Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 71
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
J Transl Med ; 22(1): 481, 2024 May 21.
Artículo en Inglés | MEDLINE | ID: mdl-38773612

RESUMEN

BACKGROUND: Tripartite motif-containing 26 (TRIM26), a member of the TRIM protein family, exerts dual function in several types of cancer. Nevertheless, the precise role of TRIM26 in clear cell renal cell carcinoma (ccRCC) has not been investigated. METHODS: The expression of TRIM26 in ccRCC tissues and cell lines were examined through the use of public resources and experimental validation. The impacts of TRIM26 on cell proliferation, migration, invasion, and epithelial-mesenchymal transition (EMT) process were determined via CCK-8, colony formation, EdU incorporation, wound healing, Transwell invasion, Western blot, and Immunofluorescence assays. RNA-seq followed by bioinformatic analyses were used to identify the downstream pathway of TRIM26. The interaction between TRIM26 and ETK was assessed by co-immunoprecipitation, qRT-PCR, Western blot, cycloheximide (CHX) chase, and in vivo ubiquitination assays. RESULTS: We have shown that TRIM26 exhibits a downregulation in both ccRCC tissues and cell lines. Furthermore, this decreased expression of TRIM26 is closely linked to unfavorable overall survival and diseases-free survival outcomes among ccRCC patients. Gain- and loss-of-function experiments demonstrated that increasing the expression of TRIM26 suppressed the proliferation, migration, invasion, and EMT process of ccRCC cells. Conversely, reducing the expression of TRIM26 had the opposite effects. RNA sequencing, coupled with bioinformatic analysis, revealed a significant enrichment of the mTOR signaling pathway in the control group compared to the group with TRIM26 overexpression. This finding was then confirmed by a western blot assay. Subsequent examination revealed that TRMI26 had a direct interaction with ETK, a non-receptor tyrosine kinase. This interaction facilitated the ubiquitination and degradation of ETK, resulting in the deactivation of the AKT/mTOR signaling pathway in ccRCC. ETK overexpression counteracted the inhibitory effects of TRIM26 overexpression on cell proliferation, migration, and invasion. CONCLUSION: Our results have shown a novel mechanism by which TRIM26 hinders the advancement of ccRCC by binding to and destabilizing ETK, thus leading to the deactivation of AKT/mTOR signaling. TRIM26 shows promise as both a therapeutic target and prognostic biomarker for ccRCC patients.


Asunto(s)
Carcinoma de Células Renales , Movimiento Celular , Proliferación Celular , Progresión de la Enfermedad , Transición Epitelial-Mesenquimal , Neoplasias Renales , Proteínas Proto-Oncogénicas c-akt , Transducción de Señal , Serina-Treonina Quinasas TOR , Proteínas de Motivos Tripartitos , Ubiquitina-Proteína Ligasas , Humanos , Carcinoma de Células Renales/patología , Carcinoma de Células Renales/genética , Carcinoma de Células Renales/metabolismo , Serina-Treonina Quinasas TOR/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Proteínas de Motivos Tripartitos/metabolismo , Proteínas de Motivos Tripartitos/genética , Neoplasias Renales/patología , Neoplasias Renales/genética , Neoplasias Renales/metabolismo , Línea Celular Tumoral , Transición Epitelial-Mesenquimal/genética , Movimiento Celular/genética , Ubiquitina-Proteína Ligasas/metabolismo , Ubiquitina-Proteína Ligasas/genética , Regulación Neoplásica de la Expresión Génica , Masculino , Ubiquitinación , Estabilidad Proteica , Invasividad Neoplásica , Femenino , Regulación hacia Abajo/genética , Persona de Mediana Edad , Animales
2.
J Transl Med ; 22(1): 104, 2024 01 26.
Artículo en Inglés | MEDLINE | ID: mdl-38279172

RESUMEN

Prostate cancer (PCa) is one of the most common malignant tumors affecting the male genitourinary system. However, there is currently a lack of effective treatments for patients with advanced prostate cancer, which significantly impacts men's overall health. Exonuclease 1 (EXO1), a protein with mismatch repair and recombination functions, has been found to play a vital role in various diseases. In our study, we discovered that EXO1 acts as a novel biomarker of PCa, which promotes prostate cancer progression by regulating lipid metabolism reprogramming in prostate cancer cells. Mechanistically, EXO1 promotes the expression of SREBP1 by inhibiting the P53 signaling pathway. In summary, our findings suggest that EXO1 regulated intracellular lipid reprogramming through the P53/SREBP1 axis, thus promoting PCa progression. The result could potentially lead to new insights and therapeutic targets for diagnosing and treating PCa.


Asunto(s)
Neoplasias de la Próstata , Proteína p53 Supresora de Tumor , Humanos , Masculino , Proteína p53 Supresora de Tumor/metabolismo , Metabolismo de los Lípidos , Neoplasias de la Próstata/patología , Lípidos , Exodesoxirribonucleasas/metabolismo , Enzimas Reparadoras del ADN
3.
J Transl Med ; 22(1): 295, 2024 03 21.
Artículo en Inglés | MEDLINE | ID: mdl-38515112

RESUMEN

BACKGROUND: Bladder cancer (BC) is the most common urinary tract malignancy. Aurora kinase B (AURKB), a component of the chromosomal passenger protein complex, affects chromosomal segregation during cell division. Mitotic arrest-deficient 2-like protein 2 (MAD2L2) interacts with various proteins and contributes to genomic integrity. Both AURKB and MAD2L2 are overexpressed in various human cancers and have synergistic oncogenic effects; therefore, they are regarded as emerging therapeutic targets for cancer. However, the relationship between these factors and the mechanisms underlying their oncogenic activity in BC remains largely unknown. The present study aimed to explore the interactions between AURKB and MAD2L2 and how they affect BC progression via the DNA damage response (DDR) pathway. METHODS: Bioinformatics was used to analyze the expression, prognostic value, and pro-tumoral function of AURKB in patients with BC. CCK-8 assay, colony-forming assay, flow cytometry, SA-ß-gal staining, wound healing assay, and transwell chamber experiments were performed to test the viability, cell cycle progression, senescence, and migration and invasion abilities of BC cells in vitro. A nude mouse xenograft assay was performed to test the tumorigenesis ability of BC cells in vivo. The expression and interaction of proteins and the occurrence of the senescence-associated secretory phenotype were detected using western blot analysis, co-immunoprecipitation assay, and RT-qPCR. RESULTS: AURKB was highly expressed and associated with prognosis in patients with BC. AURKB expression was positively correlated with MAD2L2 expression. We confirmed that AURKB interacts with, and modulates the expression of, MAD2L2 in BC cells. AURKB knockdown suppressed the proliferation, migration, and invasion abilities of, and cell cycle progression in, BC cells, inducing senescence in these cells. The effects of AURKB knockdown were rescued by MAD2L2 overexpression in vitro and in vivo. The effects of MAD2L2 knockdown were similar to those of AURKB knockdown. Furthermore, p53 ablation rescued the MAD2L2 knockdown-induced suppression of BC cell proliferation and cell cycle arrest and senescence in BC cells. CONCLUSIONS: AURKB activates MAD2L2 expression to downregulate the p53 DDR pathway, thereby promoting BC progression. Thus, AURKB may serve as a potential molecular marker and a novel anticancer therapeutic target for BC.


Asunto(s)
Proteína p53 Supresora de Tumor , Neoplasias de la Vejiga Urinaria , Animales , Humanos , Ratones , Aurora Quinasa B/genética , Aurora Quinasa B/metabolismo , Línea Celular Tumoral , Proliferación Celular/genética , Reparación del ADN , Regulación Neoplásica de la Expresión Génica , Proteínas Mad2/genética , Proteínas Mad2/metabolismo , Proteína p53 Supresora de Tumor/metabolismo , Neoplasias de la Vejiga Urinaria/genética , Neoplasias de la Vejiga Urinaria/patología
4.
J Transl Med ; 22(1): 9, 2024 01 02.
Artículo en Inglés | MEDLINE | ID: mdl-38169402

RESUMEN

Epigenetic regulation is reported to play a significant role in the pathogenesis of various kidney diseases, including renal cell carcinoma, acute kidney injury, renal fibrosis, diabetic nephropathy, and lupus nephritis. However, the role of epigenetic regulation in calcium oxalate (CaOx) crystal deposition-induced kidney injury remains unclear. Our study demonstrated that the upregulation of enhancer of zeste homolog 2 (EZH2)-mediated ferroptosis facilitates CaOx-induced kidney injury. CaOx crystal deposition promoted ferroptosis in vivo and in vitro. Usage of liproxstatin-1 (Lip-1), a ferroptosis inhibitor, mitigated CaOx-induced kidney damage. Single-nucleus RNA-sequencing, RNA-sequencing, immunohistochemical and western blotting analyses revealed that EZH2 was upregulated in kidney stone patients, kidney stone mice, and oxalate-stimulated HK-2 cells. Experiments involving in vivo EZH2 knockout, in vitro EZH2 knockdown, and in vivo GSK-126 (an EZH2 inhibitor) treatment confirmed the protective effects of EZH2 inhibition on kidney injury and ferroptosis. Mechanistically, the results of RNA-sequencing and chromatin immunoprecipitation assays demonstrated that EZH2 regulates ferroptosis by suppressing solute carrier family 7, member 11 (SLC7A11) expression through trimethylation of histone H3 lysine 27 (H3K27me3) modification. Additionally, SOX4 regulated ferroptosis by directly modulating EZH2 expression. Thus, this study demonstrated that SOX4 facilitates ferroptosis in CaOx-induced kidney injury through EZH2/H3K27me3-mediated suppression of SLC7A11.


Asunto(s)
Nefropatías Diabéticas , Ferroptosis , Cálculos Renales , Humanos , Ratones , Animales , Proteína Potenciadora del Homólogo Zeste 2/metabolismo , Oxalato de Calcio , Histonas/metabolismo , Epigénesis Genética , Riñón/patología , Nefropatías Diabéticas/metabolismo , Cálculos Renales/patología , ARN/metabolismo , Factores de Transcripción SOXC/metabolismo , Sistema de Transporte de Aminoácidos y+
5.
Clin Endocrinol (Oxf) ; 101(3): 234-242, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38606576

RESUMEN

OBJECTIVE: Paragangliomas of the urinary bladder (UBPGLs) are rare neuroendocrine tumours and pose a diagnostic and surgical challenge. It remains unclear what factors contribute to a timely presurgical diagnosis. The purpose of this study is to identify factors contributing to missing the diagnosis of UBPGLs before surgery. DESIGN, PATIENTS AND MEASUREMENTS: A total of 73 patients from 11 centres in China, and 51 patients from 6 centres in Europe and 1 center in the United States were included. Clinical, surgical and genetic data were collected and compared in patients diagnosed before versus after surgery. Logistic regression analysis was used to identify clinical factors associated with initiation of presurgical biochemical testing. RESULTS: Among all patients, only 47.6% were diagnosed before surgery. These patients were younger (34.0 vs. 54.0 years, p < .001), had larger tumours (2.9 vs. 1.8 cm, p < .001), and more had a SDHB pathogenic variant (54.7% vs. 11.9%, p < .001) than those diagnosed after surgery. Patients with presurgical diagnosis presented with more micturition spells (39.7% vs. 15.9%, p = .003), hypertension (50.0% vs. 31.7%, p = .041) and catecholamine-related symptoms (37.9% vs. 17.5%, p = .012). Multivariable logistic analysis revealed that presence of younger age (<35 years, odds ratio [OR] = 6.47, p = .013), micturition spells (OR = 6.79, p = .007), hypertension (OR = 3.98, p = .011), and sweating (OR = 41.72, p = .013) increased the probability of initiating presurgical biochemical testing. CONCLUSIONS: Most patients with UBPGL are diagnosed after surgery. Young age, hypertension, micturition spells and sweating are clues in assisting to initiate early biochemical testing and thus may establish a timely presurgical diagnosis.


Asunto(s)
Paraganglioma , Neoplasias de la Vejiga Urinaria , Humanos , Persona de Mediana Edad , Estudios Retrospectivos , Neoplasias de la Vejiga Urinaria/diagnóstico , Femenino , Masculino , Adulto , Paraganglioma/diagnóstico , Paraganglioma/cirugía , Europa (Continente) , Estados Unidos , Anciano , China
6.
J Cell Mol Med ; 28(5): e17855, 2023 Jul 21.
Artículo en Inglés | MEDLINE | ID: mdl-37480224

RESUMEN

Bladder cancer is a common tumour worldwide and exhibits a poor prognosis. Fibronectin leucine rich transmembrane protein 2 (FLRT2) is associated with the regulation of multiple tumours; however, its function in human bladder cancer remain unclear. Herein, we found that FLRT2 level was reduced in human bladder cancer and that higher FLRT2 level predicted lower survival rate. FLRT2 overexpression inhibited, while FLRT2 silence facilitated tumour cell growth, migration and invasion. Mechanistic studies revealed that FLRT2 elevated acyl-CoA synthetase long-chain family member 4 (ACSL4) expression, increased lipid peroxidation and subsequently facilitated ferroptosis of human bladder cancer cells. In summary, we demonstrate that FLRT2 elevates ACSL4 expression to facilitate lipid peroxidation and subsequently triggers ferroptosis, thereby inhibiting the malignant phenotype of human bladder cancer cells. Overall, we identify FLRT2 as a tumour suppressor gene.

7.
J Cell Mol Med ; 27(19): 2922-2936, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37480214

RESUMEN

Although combination chemotherapy is widely used for bladder cancer (BC) treatment, the recurrence and progression rates remain high. Therefore, novel therapeutic targets are required. Methylenetetrahydrofolate dehydrogenase 2 (MTHFD2) contributes to tumourigenesis and immune evasion in several cancers; however, its biological function in BC remains unknown. This study aimed to investigate the expression, prognostic value and protumoural function of MTHFD2 in BC and elucidate the mechanism of programmed death-ligand 1 (PD-L1) upregulation by MTHFD2. An analysis using publicly available databases revealed that a high MTHFD2 expression was correlated with clinical features and a poor prognosis in BC. Furthermore, MTHFD2 promoted the growth, migration, invasion and tumourigenicity and decreased the apoptosis of BC cells in vivo and in vitro. The results obtained from databases showed that MTHFD2 expression was correlated with immune infiltration levels, PD-L1 expression, and the Janus kinase/signal transducer and activator of transcription (JAK/STAT) pathway. The expression of MTHFD2, PD-L1 and JAK/STAT signalling pathway-related proteins increased after interferon gamma treatment and decreased after MTHFD2 knockdown. Moreover, addition of a JAK/STAT pathway activator partially reduced the effect of MTHFD2 knockdown on BC cells. Collectively, our findings suggest that MTHFD2 promotes the expression of PD-L1 through the JAK/STAT signalling pathway in BC.


Asunto(s)
Antígeno B7-H1 , Neoplasias de la Vejiga Urinaria , Humanos , Antígeno B7-H1/genética , Transducción de Señal , Quinasas Janus/genética , Factores de Transcripción STAT/genética , Neoplasias de la Vejiga Urinaria/genética
8.
Cancer Cell Int ; 23(1): 217, 2023 Sep 27.
Artículo en Inglés | MEDLINE | ID: mdl-37752545

RESUMEN

OBJECTIVE: Herein, we aimed at exploring the FAP expression in clear cell renal cell carcinoma (ccRCC) along with its clinical implication. METHODS: Using computational tools analysis of different freely accessible gene databases, the expression pattern, clinical importance, co-expressed genes, and signaling pathways of FAP in ccRCC were thoroughly investigated. FAP expression was examined in clinical ccRCC specimens through qRT-PCR, western blotting and immunohistochemistry. Furthermore, in vitro and in vivo experiments were carried out using flow cytometry, CCK-8, wound-healing and Transwell assays, as well as xenograft tumor model, respectively. RESULTS: FAP levels were found to be significantly elevated in ccRCC based on bioinformatic data from public databases. Patients who exhibited higher expression levels of FAP had poorer prognoses, according to Kaplan-Meier analysis of survival data. In addition, diagnostic and prognostic value of FAP in ccRCC was figured out by ROC curve and prognostic nomogram model. In vitro study revealed that the over-expression FAP accelerated cell proliferation, migration as well as invasion, and suppressed cell apoptosis, but silencing of FAP had the opposite effect. FAP suppression reduced the PI3K/AKT/mTOR pathway's stimulation, whereas FAP up-regulation increased the stimulation of the pathway. Blocking the PI3K/AKT/mTOR signaling pathway with the dual PI3K/mTOR inhibitor BEZ235 repressesed cancer-promoting effect of FAP. Additionally, we found that the downregulation of FAP was effective at slowing tumor progression in vivo. CONCLUSION: It is possible that FAP could be a reliable biomarker for the diagnosis and prognosis of ccRCC because of its role in the ccRCC progression via triggering the PI3K/AKT/mTOR signaling pathway.

9.
Cancer Cell Int ; 23(1): 221, 2023 Sep 28.
Artículo en Inglés | MEDLINE | ID: mdl-37770925

RESUMEN

Bladder cancer (BCa) is one of the most common malignancies worldwide. However, the lack of accurate and effective targeted drugs has become a major problem in current clinical treatment of BCa. Studies have demonstrated that squalene epoxidase (SQLE), as a key rate-limiting enzyme in cholesterol biosynthesis, is involved in cancer development. In this study, our analysis of The Cancer Genome Atlas, The Genotype-Tissue Expression, and Gene Expression Omnibus databases showed that SQLE expression was significantly higher in cancer tissues than it was in adjacent normal tissues, and BCa tissues with a high SQLE expression displayed a poor prognosis. We then confirmed this result in qRT-PCR and immunohistochemical staining experiments, and our vitro studies demonstrated that SQLE knockdown inhibited tumor cell proliferation and metastasis through the PTEN/AKT/GSK3ß signaling pathway. By means of rescue experiments, we proved that that P53 is a key molecule in SQLE-mediated regulation of the PTEN/AKT/GSK3ß signaling pathway. Simultaneously, we verified the above findings through a tumorigenesis experiment in nude mice. In conclusion, our study shows that SQLE promotes BCa growth through the P53/PTEN/AKT/GSK3ß axis, which may serve as a therapeutic biological target for BCa.

10.
World J Surg Oncol ; 21(1): 255, 2023 Aug 22.
Artículo en Inglés | MEDLINE | ID: mdl-37605239

RESUMEN

BACKGROUND: Gremlin-1 (GREM1) is a protein closely related to tumor growth, although its function in bladder cancer (BCa) is currently unknown. Our first objective was to study the GREM1 treatment potential in BCa. METHODS: BCa tissue samples were collected for the detection of GREM1 expression using Western blot analysis and Immunofluorescence staining. Association of GREM1 expression with clinicopathology and prognosis as detected by TCGA (The Cancer Genome Atlas) database. The functional investigation was tested by qRT-PCR, western blot analysis, CCK-8, cell apoptosis, wound healing, and transwell assays. The interaction between GREM1 and the downstream PI3K/AKT signaling pathway was assessed by Western blot analysis. RESULTS: GREM1 exhibited high expression in BCa tissues and was linked to poor prognosis. Stable knockdown of GREM1 significantly inhibited BCa cell (T24 and 5637) proliferation, apoptosis, migratory, invasive, as well as epithelial-mesenchymal transition (EMT) abilities. GREM1 promotes the progression in BCa via PI3K/AKT signaling pathway. CONCLUSION: Findings demonstrate that the progression-promoting effect of GREM1 in BCa, providing a novel biomarker for BCa-targeted therapy.


Asunto(s)
Fosfatidilinositol 3-Quinasas , Neoplasias de la Vejiga Urinaria , Humanos , Fosfatidilinositol 3-Quinasas/genética , Proteínas Proto-Oncogénicas c-akt , Pronóstico , Biomarcadores , Neoplasias de la Vejiga Urinaria/genética , Péptidos y Proteínas de Señalización Intercelular/genética
11.
J Cell Mol Med ; 26(7): 1994-2009, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-35174626

RESUMEN

The regulation of renal function by circadian gene BMAL1 has been recently recognized; however, the role and mechanism of BMAL1 in renal ischaemia-reperfusion injury (IRI) are still unknown. The purpose of this study was to clarify the pathophysiological role of BMAL1 in renal IRI. We measured the levels of BMAL1 and mitochondrial biogenesis-related proteins, including SIRT1, PGC-1α, NRF1 and TFAM, in rats with renal IRI. In rats, the level of BMAL1 decreased significantly, resulting in inhibition of SIRT1 expression and mitochondrial biogenesis. In addition, under hypoxia and reoxygenation (H/R) stimulation, BMAL1 knockdown decreased the level of SIRT1 and exacerbated the degree of mitochondrial damage and apoptosis. Overexpression of BMAL1 alleviated H/R-induced injury. Furthermore, application of the SIRT1 inhibitor EX527 not only reduced the activities of SIRT1 and PGC-1α but also further aggravated mitochondrial dysfunction and partially reversed the protective effect of BMAL1 overexpression. Moreover, whether in vivo or in vitro, the application of SIRT1 agonist resveratrol rescued the mitochondrial dysfunction caused by H/R or IRI by activating mitochondrial biogenesis. These results indicate that BMAL1 is a key circadian gene that mediates mitochondrial homeostasis in renal IRI through the SIRT1/PGC-1α axis, which provides a new direction for targeted therapy for renal IRI.


Asunto(s)
Factores de Transcripción ARNTL , Riñón , Daño por Reperfusión , Factores de Transcripción ARNTL/genética , Factores de Transcripción ARNTL/metabolismo , Animales , Homeostasis , Riñón/metabolismo , Riñón/fisiopatología , Mitocondrias/metabolismo , Coactivador 1-alfa del Receptor Activado por Proliferadores de Peroxisomas gamma/genética , Coactivador 1-alfa del Receptor Activado por Proliferadores de Peroxisomas gamma/metabolismo , Ratas , Daño por Reperfusión/genética , Daño por Reperfusión/metabolismo , Sirtuina 1/genética , Sirtuina 1/metabolismo
12.
J Cell Mol Med ; 26(6): 1729-1741, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-33560588

RESUMEN

Renal cell carcinoma (RCC) is the most common form of kidney cancer, with a high recurrence rate and metastasis capacity. Circular RNAs (circRNAs) have been suggested to act as the critical regulator in several diseases. This study is designed to investigate the role of circCSNK1G3 on RCC progression. We observed a highly expression of circCSNK1G3 in RCC tissues compared with normal tissues. The aberrantly circCSNK1G3 promoted the tumour growth and metastasis in RCC. In the subsequent mechanism investigation, we discovered that the tumour-promoting effects of circCSNK1G3 were, at least partly, achieved by up-regulating miR-181b. Increased miR-181b inhibits several tumour suppressor gene, including CYLD, LATS2, NDRG2 and TIMP3. Furthermore, the decreased TIMP3 leads to the enhanced epithelial to mesenchymal transition (EMT) process, thus promoting the cancer metastasis. In conclusion, we identified the oncogenic role of circCSNK1G3 in RCC progression and demonstrated the regulatory role of circCSNK1G3 induced miR-181b expression, which leads to TIMP3-mediated EMT process, thus resulting in tumour growth and metastasis in RCC. This study reveals the promise of circCSNK1G3 to be developed as a potential diagnostic and prognostic biomarker in the clinic. And the roles of circCSNK1G3 in cancer research deserve further investigation.


Asunto(s)
Carcinoma de Células Renales , Quinasa de la Caseína I/genética , Neoplasias Renales , MicroARNs , Carcinoma de Células Renales/genética , Carcinoma de Células Renales/patología , Línea Celular Tumoral , Movimiento Celular/genética , Proliferación Celular/genética , Transición Epitelial-Mesenquimal/genética , Femenino , Regulación Neoplásica de la Expresión Génica , Humanos , Neoplasias Renales/genética , Neoplasias Renales/patología , Masculino , MicroARNs/genética , MicroARNs/metabolismo , Proteínas Serina-Treonina Quinasas , Inhibidor Tisular de Metaloproteinasa-3/genética , Inhibidor Tisular de Metaloproteinasa-3/metabolismo , Proteínas Supresoras de Tumor/genética
13.
J Biochem Mol Toxicol ; 36(6): e23039, 2022 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-35279909

RESUMEN

The proinflammatory property of cisplatin is potentially destructive and contributes to the pathogenesis of acute kidney injury (AKI). The role and upstream regulatory mechanism of histone acetyltransferase 1 (HAT1) in acute kidney inflammation are still unknown. We performed RNA sequencing to filter differentially expressed microRNAs (miRNAs) in the kidney tissue of mice with AKI induced by cisplatin and ischemia-reperfusion. Here, we found that miR-486-5p was upregulated and that the expression of HAT1 was reduced in AKI mouse models and injured human renal proximal tubular epithelial cell (HK-2) model induced by cisplatin. miR-486-5p is implicated in cisplatin-induced kidney damage in vivo. Bioinformatics analysis predicted a potential binding site between miR-486-5p and HAT1. The Luciferase reporter assay and Western blot confirmed that miR-486-5p directly targeted the 3'-untranslated region of HAT1 mRNA and inhibited its expression in the cytoplasm of HK-2 cells. In the in vitro study, inhibiting miR-486-5p reduced apoptosis, and the expression of proinflammatory mediators was induced by cisplatin in HK-2 cells. Simultaneously, the downregulation of miR-486-5p inhibited the activation of the toll-like receptor 4 (TLR4) and nuclear factor-kappa B (NF-κB). We further found that HAT1 could inhibit apoptosis and the activation of cisplatin on the TLR4/NF-κB pathway and that the upregulation of miR-486-5p reversed this effect. Therefore, the upregulation of miR-486-5p targeting HAT1 promoted the cisplatin-induced apoptosis and acute inflammation response of renal tubular epithelial cells by activating the TLR4/NF-κB pathway, providing a new basis to highlight the potential intervention of regulating the miR-486-5p/HAT1 axis.


Asunto(s)
Lesión Renal Aguda , MicroARNs , Regiones no Traducidas 3' , Lesión Renal Aguda/inducido químicamente , Lesión Renal Aguda/genética , Lesión Renal Aguda/metabolismo , Animales , Apoptosis , Cisplatino/efectos adversos , Células Epiteliales/metabolismo , Histona Acetiltransferasas/genética , Inflamación/inducido químicamente , Inflamación/genética , Ratones , MicroARNs/metabolismo , FN-kappa B/metabolismo , Receptor Toll-Like 4/genética
14.
J Clin Lab Anal ; 36(4): e24360, 2022 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-35303365

RESUMEN

BACKGROUND: Prostate cancer (PCa) is a frequent malignant tumor worldwide with high morbidity along with mortality. MicroRNAs (miRNAs) have been identified as key posttranscriptional modulators in diverse cancers. Herein, we purposed to explore the impacts of miR-363-3p on PCa growth, migration, infiltration along with apoptosis. METHODS: The expressions of miR-363-3p along with Dickkopf 3 (DKK3) were assessed in clinical PCa specimens. We adopted the PCa cell line PC3 and transfected it using miR-363-3p repressors or mimic. The relationship of miR-363-3p with DKK3 was verified by a luciferase enzyme reporter assay. Cell viability along with apoptosis were determined by MTT assay coupled with flow cytometry analysis. Cell migration along infiltration were detected via wound healing, as well as Transwell assays. The contents of DKK3, E-cadherin, vimentin along with N-cadherin were analyzed via Western blotting accompanied with qRT-PCR. RESULTS: MiR-363-3p was found to be inversely associated with the content of DKK3 in clinical PCa specimens. Further investigations revealed that DKK3 was miR-363-3p's direct target. Besides, overexpression of miR-363-3p decreased the contents of DKK3, promoted cell viability, migration coupled with infiltration, and reduced cell apoptosis, while silencing of miR-363-3p resulted in opposite influence. Upregulation of miR-363-3p diminished E-cadherin contents but increased vimentin along with N-cadherin protein contents in PC3 cells; in contrast, miR-363-3p downregulation produced the opposite result. CONCLUSION: Our study indicates that miR-363-3p promotes PCa growth, migration coupled with invasion while dampening apoptosis by targeting DKK3.


Asunto(s)
MicroARNs , Neoplasias de la Próstata , Apoptosis/genética , Cadherinas/metabolismo , Línea Celular Tumoral , Proliferación Celular/genética , Regulación Neoplásica de la Expresión Génica , Humanos , Masculino , MicroARNs/genética , MicroARNs/metabolismo , Neoplasias de la Próstata/patología , Vimentina/metabolismo
15.
Urol Int ; 105(7-8): 687-696, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33965964

RESUMEN

BACKGROUND: Renal ischemia/reperfusion (I/R) injury (RIRI) is the main cause of acute kidney injury (AKI) in patients. We investigated the role of miR-182 after renal ischemia/reperfusion (I/R) in rat to characterize the microRNA (miRNA) network activated during development and recovery from RIRI. METHODS AND RESULTS: 12 h after lethal (45 min) renal ischemia, AKI was verified by renal histology (tubular necrosis and regeneration), blood urea nitrogen level, and renal mRNA expression in Wistar rats. We found that miR-182 markedly increased after renal I/R. In cell hypoxia/reoxygenation model, we found similar upregulation of miR-182. In function gain/loss assay, we confirmed an impaired effect of miR-182 and identified Forkhead box O3 (FoxO3) as a direct downstream target of it. By using miR-182 antagomir, the I/R injury was markedly ameliorated. CONCLUSIONS: Our results demonstrate that miR-182 promotes cell apoptosis and I/R injury through directly binding to FoxO3. The present study will provide potential therapeutic targets for renal I/R-induced AKI, and open a new avenue for AKI treatment by manipulating miRNAs levels.


Asunto(s)
Lesión Renal Aguda/etiología , Proteína Forkhead Box O3/fisiología , MicroARNs/fisiología , Daño por Reperfusión/complicaciones , Lesión Renal Aguda/genética , Animales , Masculino , Ratas , Ratas Wistar , Daño por Reperfusión/genética
16.
Zhonghua Nan Ke Xue ; 26(6): 499-504, 2020 Jun.
Artículo en Zh | MEDLINE | ID: mdl-33356037

RESUMEN

OBJECTIVE: To investigate the expression of long non-coding RNA (lncRNA) H19 in mouse GC-1 cells in vitro and its effects on the proliferation and apoptosis of GC-1 cells. METHODS: We established an in vitro hypoxia-reoxygenation model in GC-1 cells and detected the expression of lncRNA H19 in the GC-1 cells at different time points of reoxygenation injury by qRT-PCR. We determined the effects of silencing lncRNA H19 on the proliferation and apoptosis of the GC-1 cells by MTT and flow cytometry, the expressions of apoptosis-related proteins Bax and caspase-3 in the GC-1 cells by Western blot, and the expressions of microRNA-203a and PTEN by qRT-PCR and Western blot, respectively. RESULTS: With the prolonging of the time of reoxygenation injury, the expression of lncRNA H19 was increased significantly in the GC-1 cells and peaked at 3-hour hypoxia and 12-hour reoxygenation, but that of microRNA-203a markedly decreased. Silencing lncRNA H19 enhanced the proliferation and inhibited the apoptosis of the GC-1 cells, and up-regulated the expression of microRNA-203a and down-regulated that of PTEN in the GC-1 cells. CONCLUSIONS: LncRNA H19 is highly expressed in GC-1 cells in vitro, which may influence the proliferation and apoptosis of GC-1 cells by regulating the microRNA-203a /PTEN signaling pathway.


Asunto(s)
Apoptosis , MicroARNs/genética , ARN Largo no Codificante/genética , Daño por Reperfusión , Espermatogonias/citología , Animales , Proliferación Celular , Células Cultivadas , Masculino , Ratones , Fosfohidrolasa PTEN/metabolismo , Daño por Reperfusión/genética , Transducción de Señal
17.
Zhonghua Nan Ke Xue ; 26(3): 210-214, 2020 Mar.
Artículo en Zh | MEDLINE | ID: mdl-33346958

RESUMEN

The outbreak of coronavirus disease 2019 (COVID-19) caused by 2019 novel coronavirus has become a global public health challenge. In addition to the typical respiratory symptoms, COVID-19 can induce damage to testicular spermatogenesis. This study focuses on the possible causes and follow-up monitoring of testicular injury induced by COVID-19.


Asunto(s)
COVID-19/complicaciones , Espermatogénesis , Testículo/fisiopatología , Causalidad , Brotes de Enfermedades , Estudios de Seguimiento , Humanos , Masculino , Testículo/virología
18.
Zhonghua Nan Ke Xue ; 26(2): 111-117, 2020 Feb.
Artículo en Zh | MEDLINE | ID: mdl-33346412

RESUMEN

OBJECTIVE: To study the effect of different levels of autophagy in the testis on the apoptosis of spermatogenic cells in the rat model of varicocele (VC). METHODS: We randomly divided 54 SD male rats into six groups, blank control (n = 6), rapamycin control (n = 6), chloroquine control (n = 6), VC model control (n = 12), VC + rapamycin (n = 12), and VC + chloroquine (n = 12). We observed the histomorphological changes of the testis and epididymis by HE staining, obtained the scores on spermatogenesis in the testis and epididymis, calculated the apoptosis index (AI) of the testicular spermatogenic cells by TUNEL, and determined the expressions of LC3-Ⅱ, LC3-Ⅰ, p62, Bax and Bcl-2 proteins in the testis tissue by Western blot. RESULTS: There were no significant morphological changes in the testis and epididymis of the rats in the blank control, rapamycin control and chloroquine control groups, or significant differences in the scores on testicular and epididymal spermatogenesis and AI of the testicular spermatogenic cells (P>0.05). The animals in the VC model control group exhibited significant pathological damage in the testicular and epididymal tissues, with remarkably decreased scores on spermatogenesis (P<0.01) and increased AI (P<0.01), which were markedly improved in the VC + rapamycin group and slightly aggravated in the VC + chloroquine group compared with the VC model controls. In comparison with the rats in the blank control group, those in the VC model control group showed significantly up-regulated expressions of the autophagy-related protein LC3 (including the LC3-Ⅱ/LC3-Ⅰ ratio) and the pro-apoptotic protein Bax in testicular tissue (P<0.01) but down-regulated expression of the anti-apoptotic protein Bcl-2 (P<0.01). The expressions of LC3 and Bcl-2 in the testis tissue were significantly higher in the VC + rapamycin (P<0.01) but lower in the VC + chloroquine group (P<0.01), while those of p62 and Bax remarkably lower in the VC + rapamycin (P<0.01) but higher in the VC + chloroquine group than in the VC model controls (P<0.01). CONCLUSIONS: Varicocele induces autophagy in the testis and apoptosis of spermatogenic cells in rats. Up-regulating autophagy can inhibit while blocking autophagy can promote the apoptosis of spermatogenic cells.


Asunto(s)
Autofagia , Células Germinativas/citología , Espermatogénesis , Testículo/citología , Varicocele/fisiopatología , Animales , Apoptosis , Masculino , Ratas , Ratas Sprague-Dawley , Testículo/efectos de los fármacos
19.
Turk J Med Sci ; 49(5): 1590-1598, 2019 Oct 24.
Artículo en Inglés | MEDLINE | ID: mdl-31652042

RESUMEN

Background/aim: Cyclosporine A (CsA), a traditional immunosuppressive compound, has been reported to specifically prevent isch-emia reperfusion tissue injury via apoptosis pathway. This study aimed to explore the renoprotective effects of CsA on the kidneys of rabbits undergoing renal pelvic perfusion. Materials and methods: A total of 30 rabbits were randomly assigned into a control group (n = 6) and an experimental group (n = 24). The experimental group underwent a surgical procedure that induced severe hydronephrosis and was then stochastically divided into 4 groups (S1, S1', S2, and S2'), consisting of 6 rabbits each. Groups S1 and S1' were perfused with 20 mmHg of fluid, while groups S2 and S2' were perfused with 60 mmHg of fluid. Administration to groups S1' and S2' was done intravenously, with CsA once a day for 1 week before perfusion. In the control group, after severe hydronephrosis was induced, a sham operation was performed in a second laparoto-my. Acute kidney damage was evaluated using hematoxylin and eosin staining, in addition to analyzing the mitochondrial ultrastructure and mitochondrial membrane potential (MMP). The cytochrome C (CytC) and neutrophil gelatinase-associated lipocalin (NGAL) expression were examined immunohistochemically using Western blotting and reverse transcription-polymerase chain reaction. Results: It was found that the renal histopathological damage was ameliorated, mitochondrial vacuolization was lower, MMP was high-er, and the CytC and NGAL contents were decreased after drug intervention (groups S1' and S2') when compared to the experimental groups (S1 and S2). Furthermore, there was no difference between drug intervention groups S1' and S2'. Conclusion: These results suggest that CsA can attenuate renal damage from severe hydronephrosis induced by renal pelvic perfusion in rabbits. It plays a protective role in the acute kidney injury process, possibly through increased MMP and mitochondrial changes.


Asunto(s)
Ciclosporina/uso terapéutico , Hidronefrosis/tratamiento farmacológico , Animales , Modelos Animales de Enfermedad , Hidronefrosis/etiología , Pelvis Renal , Conejos , Distribución Aleatoria , Daño por Reperfusión/complicaciones , Índice de Severidad de la Enfermedad
20.
Cell Physiol Biochem ; 46(2): 802-814, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29870987

RESUMEN

BACKGROUND/AIMS: Accumulating evidences has indicated that aberrant expression of long non-coding RNAs (lncRNAs) is tightly associated with the progression of ischemia-reperfusion injury (IRI). Previous studies have reported that lncRNA MALAT1 regulates cell apoptosis and proliferation in myocardial and cerebral IRI. However, the underlying mechanism of MALAT1 in testicular IRI has not been elucidated. METHODS: The levels of MALAT1, some related proteins and apoptosis in the testicular tissues were determined by quantitative real-time PCR, HE staining, immunohistochemistry, western blot and TUNEL assays. Relative expression of MALAT1, miR-214 and related proteins in cells were measured by western blot and quantitative real-time PCR. Cell viability and apoptosis were examined using MTT assay and flow cytometry. RESULTS: In the present study, we found that MALAT1 was up-regulated in animal samples and GC-1 cells. The expression level of MALAT1 was positively related to cell apoptosis and negatively correlated with cell proliferation as testicular IRI progressed. In gain and loss of function assays, we confirmed that MALAT1 promotes cell apoptosis and suppresses cell proliferation in vitro and in vivo. Furthermore, we found that MALAT1 negatively regulates expression of miR-214 and promotes TRPV4 expression at the post-transcriptional level. Consequently, we investigated the correlation between MALAT1 and miR-214 and identified miR-214 as a direct target of MALAT1. In addition, we found that TRPV4 acted as a target of miR-214. Over-expression of miR-214 efficiently abrogated the up-regulation of TRPV4 induced by MALAT1, suggesting that MALAT1 positively regulates the expression of TRPV4 by sponging miR-214. CONCLUSION: In sum, our study indicated that the lncRNA MALAT1 promotes cell apoptosis and suppresses cell proliferation in testicular IRI via miR-214 and TRPV4.


Asunto(s)
Apoptosis/genética , Regulación de la Expresión Génica/genética , MicroARNs/metabolismo , ARN Largo no Codificante/metabolismo , Daño por Reperfusión/patología , Canales Catiónicos TRPV/metabolismo , Testículo/lesiones , Animales , Antagomirs/metabolismo , Hipoxia de la Célula , Línea Celular , Proliferación Celular/genética , Masculino , Ratones , Ratones Endogámicos C57BL , MicroARNs/antagonistas & inhibidores , MicroARNs/genética , Proteínas Proto-Oncogénicas c-bcl-2/metabolismo , Interferencia de ARN , ARN Largo no Codificante/antagonistas & inhibidores , ARN Largo no Codificante/genética , Daño por Reperfusión/metabolismo , Canales Catiónicos TRPV/química , Canales Catiónicos TRPV/genética , Testículo/metabolismo , Testículo/patología , Proteína X Asociada a bcl-2/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA