Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 64
Filtrar
Más filtros

Bases de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Audiol Neurootol ; 28(6): 407-419, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37331337

RESUMEN

BACKGROUND: Mutations in TMPRSS3 are an important cause of autosomal recessive non-syndromic hearing loss. The hearing loss associated with mutations in TMPRSS3 is characterized by phenotypic heterogeneity, ranging from mild to profound hearing loss, and is generally progressive. Clinical presentation and natural history of TMPRSS3 mutations vary significantly based on the location and type of mutation in the gene. Understanding these genotype-phenotype relationships and associated natural disease histories is necessary for the successful development and application of gene-based therapies and precision medicine approaches to DFNB8/10. The heterogeneous presentation of TMPRSS3-associated disease makes it difficult to identify patients clinically. As the body of literature on TMPRSS3-associated deafness grows, there is need for better categorization of the hearing phenotypes associated with specific mutations in the gene. SUMMARY: In this review, we summarize TMPRSS3 genotype-phenotype relationships including a thorough description of the natural history of patients with TMPRSS3-associated hearing loss to lay the groundwork for the future of TMPRSS3 treatment using molecular therapy. KEY MESSAGES: TMPRSS3 mutation is a significant cause of genetic hearing loss. All patients with TMPRSS3 mutation display severe-to-profound prelingual (DFNB10) or a postlingual (DFNB8) progressive sensorineural hearing loss. Importantly, TMPRSS3 mutations have not been associated with middle ear or vestibular deficits. The c.916G>A (p.Ala306Thr) missense mutation is the most frequently reported mutation across populations and should be further explored as a target for molecular therapy.


Asunto(s)
Pérdida Auditiva Sensorineural , Pérdida Auditiva , Humanos , Serina Endopeptidasas/genética , Proteínas de la Membrana/genética , Pérdida Auditiva Sensorineural/genética , Pérdida Auditiva/genética , Mutación , Estudios de Asociación Genética , Fenotipo , Proteínas de Neoplasias/genética
2.
Ear Hear ; 43(1): 1-8, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-34039936

RESUMEN

Usher syndrome (USH) encompasses a group of clinically and genetically heterogenous disorders defined by the triad of sensorineural hearing loss (SNHL), vestibular dysfunction, and vision loss. USH is the most common cause of deaf blindness. USH is divided clinically into three subtypes-USH1, USH2, and USH3-based on symptom severity, progression, and age of onset. The underlying genetics of these USH forms are, however, significantly more complex, with over a dozen genes linked to the three primary clinical subtypes and other atypical USH phenotypes. Several of these genes are associated with other deaf-blindness syndromes that share significant clinical overlap with USH, pointing to the limits of a clinically based classification system. The genotype-phenotype relationships among USH forms also may vary significantly based on the location and type of mutation in the gene of interest. Understanding these genotype-phenotype relationships and associated natural disease histories is necessary for the successful development and application of gene-based therapies and precision medicine approaches to USH. Currently, the state of knowledge varies widely depending on the gene of interest. Recent studies utilizing next-generation sequencing technology have expanded the list of known pathogenic mutations in USH genes, identified new genes associated with USH-like phenotypes, and proposed algorithms to predict the phenotypic effects of specific categories of allelic variants. Further work is required to validate USH gene causality, and better define USH genotype-phenotype relationships and disease natural histories-particularly for rare mutations-to lay the groundwork for the future of USH treatment.


Asunto(s)
Síndromes de Usher , Estudios de Asociación Genética , Humanos , Mutación , Fenotipo , Síndromes de Usher/diagnóstico , Síndromes de Usher/genética
3.
Mol Pain ; 15: 1744806919837104, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-30803321

RESUMEN

Previously we reported that a group of inflammatory mediators significantly enhanced resurgent currents in dorsal root ganglion neurons. To understand the underlying intracellular signaling mechanism, we investigated the effects of inhibition of extracellular signal-regulated kinases and protein kinase C on the enhancing effects of inflammatory mediators on resurgent currents in rat dorsal root ganglion neurons. We found that the extracellular signal-regulated kinases inhibitor U0126 completely prevented the enhancing effects of the inflammatory mediators on both Tetrodotoxin-sensitive and Tetrodotoxin-resistant resurgent currents in both small and medium dorsal root ganglion neurons. U0126 substantially reduced repetitive firing in small dorsal root ganglion neurons exposed to inflammatory mediators, consistent with prevention of resurgent current amplitude increases. The protein kinase C inhibitor Bisindolylmaleimide I also showed attenuating effects on resurgent currents, although to a lesser extent compared to extracellular signal-regulated kinases inhibition. These results indicate a critical role of extracellular signal-regulated kinases signaling in modulating resurgent currents and membrane excitability in dorsal root ganglion neurons treated with inflammatory mediators. It is also suggested that targeting extracellular signal-regulated kinases-resurgent currents might be a useful strategy to reduce inflammatory pain.


Asunto(s)
Quinasas MAP Reguladas por Señal Extracelular/metabolismo , Ganglios Espinales/citología , Ganglios Espinales/metabolismo , Proteína Quinasa C/metabolismo , Potenciales de Acción/efectos de los fármacos , Animales , Electrofisiología , Ganglios Espinales/efectos de los fármacos , Masculino , Potenciales de la Membrana/efectos de los fármacos , Ratas , Ratas Sprague-Dawley , Sodio/metabolismo , Tetrodotoxina/farmacología
4.
J Pharmacol Exp Ther ; 369(3): 345-363, 2019 06.
Artículo en Inglés | MEDLINE | ID: mdl-30910921

RESUMEN

Nonselective glutamate α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptor antagonists are efficacious in chronic pain but have significant tolerability issues, likely arising from the ubiquitous expression of AMPA receptors in the central nervous system (CNS). Recently, LY3130481 has been shown to selectively block AMPA receptors coassembled with the auxiliary protein, transmembrane AMPA receptor regulatory protein (TARP) γ8, which is highly expressed in the hippocampus but also in pain pathways, including anterior cingulate (ACC) and somatosensory cortices and the spinal cord, suggesting that selective blockade of γ8/AMPA receptors may suppress nociceptive signaling with fewer CNS side effects. The potency of LY3130481 on recombinant γ8-containing AMPA receptors was modulated by coexpression with other TARPs; γ2 subunits affected activity more than γ3 subunits. Consistent with these findings, LY3130481 had decreasing potency on receptors from rat hippocampal, cortical, spinal cord, and cerebellar neurons that was replicated in tissue from human brain. LY3130481 partially suppressed, whereas the nonselective AMPA antagonist GYKI53784 completely blocked, AMPA receptor-dependent excitatory postsynaptic potentials in ACC and spinal neurons in vitro. Similarly, LY3130481 attenuated short-term synaptic plasticity in spinal sensory neurons in vivo in response to stimulation of peripheral afferents. LY3130481 also significantly reduced nocifensive behaviors after intraplantar formalin that was correlated with occupancy of CNS γ8-containing AMPA receptors. In addition, LY3130481 dose-dependently attenuated established gait impairment after joint damage and tactile allodynia after spinal nerve ligation, all in the absence of motor side effects. Collectively, these data demonstrate that LY3130481 can suppress excitatory synaptic transmission and plasticity in pain pathways containing γ8/AMPA receptors and significantly reduce nocifensive behaviors, suggesting a novel, effective, and safer therapy for chronic pain conditions.


Asunto(s)
Canales de Calcio/metabolismo , Dolor Crónico/tratamiento farmacológico , Dolor Crónico/metabolismo , Terapia Molecular Dirigida , Receptores AMPA/metabolismo , Animales , Benzotiazoles/farmacología , Benzotiazoles/uso terapéutico , Dolor Crónico/fisiopatología , Masculino , Plasticidad Neuronal/efectos de los fármacos , Nocicepción/efectos de los fármacos , Pirazoles/farmacología , Pirazoles/uso terapéutico , Ratas , Ratas Sprague-Dawley , Transmisión Sináptica/efectos de los fármacos , Distribución Tisular
5.
Mol Pain ; 13: 1744806917745179, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-29166836

RESUMEN

Background The Nav1.7 subtype of voltage-gated sodium channels is specifically expressed in sensory and sympathetic ganglia neurons where it plays an important role in the generation and transmission of information related to pain sensation. Human loss or gain-of-function mutations in the gene encoding Nav1.7 channels (SCN9A) are associated with either absence of pain, as reported for congenital insensitivity to pain, or with exacerbation of pain, as reported for primary erythromelalgia and paroxysmal extreme pain disorder. Based on this important human genetic evidence, numerous drug discovery efforts are ongoing in search for Nav1.7 blockers as a novel therapeutic strategy to treat pain conditions. Results We are reporting here a novel approach to study Nav1.7 function in cultured rat sensory neurons. We used live cell imaging combined with electrical field stimulation to evoke and record action potential-driven calcium transients in the neurons. We have shown that the tarantula venom peptide Protoxin-II, a known Nav1.7 subtype selective blocker, inhibited electrical field stimulation-evoked calcium responses in dorsal root ganglia neurons with an IC50 of 72 nM, while it had no activity in embryonic hippocampal neurons. The results obtained in the live cell imaging assay were supported by patch-clamp studies as well as by quantitative PCR and Western blotting experiments that confirmed the presence of Nav1.7 mRNA and protein in dorsal root ganglia but not in embryonic hippocampal neurons. Conclusions The findings presented here point to a selective effect of Protoxin-II in sensory neurons and helped to validate a new method for investigating and comparing Nav1.7 pharmacology in sensory versus central nervous system neurons. This will help in the characterisation of the selectivity of novel Nav1.7 modulators using native ion channels and will provide the basis for the development of higher throughput models for enabling pain-relevant phenotypic screening.


Asunto(s)
Estimulación Eléctrica/métodos , Ganglios Espinales/metabolismo , Canal de Sodio Activado por Voltaje NAV1.7/metabolismo , Células Receptoras Sensoriales/metabolismo , Animales , Calcio/metabolismo , Ganglios Espinales/efectos de los fármacos , Hipocampo/metabolismo , Masculino , Ratas Sprague-Dawley , Células Receptoras Sensoriales/efectos de los fármacos , Bloqueadores de los Canales de Sodio/farmacología
6.
J Pharmacol Exp Ther ; 361(1): 190-197, 2017 04.
Artículo en Inglés | MEDLINE | ID: mdl-28138041

RESUMEN

LY2812223 [(1R,2S,4R,5R,6R)-2-amino-4-(1H-1,2,4-triazol-3-ylsulfanyl)bicyclo[3.1.0]hexane-2,6-dicarboxylic acid] was identified via structure-activity studies arising from the potent metabotropic glutamate mGlu2/3 receptor agonist LY354740 [(+)-2-aminobicyclo[3.1.0] hexane-2,6-dicarboxylic acid] as an mGlu2-preferring agonist. This pharmacology was determined using stably transfected cells containing either the human mGlu2 or mGlu3 receptor. We extended the pharmacological evaluation of LY2812223 to native brain tissues derived from relevant species used for preclinical drug development as well as human postmortem brain tissue. This analysis was conducted to ensure pharmacological translation from animals to human subjects in subsequent clinical studies. A guanosine 5'-O-(3-[35S]thio)triphosphate (GTPγS) functional binding assay, a method for measuring Gi-coupled signaling that is inherent to the group 2 mGlu receptors, was used to evaluate LY2812223 pharmacology of native mGlu receptors in mouse, rat, nonhuman primate, and human cortical brain tissue samples. In native tissue membranes, LY2812223 unexpectedly acted as a partial agonist across all species tested. Activity of LY2812223 was lost in cortical membranes collected from mGlu2 knockout mice, but not those from mGlu3 knockout mice, providing additional support for mGlu2-preferring activity. Other signal transduction assays were used for comparison with the GTP binding assay (cAMP, calcium mobilization, and dynamic mass redistribution). In ectopic cell line-based assays, LY2812223 displayed near maximal agonist responses at the mGlu2 receptor across all assay formats, while it showed no functional agonist activity at the mGlu3 receptor except in the cAMP assay. In native brain slices or membranes that express both mGlu2 and mGlu3 receptors, LY2812223 displayed unexpected partial agonist activity, which may suggest a functional interplay between these receptor subtypes in the brain.


Asunto(s)
Encéfalo/efectos de los fármacos , Compuestos Bicíclicos con Puentes/farmacología , Agonismo Parcial de Drogas , Agonistas de Aminoácidos Excitadores/farmacología , Receptores de Glutamato Metabotrópico/agonistas , Triazoles/farmacología , Animales , Encéfalo/metabolismo , Compuestos Bicíclicos con Puentes/metabolismo , Relación Dosis-Respuesta a Droga , Agonistas de Aminoácidos Excitadores/metabolismo , Humanos , Ratones , Ratones Noqueados , Unión Proteica/efectos de los fármacos , Unión Proteica/fisiología , Ratas , Ratas Sprague-Dawley , Receptores de Glutamato Metabotrópico/metabolismo , Investigación Biomédica Traslacional , Triazoles/metabolismo
7.
J Pharmacol Exp Ther ; 361(1): 172-180, 2017 04.
Artículo en Inglés | MEDLINE | ID: mdl-28138042

RESUMEN

Little is known about the neuronal voltage-gated sodium channels (NaVs) that control neurotransmission in the parasympathetic nervous system. We evaluated the expression of the α subunits of each of the nine NaVs in human, guinea pig, and mouse airway parasympathetic ganglia. We combined this information with a pharmacological analysis of selective NaV blockers on parasympathetic contractions of isolated airway smooth muscle. As would be expected from previous studies, tetrodotoxin potently blocked the parasympathetic responses in the airways of each species. Gene expression analysis showed that that NaV 1.7 was virtually the only tetrodotoxin-sensitive NaV1 gene expressed in guinea pig and human airway parasympathetic ganglia, where mouse ganglia expressed NaV1.1, 1.3, and 1.7. Using selective pharmacological blockers supported the gene expression results, showing that blocking NaV1.7 alone can abolish the responses in guinea pig and human bronchi, but not in mouse airways. To block the responses in mouse airways requires that NaV1.7 along with NaV1.1 and/or NaV1.3 is blocked. These results may suggest novel indications for NaV1.7-blocking drugs, in which there is an overactive parasympathetic drive, such as in asthma. The data also raise the potential concern of antiparasympathetic side effects for systemic NaV1.7 blockers.


Asunto(s)
Ganglios Parasimpáticos/fisiología , Pulmón/fisiología , Canal de Sodio Activado por Voltaje NAV1.7/fisiología , Fibras Parasimpáticas Posganglionares/fisiología , Transmisión Sináptica/fisiología , Animales , Relación Dosis-Respuesta a Droga , Ganglios Parasimpáticos/efectos de los fármacos , Cobayas , Células HEK293 , Humanos , Pulmón/efectos de los fármacos , Masculino , Ratones , Músculo Liso/efectos de los fármacos , Músculo Liso/fisiología , Técnicas de Cultivo de Órganos , Fibras Parasimpáticas Posganglionares/efectos de los fármacos , Bloqueadores de los Canales de Sodio/farmacología , Transmisión Sináptica/efectos de los fármacos
8.
J Neurosci ; 34(21): 7190-7, 2014 May 21.
Artículo en Inglés | MEDLINE | ID: mdl-24849353

RESUMEN

Resurgent sodium currents contribute to the regeneration of action potentials and enhanced neuronal excitability. Tetrodotoxin-sensitive (TTX-S) resurgent currents have been described in many different neuron populations, including cerebellar and dorsal root ganglia (DRG) neurons. In most cases, sodium channel Nav1.6 is the major contributor to these TTX-S resurgent currents. Here we report a novel TTX-resistant (TTX-R) resurgent current recorded from rat DRG neurons. The TTX-R resurgent currents are similar to classic TTX-S resurgent currents in many respects, but not all. As with TTX-S resurgent currents, they are activated by membrane repolarization, inhibited by lidocaine, and enhanced by a peptide-mimetic of the ß4 sodium channel subunit intracellular domain. However, the TTX-R resurgent currents exhibit much slower kinetics, occur at more depolarized voltages, and are sensitive to the Nav1.8 blocker A803467. Moreover, coimmunoprecipitation experiments from rat DRG lysates indicate the endogenous sodium channel ß4 subunits associate with Nav1.8 in DRG neurons. These results suggest that slow TTX-R resurgent currents in DRG neurons are mediated by Nav1.8 and are generated by the same mechanism underlying TTX-S resurgent currents. We also show that both TTX-S and TTX-R resurgent currents in DRG neurons are enhanced by inflammatory mediators. Furthermore, the ß4 peptide increased excitability of small DRG neurons in the presence of TTX. We propose that these slow TTX-R resurgent currents contribute to the membrane excitability of nociceptive DRG neurons under normal conditions and that enhancement of both types of resurgent currents by inflammatory mediators could contribute to sensory neuronal hyperexcitability associated with inflammatory pain.


Asunto(s)
Mediadores de Inflamación/farmacología , Potenciales de la Membrana/efectos de los fármacos , Canal de Sodio Activado por Voltaje NAV1.8/metabolismo , Células Receptoras Sensoriales/efectos de los fármacos , Células Receptoras Sensoriales/fisiología , Bloqueadores de los Canales de Sodio/farmacología , Tetrodotoxina/farmacología , Compuestos de Anilina/farmacología , Animales , Biofisica , Células Cultivadas , Estimulación Eléctrica , Furanos/farmacología , Ganglios Espinales/citología , Inmunoprecipitación , Lidocaína/farmacología , Canal de Sodio Activado por Voltaje NAV1.8/química , Técnicas de Placa-Clamp , Péptidos/farmacología , Subunidades de Proteína/metabolismo , Ratas , Ratas Sprague-Dawley
9.
Crit Rev Oncog ; 29(3): 25-31, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38683152

RESUMEN

Oral cavity cancer remains a significant cause of morbidity and mortality globally, with a poor prognosis once the disease has metastasized to cervical lymph nodes. The anatomy of lymphatic drainage in the neck gives us a roadmap to follow when assessing for metastasis, although the predictive factors are still not well understood. The mainstay of treatment continues to be neck dissection. However, there is much debate on the management of the clinically negative neck. The necessity of elective neck dissection has been questioned in recent years, with other options such as sentinel lymph node biopsy gaining popularity. This review will explore the aspects of surgical management of the neck in oral cavity cancer and highlights the further research that needs to be done.


Asunto(s)
Neoplasias de la Boca , Disección del Cuello , Humanos , Neoplasias de la Boca/cirugía , Neoplasias de la Boca/patología , Biopsia del Ganglio Linfático Centinela , Carcinoma de Células Escamosas/cirugía , Carcinoma de Células Escamosas/patología , Metástasis Linfática , Cuello , Manejo de la Enfermedad , Pronóstico
10.
J Neurosci ; 32(44): 15296-308, 2012 Oct 31.
Artículo en Inglés | MEDLINE | ID: mdl-23115168

RESUMEN

Cerebellar motor coordination and cerebellar Purkinje cell synaptic function require metabotropic glutamate receptor 1 (mGluR1, Grm1). We used an unbiased proteomic approach to identify protein partners for mGluR1 in cerebellum and discovered glutamate receptor δ2 (GluRδ2, Grid2, GluΔ2) and protein kinase Cγ (PKCγ) as major interactors. We also found canonical transient receptor potential 3 (TRPC3), which is also needed for mGluR1-dependent slow EPSCs and motor coordination and associates with mGluR1, GluRδ2, and PKCγ. Mutation of GluRδ2 changes subcellular fractionation of mGluR1 and TRPC3 to increase their surface expression. Fitting with this, mGluR1-evoked inward currents are increased in GluRδ2 mutant mice. Moreover, loss of GluRδ2 disrupts the time course of mGluR1-dependent synaptic transmission at parallel fiber-Purkinje cells synapses. Thus, GluRδ2 is part of the mGluR1 signaling complex needed for cerebellar synaptic function and motor coordination, explaining the shared cerebellar motor phenotype that manifests in mutants of the mGluR1 and GluRδ2 signaling pathways.


Asunto(s)
Neuronas/fisiología , Proteína Quinasa C/fisiología , Células de Purkinje/fisiología , Receptores de Glutamato/fisiología , Receptores de Glutamato Metabotrópico/fisiología , Transmisión Sináptica/fisiología , Canales Catiónicos TRPC/fisiología , Animales , Potenciales Postsinápticos Excitadores/genética , Potenciales Postsinápticos Excitadores/fisiología , Femenino , Inmunohistoquímica , Masculino , Ratones , Ratones Noqueados , Mutación/fisiología , Técnicas de Placa-Clamp , Fenotipo , Receptores de Superficie Celular/fisiología , Receptores de Glutamato/genética , Transducción de Señal/genética , Transducción de Señal/fisiología , Solubilidad , Fracciones Subcelulares/metabolismo , Fracciones Subcelulares/fisiología
11.
Eur J Nucl Med Mol Imaging ; 40(2): 245-53, 2013 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-23135321

RESUMEN

PURPOSE: Two allosteric modulators of the group I metabotropic glutamate receptors (mGluR1 and mGluR5) were evaluated as positron emission tomography (PET) radioligands for mGluR1. METHODS: LY2428703, a full mGluR1 antagonist (IC(50) 8.9 nM) and partial mGluR5 antagonist (IC(50) 118 nM), and LSN2606428, a full mGluR1 and mGluR5 antagonist (IC(50) 35.3 nM and 10.2 nM, respectively) were successfully labeled with (11)C and evaluated as radioligands for mGluR1. The pharmacology of LY2428703 was comprehensively assessed in vitro and in vivo, and its biodistribution was investigated by liquid chromatography-mass spectrometry/mass spectrometry, and by PET imaging in the rat. In contrast, LSN2606428 was only evaluated in vitro; further evaluation was stopped due to its unfavorable pharmacological properties and binding affinity. RESULTS: (11)C-LY2428703 showed promising characteristics, including: (1) high potency for binding to human mGluR1 (IC(50) 8.9 nM) with no significant affinity for other human mGlu receptors (mGluR2 through mGluR8); (2) binding to brain displaceable by administration of an mGluR1 antagonist; (3) only one major radiometabolite in both plasma and brain, with a negligible brain concentration (with 3.5 % of the total radioactivity in cerebellum) and no receptor affinity; (4) a large specific and displaceable signal in the mGluR1-rich cerebellum with no significant in vivo affinity for mGluR5, as shown by PET studies in rats; and (5) lack of substrate behavior for efflux transporters at the blood-brain barrier, as shown by PET studies conducted in wild-type and knockout mice. CONCLUSION: (11)C-LY2428703, a new PET radioligand for mGluR1 quantification, displayed promising characteristics both in vitro and in vivo in rodents.


Asunto(s)
Encéfalo/patología , Isótopos de Carbono/farmacología , Tomografía de Emisión de Positrones/métodos , Receptores de Glutamato Metabotrópico/metabolismo , Sitio Alostérico , Animales , Barrera Hematoencefálica , Cromatografía Liquida/métodos , Humanos , Técnicas In Vitro , Concentración 50 Inhibidora , Ligandos , Masculino , Ratones , Ratones Noqueados , Modelos Químicos , Ratas , Espectrometría de Masa por Ionización de Electrospray/métodos , Espectrometría de Masas en Tándem/métodos
12.
Curr Opin Otolaryngol Head Neck Surg ; 31(6): 452-456, 2023 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-37916904

RESUMEN

PURPOSE OF REVIEW: Currently, most patients with concurrent head and neck cancer (HNC) and carotid stenosis (CS) are treated disjointedly for their oncologic and vascular lesions. The purpose of this review is to evaluate literature exploring a novel approach to these cases that poses several advantages, in which carotid endarterectomy (CEA) is performed simultaneously with surgical resection of HNC. RECENT FINDINGS: Carotid stenosis is a common comorbidity of patients presenting with head and neck cancer as these pathologies have overlapping risk factors. Adjuvant oncologic therapy such as radiation therapy to the site of the lesion is known to increase development or progression of carotid stenosis. Performing simultaneous surgical management of CS and HNC decreases total procedures for the patient, provides a less challenging surgical field, and eliminates prioritization of treatment initiation for one pathology over the other. There has been limited reporting of simultaneous CEA with oncologic resection of HNC in the literature. However, of the 21 cases reviewed here, no perioperative strokes were reported with only one perioperative death from myocardial infarction. SUMMARY: Available literature supports that simultaneous CEA with oncologic resection of HNC is safe and may offer several advantages, although larger studies are required.


Asunto(s)
Estenosis Carotídea , Endarterectomía Carotidea , Neoplasias de Cabeza y Cuello , Humanos , Estenosis Carotídea/complicaciones , Estenosis Carotídea/cirugía , Cognición , Terapia Combinada , Neoplasias de Cabeza y Cuello/complicaciones , Neoplasias de Cabeza y Cuello/cirugía
13.
Head Neck ; 45(10): E44-E48, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37589165

RESUMEN

BACKGROUND: The radial forearm free flap (RFFF) is considered a workhorse for head and neck cancer reconstructive surgery due to its generally consistent anatomy, pliability, long pedicle, and accessible harvest location. METHODS: A 63-year-old male with trisomy 21 and recurrent midface basal cell carcinoma presented for surgical management. The patient underwent tumor resection including left infrastructure maxillectomy with ipsilateral rhinectomy. Preoperative Allen's test was normal; however, the planned osteocutaneous radial forearm free flap reconstruction was aborted intraoperatively due to aberrant vascular anatomy in the form of a diminutive radial artery branch. Reconstruction was instead performed with an anterolateral thigh free flap. RESULTS: The patient recovered well in the hospital and was subsequently discharged to his care facility. CONCLUSIONS: Radial artery anomalies may be present among trisomy 21 patients making reconstruction with a RFFF not feasible, and thus preoperative Doppler ultrasound to assess arterial anatomy is essential in this population.


Asunto(s)
Síndrome de Down , Colgajos Tisulares Libres , Procedimientos de Cirugía Plástica , Masculino , Humanos , Persona de Mediana Edad , Cara , Muslo
14.
Otol Neurotol ; 44(10): 1073-1081, 2023 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-37853737

RESUMEN

BACKGROUND: The vestibular schwannoma (VS) secretome can initiate monocyte recruitment and macrophage polarization to M1 (proinflammatory) and/or M2 (protumorigenic) phenotypes, which in turn secrete additional cytokines that contribute to the tumor microenvironment. Profiling cyst fluid and cerebrospinal fluid (CSF) in cystic VS provides a unique opportunity to understand mechanisms that may contribute to tumor progression and cyst formation. HYPOTHESIS: Cystic VSs secrete high levels of cytokines into cyst fluid and express abundant M1 and M2 macrophages. METHODS: Tumor, CSF, and cyst fluid were prospectively collected from 10 cystic VS patients. Eighty cytokines were measured in fluid samples using cytokine arrays and compared with normal CSF from normal donors. Immunofluorescence was performed for CD80 + M1 and CD163 + M2 macrophage markers. Demographic, audiometric, and radiographic information was obtained through retrospective chart review. RESULTS: Cyst fluid expressed more osteopontin and monocyte chemotactic protein-1 (MCP-1; p < 0.0001), when compared with normal CSF. Cyst fluid also expressed more protein ( p = 0.0020), particularly MCP-1 ( p < 0.0001), than paired CSF from the same subjects. MCP-1 expression in cyst fluid correlated with CD80 + staining in VS tissue ( r = 0.8852; p = 0.0015) but not CD163 + staining. CONCLUSION: Cyst fluid from cystic VS harbored high levels of osteopontin and MCP-1, which are cytokines important in monocyte recruitment and macrophage polarization. MCP-1 may have a significant role in molding the tumor microenvironment, by polarizing monocytes to CD80 + M1 macrophages in cystic VS. Further investigations into the role of cytokines and macrophages in VS may lead to new avenues for therapeutic intervention.


Asunto(s)
Neuroma Acústico , Osteopontina , Humanos , Macrófagos Asociados a Tumores/metabolismo , Líquido Quístico/metabolismo , Estudios Retrospectivos , Citocinas/metabolismo , Microambiente Tumoral
15.
Bioorg Med Chem Lett ; 22(7): 2514-7, 2012 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-22386665

RESUMEN

The disclosed 3-phenyl-5-isothiazole carboxamides are potent allosteric antagonists of mGluR1 with generally good selectivity relative to the related group 1 receptor mGluR5. Pharmacokinetic properties of a member of this series (1R,2R)-N-(3-(4-methoxyphenyl)-4-methylisothiazol-5-yl)-2-methylcyclopropanecarboxamide (14) are good, showing acceptable plasma and brain exposure after oral dosing. Oral administration of isothiazole 14 gave robust activity in the formalin model of persistent pain which correlated with CNS receptor occupancy.


Asunto(s)
Amidas/síntesis química , Analgésicos/síntesis química , Antagonistas de Aminoácidos Excitadores/síntesis química , Dolor/tratamiento farmacológico , Receptores de Glutamato Metabotrópico/antagonistas & inhibidores , Tiazoles/síntesis química , Administración Oral , Amidas/administración & dosificación , Amidas/farmacocinética , Analgésicos/administración & dosificación , Analgésicos/farmacocinética , Animales , Disponibilidad Biológica , Encéfalo/metabolismo , Antagonistas de Aminoácidos Excitadores/administración & dosificación , Antagonistas de Aminoácidos Excitadores/farmacocinética , Humanos , Dolor/metabolismo , Dimensión del Dolor , Ratas , Ratas Sprague-Dawley , Receptores de Glutamato Metabotrópico/metabolismo , Estereoisomerismo , Relación Estructura-Actividad , Tiazoles/administración & dosificación , Tiazoles/farmacocinética
16.
Br J Pharmacol ; 179(8): 1607-1619, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-34355803

RESUMEN

BACKGROUND AND PURPOSE: As the thalamus underpins almost all aspects of behaviour, it is important to understand how the thalamus operates. Group II metabotropic glutamate (mGlu2 /mGlu3 ) receptor activation reduces inhibition in thalamic nuclei originating from the surrounding thalamic reticular nucleus (TRN). Whilst an mGlu2 component to this effect has been reported, in this study, we demonstrate that it is likely, largely mediated via mGlu3 . EXPERIMENTAL APPROACH: The somatosensory ventrobasal thalamus (VB) is an established model for probing fundamental principles of thalamic function. In vitro slices conserving VB-TRN circuitry from wild-type and mGlu3 knockout mouse brains were used to record IPSPs and mIPSCs. In vivo extracellular recordings were made from VB neurons in anaesthetised rats. A range of selective pharmacological agents were used to probe Group II mGlu receptor function (agonist, LY354740; antagonist, LY341495; mGlu2 positive allosteric modulator, LY487379 and mixed mGlu2 agonist/mGlu3 antagonist LY395756). KEY RESULTS: The in vitro and in vivo data are complementary and suggest that mGlu3 receptor activation is largely responsible for potentiating responses to somatosensory stimulation by reducing inhibition from the TRN. CONCLUSIONS AND IMPLICATIONS: mGlu3 receptor activation in the VB likely enables important somatosensory information to be discerned from background activity. These mGlu3 receptors are likely to be endogenously activated via 'glutamate spillover'. In cognitive thalamic nuclei, this mechanism may be of importance in governing attentional processes. Positive allosteric modulation of endogenous mGlu3 receptor activation may therefore enhance cognitive function in pathophysiological disease states, such as schizophrenia, thus representing a highly specific therapeutic target. LINKED ARTICLES: This article is part of a themed issue on Building Bridges in Neuropharmacology. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v179.8/issuetoc.


Asunto(s)
Receptores de Glutamato Metabotrópico , Animales , Ácido Glutámico/farmacología , Ratones , Ratones Noqueados , Neuronas , Ratas , Receptores de Glutamato Metabotrópico/metabolismo , Tálamo/metabolismo
17.
Mol Pharmacol ; 80(2): 267-80, 2011 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-21543522

RESUMEN

At the dimer interface of the extracellular ligand-binding domain of α-amino-3-hydroxy-5-methylisoxazole-4-propionic acid (AMPA) receptors a hydrophilic pocket is formed that is known to interact with two classes of positive allosteric modulators, represented by cyclothiazide and the ampakine 2H,3H,6aH-pyrrolidino(2,1-3',2')1,3-oxazino(6',5'-5,4)benzo(e)1,4-dioxan-10-one (CX614). Here, we present structural and functional data on two new positive allosteric modulators of AMPA receptors, phenyl-1,4-bis-alkylsulfonamide (CMPDA) and phenyl-1,4-bis-carboxythiophene (CMPDB). Crystallographic data show that these compounds bind within the modulator-binding pocket and that substituents of each compound overlap with distinct moieties of cyclothiazide and CX614. The goals of the present study were to determine 1) the degree of modulation by CMPDA and CMPDB of AMPA receptor deactivation and desensitization; 2) whether these compounds are splice isoform-selective; and 3) whether predictions of mechanism of action could be inferred by comparing molecular interactions between the ligand-binding domain and each compound with those of cyclothiazide and CX614. CMPDB was found to be more isoform-selective than would be predicted from initial binding assays. It is noteworthy that these new compounds are both more potent and more effective and may be more clinically relevant than the AMPA receptor modulators described previously.


Asunto(s)
Fármacos actuantes sobre Aminoácidos Excitadores/química , Receptores AMPA/antagonistas & inhibidores , Receptores AMPA/fisiología , Regulación Alostérica/fisiología , Animales , Sitios de Unión/fisiología , Cristalografía por Rayos X/métodos , Fármacos actuantes sobre Aminoácidos Excitadores/metabolismo , Células HEK293 , Humanos , Oxazinas/química , Oxazinas/metabolismo , Estructura Secundaria de Proteína , Estructura Terciaria de Proteína , Ratas , Receptores AMPA/metabolismo , Relación Estructura-Actividad
18.
Mol Pharmacol ; 79(3): 618-26, 2011 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-21159998

RESUMEN

Dual orthosteric agonists of metabotropic glutamate 2 (mGlu2) and mGlu3 receptors are being developed as novel antipsychotic agents devoid of the adverse effects of conventional antipsychotics. Therefore, these drugs could be helpful for the treatment of psychotic symptoms associated with Alzheimer's disease (AD). In experimental animals, the antipsychotic activity of mGlu2/3 receptor agonists is largely mediated by the activation of mGlu2 receptors and is mimicked by selective positive allosteric modulators (PAMs) of mGlu2 receptors. We investigated the distinct influence of mGlu2 and mGlu3 receptors in mixed and pure neuronal cultures exposed to synthetic ß-amyloid protein (Aß) to model neurodegeneration occurring in AD. The mGlu2 receptor PAM, N-4'-cyano-biphenyl-3-yl)-N-(3-pyridinylmethyl)-ethanesulfonamide hydrochloride (LY566332), devoid of toxicity per se, amplified Aß-induced neurodegeneration, and this effect was prevented by the mGlu2/3 receptor antagonist (2S,1'S,2'S)-2-(9-xanthylmethyl)-2-(2'-carboxycyclopropyl)glycine (LY341495). LY566332 potentiated Aß toxicity regardless of the presence of glial mGlu3 receptors, but it was inactive when neurons lacked mGlu2 receptors. The dual mGlu2/3 receptor agonist, (-)-2-oxa-4-aminobicyclo[3.1.0]exhane-4,6-dicarboxylic acid (LY379268), was neuroprotective in mixed cultures via a paracrine mechanism mediated by transforming growth factor-ß1. LY379268 lost its protective activity in neurons grown with astrocytes lacking mGlu3 receptors, indicating that protection against Aß neurotoxicity was mediated entirely by glial mGlu3 receptors. The selective noncompetitive mGlu3 receptor antagonist, (3S)-1-(5-bromopyrimidin-2-yl)-N-(2,4-dichlorobenzyl)pyrrolidin-3-amine methanesulfonate hydrate (LY2389575), amplified Aß toxicity on its own, and, interestingly, unmasked a neurotoxic activity of LY379268, which probably was mediated by the activation of mGlu2 receptors. These data indicate that selective potentiation of mGlu2 receptors enhances neuronal vulnerability to Aß, whereas dual activation of mGlu2 and mGlu3 receptors is protective against Aß-induced toxicity.


Asunto(s)
Enfermedad de Alzheimer/tratamiento farmacológico , Péptidos beta-Amiloides/efectos de los fármacos , Antipsicóticos/farmacología , Fármacos Neuroprotectores/farmacología , Trastornos Psicóticos/tratamiento farmacológico , Receptores de Glutamato Metabotrópico/efectos de los fármacos , Enfermedad de Alzheimer/complicaciones , Enfermedad de Alzheimer/metabolismo , Aminoácidos/farmacología , Péptidos beta-Amiloides/metabolismo , Animales , Astrocitos/efectos de los fármacos , Astrocitos/metabolismo , Compuestos Bicíclicos Heterocíclicos con Puentes/farmacología , Células Cultivadas , Ratones , Ratones Noqueados , Neuronas/efectos de los fármacos , Neuronas/metabolismo , Trastornos Psicóticos/etiología , Trastornos Psicóticos/metabolismo , Piridinas/farmacología , Ratas , Ratas Sprague-Dawley , Receptores de Glutamato Metabotrópico/metabolismo , Receptores de Glutamato Metabotrópico/fisiología , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Sulfonamidas/farmacología , Factor de Crecimiento Transformador beta1/farmacología , Xantenos/farmacología
19.
J Pept Sci ; 17(5): 383-6, 2011 May.
Artículo en Inglés | MEDLINE | ID: mdl-21412957

RESUMEN

Calcitonin gene-related peptide (CGRP), a potent dilator of cerebral and dural vasculature, is known to be elevated in plasma and cerebral spinal fluid during migraine attacks. Selective blockade of the CGRP receptor offers the promise of controlling migraine headache more effectively and without the side-effects associated with the use of triptans. Our efforts to develop a novel, peptide-based CGRP antagonist focused on the C-terminal portion of the peptide which is known to bind the receptor but lack agonist properties. Extensive SAR studies of the C-terminal CGRP (27-37) region identified a novel cyclic structure: Bz-Val-Tyr-cyclo[Cys-Thr-Asp-Val-Gly-Pro-Phe-Cys]-Phe-NH(2) (23) with a kb value of 0.126 nM against the cloned human CGRP receptor. Additional SAR studies directed at enhancement of potency and improvement of physicochemical properties yielded a series of analogs with kb values in the 0.05-0.10 nM range.


Asunto(s)
Antagonistas del Receptor Peptídico Relacionado con el Gen de la Calcitonina , Péptidos/química , Péptidos/farmacología , Humanos
20.
J Assoc Res Otolaryngol ; 22(2): 95-105, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33507440

RESUMEN

Progressive non-syndromic sensorineural hearing loss (PNSHL) is the most common cause of sensory impairment, affecting more than a third of individuals over the age of 65. PNSHL includes noise-induced hearing loss (NIHL) and inherited forms of deafness, among which is delayed-onset autosomal dominant hearing loss (AD PNSHL). PNSHL is a prime candidate for genetic therapies due to the fact that PNSHL has been studied extensively, and there is a potentially wide window between identification of the disorder and the onset of hearing loss. Several gene therapy strategies exist that show potential for targeting PNSHL, including viral and non-viral approaches, and gene editing versus gene-modulating approaches. To fully explore the potential of these therapy strategies, a faithful in vitro model of the human inner ear is needed. Such models may come from induced pluripotent stem cells (iPSCs). The development of new treatment modalities by combining iPSC modeling with novel and innovative gene therapy approaches will pave the way for future applications leading to improved quality of life for many affected individuals and their families.


Asunto(s)
Terapia Genética , Pérdida Auditiva , Células Madre Pluripotentes Inducidas , Trasplante de Células Madre , Pérdida Auditiva/terapia , Humanos , Calidad de Vida
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA