with amine additives in peptides and proteins may become a subject of future research.


Asunto(s)
Aminas , Medición de Intercambio de Deuterio , Aminas/química , Medición de Intercambio de Deuterio/métodos , Péptidos/química , Proteínas
6.
Molecules ; 27(8)2022 Apr 18.
Artículo en Inglés | MEDLINE | ID: mdl-35458785

RESUMEN

Ex-vivo molecular profiling has recently emerged as a promising method for intraoperative tissue identification, especially in neurosurgery. The short-term storage of resected samples at room temperature is proposed to have negligible influence on the lipid molecular profiles. However, a detailed investigation of short-term molecular profile stability is required to implement molecular profiling in a clinic. This study evaluates the effect of storage media, temperature, and washing solution to determine conditions that provide stable and reproducible molecular profiles, with the help of ambient ionization mass spectrometry using rat cerebral cortex as model brain tissue samples. Utilizing normal saline for sample storage and washing media shows a positive effect on the reproducibility of the spectra; however, the refrigeration shows a negligible effect on the spectral similarity. Thus, it was demonstrated that up to hour-long storage in normal saline, even at room temperature, ensures the acquisition of representative molecular profiles using ambient ionization mass spectrometry.


Asunto(s)
Encéfalo , Solución Salina , Animales , Lípidos/análisis , Espectrometría de Masas , Ratas , Reproducibilidad de los Resultados
7.
Molecules ; 27(3)2022 Jan 30.
Artículo en Inglés | MEDLINE | ID: mdl-35164211

RESUMEN

Ambient ionization mass spectrometry has become one of the most promising approaches for rapid and high-throughput screening of small molecules in complex biological matrices for emergency medicine, forensics, and food and agriculture applications. The simple procedures for sample collection and ionization without additional pretreatment are vital in these fields. Many efforts have been devoted to modifying various ambient ionization techniques to simplify the procedures and improve the robustness and sensitivity of the methods. Here, we demonstrate the implementation of rigid spherical sampler probes to improve the robustness of touch spray ionization mass spectrometry. The sphericity of the probes increases the stability of the cone-jet mode of electrospray, reduces the requirements for fine positioning of a sampler in the ion source, and decreases the possibility of corona discharge occurrence. The utilization of spherical sampler probes allows fast, non-invasive sampling, followed by rapid analysis for various drugs of different chemical classes in complex biological matrices, such as the whole blood or sebum collected from the skin surface. The linearity of the analytical signal response from drug concentration confirms the possibility of creating a simple semiquantitative method for small molecules monitoring using spherical sampler probes.


Asunto(s)
Ensayos Analíticos de Alto Rendimiento/métodos , Preparaciones Farmacéuticas/análisis , Manejo de Especímenes/métodos , Espectrometría de Masa por Ionización de Electrospray/métodos , Humanos
8.
Expert Rev Proteomics ; 18(8): 637-642, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-34477466

RESUMEN

INTRODUCTION: Lung cancer remains the most prevalent cause of cancer mortality worldwide mainly due to insufficient availability of early screening methods for wide-scale application. Exhaled breath condensate (EBC) is currently considered as one of the promising targets for early screening and is particularly attractive due to its absolutely noninvasive collection and possibility for long-term frozen storage. EBC proteome analysis can provide valuable information about the (patho)physiological changes in the respiratory system and may help to identify in time a high risk of lung cancer. Mass spectrometry (MS) profiling of EBC proteome seems to have no alternative in obtaining the most extensive data and characteristic marker panels for screening. AREAS COVERED: This special report summarizes the data of several proteomic studies of EBC in normal and lung cancer (from 2012 to 2021, PubMed), focuses on the possible reasons for the significant discrepancy in the results, and discusses some aspects for special attention in further studies. EXPERT OPINION: The significant discrepancy in the results of various studies primarily highlights the need to create standardized protocols for the collection and preparation of EBC for proteomic analysis. The application of quantitative and targeted LC-MS/MS based approaches seems to be the most promising in further EBC proteomic studies.


Asunto(s)
Neoplasias Pulmonares , Proteoma , Biomarcadores , Biomarcadores de Tumor , Pruebas Respiratorias , Cromatografía Liquida , Humanos , Pulmón , Neoplasias Pulmonares/diagnóstico , Proteómica , Espectrometría de Masas en Tándem
9.
Anal Bioanal Chem ; 413(13): 3479-3486, 2021 May.
Artículo en Inglés | MEDLINE | ID: mdl-33760933

RESUMEN

Data normalization is an essential part of a large-scale untargeted mass spectrometry metabolomics analysis. Autoscaling, Pareto scaling, range scaling, and level scaling methods for liquid chromatography-mass spectrometry data processing were compared with the most common normalization methods, including quantile normalization, probabilistic quotient normalization, and variance stabilizing normalization. These methods were tested on eight datasets from various clinical studies. The efficiency of the data normalization was assessed by the distance between clusters corresponding to batches and the distance between clusters corresponding to clinical groups in the space of principal components, as well as by the number of features with a pairwise statistically significant difference between the batches and the number of features with a pairwise statistically significant difference between clinical groups. Autoscaling demonstrated the most effective reduction in interbatch variation and can be preferable to probabilistic quotient or quantile normalization in liquid chromatography-mass spectrometry data.

10.
Anal Bioanal Chem ; 413(11): 2913-2922, 2021 May.
Artículo en Inglés | MEDLINE | ID: mdl-33751161

RESUMEN

Tumor cell percentage (TCP) is an essential characteristic of biopsy samples that directly affects the sensitivity of molecular testing in clinical practice. Apart from clarifying diagnoses, rapid evaluation of TCP combined with various neuronavigation systems can be used to support decision making in neurosurgery. It is known that ambient mass spectrometry makes it possible to rapidly distinguish healthy from malignant tissues. In connection with this, here we demonstrate the possibility of using non-imaging ambient mass spectrometry to evaluate TCP in glial tumor tissues with a high degree of confidence. Molecular profiles of histologically annotated human glioblastoma tissue samples were obtained using the inline cartridge extraction ambient mass spectrometry approach. XGBoost regressors were trained to evaluate tumor cell percentage. Using cross-validation, it was estimated that the TCP was determined by the regressors with a precision of approximately 90% using only low-resolution data. This result demonstrates that ambient mass spectrometry provides an accurate method todetermine TCP in dissected tissues even without implementing mass spectrometry imaging. The application of such techniques offers the possibility to automate routine tissue screening and TCP evaluation to boost the throughput of pathology laboratories. Rapid estimation of tumor cell percentage during neurosurgery.


Asunto(s)
Neoplasias Encefálicas/patología , Encéfalo/patología , Glioblastoma/patología , Espectrometría de Masa por Ionización de Electrospray/métodos , Biopsia , Encéfalo/cirugía , Neoplasias Encefálicas/cirugía , Glioblastoma/cirugía , Humanos
11.
Environ Res ; 193: 110312, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-33065073

RESUMEN

Natural products, such as humic substances (HS) and shilajit, are known to possess antiviral activity. Humic-like components are often called as carriers of biological activity of shilajit. The goal of this study was to evaluate anti-HIV activity of well characterized HS isolated from coal, peat, and peloids, and compare it to that of water-soluble organic matter (OM) isolated from different samples of Shilajit. The set of humic materials included 16 samples of different fractional composition: humic acid (HA), hymatomelanic acid (HMA), fulvic acid (FA). The set of shilajit OM included 19 samples of different geographic origin and level of alteration. The HIV-1 p24 antigen assay and cell viability test were used for assessment of antiviral activity. The HIV-1 Bru strain was used to infect CEM-SS cells. The obtained EC50 values varied from 0.37 to 1.4 mg L-1 for the humic materials, and from 14 to 142 mg L-1 for the shilajit OM. Hence, all humic materials used in this study outcompeted largely the shilajit materials with respect to anti-HIV activity: For the humic materials, the structure-activity relationships revealed strong correlation between the EC50 values and the content of aromatic carbon indicating the most important role of aromatic structures. For shilajit OM, the reverse relationship was obtained indicating the different mechanism of shilajit activity. The FTICRMS molecular assignments were used for ChEMBL data mining in search of the active humic molecules. As potential carriers of antiviral activity were identified aromatic structures with alkyl substituents, terpenoids, N-containing analogs of typical flavonoids, and aza-podophyllotoxins. The conclusion was made that the typical humic materials and Shilajit differ greatly in molecular composition, and the humic materials have substantial preferences as a natural source of antiviral agents as compared to shilajit.


Asunto(s)
VIH-1 , Sustancias Húmicas , Antivirales/farmacología , Benzopiranos/farmacología , Sustancias Húmicas/análisis , Minerales , Resinas de Plantas , Suelo
12.
Anal Bioanal Chem ; 412(28): 7767-7776, 2020 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-32860519

RESUMEN

Retention time is an important parameter for identification in untargeted LC-MS screening. Precise retention time prediction facilitates the annotation process and is well known for proteomics. However, the lack of available experimental information for a long time has limited the prediction accuracy for small molecules. Recently introduced large databases for small-molecule retention times make possible reliable machine learning-based predictions for the whole diversity of compounds. Applying simple projections may expand these predictions on various LC systems and conditions. In our work, we describe a complex approach to predict retention times for nano-HPLC that includes the consequent deployment of binary and regression gradient boosting models trained on the METLIN small-molecule dataset and simple projection of the results with a small number of easily available compounds onto nano-HPLC separations. The proposed model outperforms previous attempts to use machine learning for predictions with a 46-s mean absolute error. The overall performance after transfer to nano-LC conditions is less than 155 s (10.8%) in terms of the median absolute (relative) error. To illustrate the applicability of the described approach, we successfully managed to eliminate averagely 25 to 42% of false-positives with a filter threshold derived from ROC curves. Thus, the proposed approach should be used in addition to other well-established in silico methods and their integration may broaden the range of correctly identified molecules.

13.
Int J Mol Sci ; 21(3)2020 Jan 30.
Artículo en Inglés | MEDLINE | ID: mdl-32019243

RESUMEN

Preeclampsia (PE) is a multisystem disorder associated with pregnancy and its frequency varies from 5 to 20 percent of pregnancies. Although a number of preeclampsia studies have been carried out, there is no consensus about disease etiology and pathogenesis so far. Peptides of SERPINA1 (α1-antitrypsin) in urine remain one of the most promising peptide markers of PE. In this study the diagnostic potential of urinary α1-antitrypsin peptides in PE was evaluated. The urinary peptidome composition of 79 pregnant women with preeclampsia (PE), chronic arterial hypertension (CAH), and a control group was investigated. Mann-Whitney U-test (p < 0.05) revealed seven PE specific SERPINA1 peptides demonstrating 52% sensitivity and 100% specificity. SERPINA1 in urine has been associated with the most severe forms of preeclampsia (p = 0.014), in terms of systolic hypertension (p = 0.01) and proteinuria (p = 0.006). According to Spearman correlation analysis, the normalized intensity of SERPINA1 urinary peptides has a similar diagnostic pattern with known diagnostic PE markers, such as sFLT/PLGF. SERPINA1 peptides were not urinary excreted in superimposed PE (PE with CAH), which is a milder form of PE. An increase in expression of SERPINA1 in the structural elements of the placenta during preeclampsia reflects a protective mechanism against hypoxia. Increased synthesis of SERPINA1 in the trophoblast leads to protein accumulation in fibrinoid deposits. It may block syncytial knots and placenta villi, decreasing trophoblast invasion. Excretion of PE specific SERPINA1 peptides is associated with syncytiotrophoblast membrane destruction degradation and increased SERPINA1 staining. It confirms that the placenta could be the origin of SERPINA1 peptides in urine. Significant correlation (p < 0.05) of SERPINA1 expression in syncytiotrophoblast membrane and cytoplasm with the main clinical parameters of severe PE proves the role of SERPINA1 in PE pathogenesis. Estimation of SERPINA1 peptides in urine can be used as a diagnostic test of the severity of the condition to determine further treatment, particularly the need for urgent surgical delivery.


Asunto(s)
Biomarcadores/orina , Fragmentos de Péptidos/orina , Placenta/metabolismo , Preeclampsia/diagnóstico , alfa 1-Antitripsina/orina , Adulto , Secuencia de Aminoácidos , Femenino , Humanos , Preeclampsia/orina , Embarazo
14.
Mass Spectrom Rev ; 37(6): 811-853, 2018 11.
Artículo en Inglés | MEDLINE | ID: mdl-29603316

RESUMEN

The isotopic exchange approach is in use since the first observation of such reactions in 1933 by Lewis. This approach allows the investigation of the pathways of chemical and biochemical reactions, determination of structure, composition, and conformation of molecules. Mass spectrometry has now become one of the most important analytical tools for the monitoring of the isotopic exchange reactions. Investigation of conformational dynamics of proteins, quantitative measurements, obtaining chemical, and structural information about individual compounds of the complex natural mixtures are mainly based on the use of isotope exchange in combination with high resolution mass spectrometry. The most important reaction is the Hydrogen/Deuterium exchange, which is mainly performed in the solution. Recently we have developed the approach allowing performing of the Hydrogen/Deuterium reaction on-line directly in the ionization source under atmospheric pressure. Such approach simplifies the sample preparation and can accelerate the exchange reaction so that certain hydrogens that are considered as non-labile will also participate in the exchange. The use of in-ionization source H/D exchange in modern mass spectrometry for structural elucidation of molecules serves as the basic theme in this review. We will focus on the mechanisms of the isotopic exchange reactions and on the application of in-ESI, in-APCI, and in-APPI source Hydrogen/Deuterium exchange for the investigation of petroleum, natural organic matter, oligosaccharides, and proteins including protein-protein complexes. The simple scenario for adaptation of H/D exchange reactions into mass spectrometric method is also highlighted along with a couple of examples collected from previous studies.

15.
Chemphyschem ; 20(3): 361-365, 2019 02 04.
Artículo en Inglés | MEDLINE | ID: mdl-30523648

RESUMEN

A previously unknown transformation of aldehydes, ketones, and carboxylic acid derivatives leads to the formation of substituted oxiranes, aziridines, and azirines as shown by DFT and MP2 computations. Formations of 2,2-dimethyloxirane-d8 from acetone-d6 , phenylazirine-d2 from benzonitrile and 2-methyl-2-(4-hydroxyphenyl)-oxirane from 4-hydroxyacetophenone were detected experimentally by electrospray ionization mass-spectrometry with a heated desolvating capillary. This reaction is a truly concerted process characterized by high activation barriers (activation enthalpies 320-480 kJ mol-1 ).

16.
Faraday Discuss ; 218(0): 172-190, 2019 08 15.
Artículo en Inglés | MEDLINE | ID: mdl-31115412

RESUMEN

Here, we report the application of a selective liquid-phase hydrogen/deuterium exchange (HDX) coupled to ultra-high resolution FTICR MS for structural investigations of individual constituents of humic substances (HS) isolated from three coal samples of different geographical origin. Selectivity was achieved by conducting reactions in DCl or NaOD solutions for catalyzing HDX in aromatic ring and side-chain positions with enhanced C-H acidity, respectively. FTICR MS analysis showed a significant overlap of molecular compositions in the HS samples under study, with 2000 common formulae. Using HDX, we demonstrated that the determined common formulae are presented by different structural isomers. We found that aromatic compounds varied both in the substitution pattern and the number of aromatic protons. Depending on the sample, lignin components with the same molecular formulae were composed of coumaryl, coniferyl or sinapyl moieties. Enumeration of HDX series for the 800 most abundant compounds showed that the results of HDX agreed well with the model structures suggested for humic components occupying a van Krevelen plot. In addition, we explored chemical transformations, which could connect individual constituents of coal HS. These transformations included hydrolysis of a guaiacyl moiety and reduction of a catechol unit, which corresponds to the conversion of a coniferyl fragment into a coumaryl unit. The obtained results were supportive of the hypothesis of the reducing humification pathway suggested for lignin transformation in the environment. The conclusion was made that the molecular ensemble of coal HS is composed of individual constituents produced at different humification stages.

17.
Anal Bioanal Chem ; 411(15): 3331-3339, 2019 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-31025183

RESUMEN

The structures of individual molecules in crude oil remain largely unknown despite the considerable amount of research dedicated to this topic. The extreme complexity of crude oil (recently Marshall reported the observation of more than 400,000 unique compounds in one sample) makes it impossible to separate crude oil into individual compounds and determine their structure by NMR or X-ray spectroscopy. Recently, isotope exchange, performed both in solution and in the gas phase, combined with high-resolution mass spectrometry was used for speciation of certain structural fragments of individual molecules in crude oil and humic substances. 16O/18O exchange allows enumeration of =O groups and speciation of furans, whereas H/D exchange allows enumeration of -OH groups, -NH groups, aromatic hydrogens, alpha hydrogens, etc. Unfortunately, crude oil is insoluble in water (the most available and cleanest source of isotopes), so performance of the exchange in solution requires harsh conditions, such as concentrated acids or bases, which could considerably modify the sample. Here we describe the use of a cheap and simple analytical approach for performing both H/D and 16O/18O exchange in crude oil using only water as the source of the isotopes. Crude oil was incubated in near-critical water and the reaction was monitored by high-resolution Fourier transform mass spectrometry. Although isotope exchange results in complication of the spectrum, the resolving power of modern mass spectrometers is sufficient to determine the number of exchanges for each molecule simultaneously. We determined the number of 16O/18O exchanges in 276 species and the number of H/D exchanges in 150 species. Our results allow deeper investigation of crude oil and other nonpolar samples on the molecular level. Graphical abstract.

18.
Anal Bioanal Chem ; 411(29): 7783-7789, 2019 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-31705222

RESUMEN

Evaluation of post-translational modifications of protein molecules is important for both basic and applied biomedical research. Mass spectrometric quantitative studies of modifications, which do not change the mass of the protein, such as isomerization of aspartic acid, do not necessarily require the use of isotope-labelled standards. However, the accurate solution of this problem requires a deep understanding of the relationship between the mole fractions of the isomers and the peak intensities in the mass spectra. In previous studies on the isomerization of aspartic acid in short beta-amyloid fragments, it has been shown that calibration curves used for such quantitative studies often have a non-linear form. The reason for the deviation in the shape of the calibration curves from linearity has not yet been established. Here, we propose an explanation for this phenomenon based on a probabilistic model of the fragmentation process and present a general approach for the selection of fragments that can be used for quantitative studies of the degree of isomerization. Graphical Abstract.


Asunto(s)
Ácido Aspártico/análisis , Modelos Teóricos , Péptidos/química , Secuencia de Aminoácidos , Péptidos beta-Amiloides/química , Ácido Aspártico/química , Isomerismo , Espectrometría de Masas/métodos , Probabilidad , Reproducibilidad de los Resultados
19.
Anal Chem ; 90(5): 3576-3583, 2018 03 06.
Artículo en Inglés | MEDLINE | ID: mdl-29443504

RESUMEN

We present the simple approach for the combination of different ion sources on a single mass spectrometer without any interference between them. Each ion source can be positioned as far as 1 m from the mass spectrometer; ions are transported by the means of flexible copper tubes, which are connected, to the separate inlet capillaries. Special valves enable switching channels on and off. Using this approach, we successfully combined native electrospray ionization (ESI), regular ESI, ß-electrons ionization, and atmospheric pressure photoionization (APPI) of thermally desorbed vapors of petroleum on a single mass spectrometer. In addition, separate channels allow infusing internal calibration mixture or performing ion molecular reactions in one channel and using the other as a reference. Using this idea, we have developed an original sequential window acquisition of all theoretical mass spectra (SWATH MS) approach in which peptide ions are transported in different channels, one of which is heated to high temperature so that ions are thermally fragmented, and the other channel ensures the presence of nonfragmented ions in the spectrum. Also, we demonstrated the possibility to perform gas phase H/D exchange reaction in one channel and using another as reference. Use of valves makes it possible to exclude any interference between them. Thus, we have demonstrated the possibility to create a multichannel system in which ions would be transported through several inlet tubes in which different ion molecular reactions such as Paternò-Büchi, ozonation, or H/D exchange will occur. Comparison of mass spectra recorded when different channels are open will provide structural and chemical information about unknown species.

20.
Anal Chem ; 90(15): 8756-8763, 2018 08 07.
Artículo en Inglés | MEDLINE | ID: mdl-29995385

RESUMEN

We present the simple microprobe for the investigation of crude oil by a thermal desorption photoionization coupled to Orbitrap mass spectrometry. The droplet of crude oil was placed on the heating element with controllable temperature. The temperature was linearly increased, and crude oil vapors were ionized by a vacuum ultraviolet (VUV) lamp and detected by Orbitrap mass spectrometer. Use of modified Orbitrap allowed introduction of the heating element and VUV lamp directly into the ion funnel and performing experiment not only at atmosphere pressure but also at 20, 10, and 5 torr. We observed that at high pressure protonated CHN compounds dominate in the spectrum, while at the low pressure CH compounds dominate. Similar to previously reported thermogravimetry coupled to photoionization or chemical ionization mass spectrometry systems we were able to separate compounds with different desorption energy and reliably detect low-abundant compounds. Also, we were able to determine the desorption temperature for each compound of the crude oil. We found that temperature of desorption increases linearly with m/ z for compounds that belong to the same homology series (same Kendrick mass defect). This may serve as indirect evidence that such compounds differ only by the length of aliphatic chains attached to some basic structure.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA