Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
Artículo en Inglés | MEDLINE | ID: mdl-37743524

RESUMEN

BACKGROUND: Recent advances have been achieved in the genetic diagnosis and therapies against malignancies due to a better understanding of the molecular mechanisms underlying carcinogenesis. Since active preventive methods are currently insufficient, the further development of appropriate preventive strategies is desired. METHODS: We searched for drinks that reactivate the functions of tumor-suppressor retinoblastoma gene (RB) products and exert anti-inflammatory and antioxidant effects. We also examined whether lactic acid bacteria increased the production of the cancer-specific anti-tumor cytokine, tumor necrosis factor-related apoptosis-inducing ligand (TRAIL), in human, and examined whether the RB-reactivating drinks with lactic acid bacteria decreased azoxymethane-induced rat colon aberrant crypt foci (ACF) and aberrant crypts (ACs) in vivo. RESULTS: Kakadu plum juice and pomegranate juice reactivated RB functions, which inhibited the growth of human colon cancer LIM1215 cells by G1 phase arrest. These juices also exerted anti-inflammatory and antioxidant effects. Lactiplantibacillus (L.) pentosus S-PT84 was administered to human volunteers and increased the production of TRAIL. In an in vivo study, Kakadu plum juice with or without pomegranate juice and S-PT84 significantly decreased azoxymethane-induced rat colon ACF and ACs. CONCLUSIONS: RB is one of the most important molecules suppressing carcinogenesis, and to the best of our knowledge, this is the first study to demonstrate that natural drinks reactivated the functions of RB. As expected, Kakadu plum juice and pomegranate juice suppressed the growth of LIM1215 cells by reactivating the functions of RB, and Kakadu plum juice with or without pomegranate juice and S-PT84 inhibited rat colon ACF and ACs. Therefore, this mixed juice has potential as a novel candidate for cancer prevention.


Asunto(s)
Antioxidantes , Neoplasias , Animales , Ratas , Humanos , Carcinogénesis , Apoptosis , Azoximetano/toxicidad
2.
Biochem Biophys Res Commun ; 628: 110-115, 2022 11 05.
Artículo en Inglés | MEDLINE | ID: mdl-36084548

RESUMEN

Colorectal cancer is a significant cause of morbidity and represents a serious public health issue in many countries. The development of a breakthrough preventive method for colorectal cancer is urgently needed. Aspirin has recently been attracting attention as a cancer preventive drug, and its inhibitory effects on the development of various cancers have been reported in several large prospective studies. However, the underlying molecular mechanisms have not yet been elucidated in detail. In the present study, we attempted to identify the target proteins of aspirin using a chemical biology technique with salicylic acid, the main metabolite of aspirin. We generated salicylic acid-presenting FG beads and purified salicylic acid-binding proteins from human colorectal cancer HT-29 cells. The results obtained showed the potential of ribosomal protein S3 (RPS3) as one of the target proteins of salicylic acid. The depletion of RPS3 by siRNA reduced CDK4 expression and induced G1 phase arrest in human colorectal cancer cells. These results were consistent with the effects induced by the treatment with sodium salicylate, suggesting that salicylic acid negatively regulates the function of RPS3. Collectively, the present results show the potential of RPS3 as a novel target for salicylic acid in the protective effects of aspirin against colorectal cancer, thereby supporting RPS3 as a target molecule for cancer prevention.


Asunto(s)
Neoplasias Colorrectales , Proteínas Ribosómicas , Ácido Salicílico , Aspirina/farmacología , Neoplasias Colorrectales/genética , Neoplasias Colorrectales/metabolismo , Quinasa 4 Dependiente de la Ciclina/efectos de los fármacos , Quinasa 4 Dependiente de la Ciclina/genética , Quinasa 4 Dependiente de la Ciclina/metabolismo , Humanos , Estudios Prospectivos , ARN Interferente Pequeño , Proteínas Ribosómicas/efectos de los fármacos , Proteínas Ribosómicas/metabolismo , Ácido Salicílico/farmacología , Salicilato de Sodio
3.
J Cell Physiol ; 236(3): 1980-1995, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-32730638

RESUMEN

Fibrillins (FBNs) form mesh-like structures of microfibrils in various elastic tissues. RECK and FBN1 are co-expressed in many human tissues, suggesting a functional relationship. We found that dermal FBN1 fibers show atypical morphology in mice with reduced RECK expression (RECK-Hypo mice). Dermal FBN1 fibers in mice-lacking membrane-type 1-matrix metalloproteinase (MT1-MMP) show a similar atypical morphology, despite the current notion that MT1-MMP (a membrane-bound protease) and RECK (a membrane-bound protease inhibitor) have opposing functions. Our experiments using dermal fibroblasts indicated that RECK promotes pro-MT1-MMP activation, increases cell-associated gelatinase/collagenase activity, and decreases diffusible gelatinase/collagenase activity, while MT1-MMP stabilizes RECK in these cells. Experiments using purified proteins indicate that RECK and its binding partner ADAMTS10 keep the proteolytic activity of MT1-MMP within a certain range. These findings suggest that RECK, ADAMTS10, and MT1-MMP cooperate to support the formation of robust FBN1 fibers.


Asunto(s)
Fibrilinas/metabolismo , Proteínas Ligadas a GPI/metabolismo , Metaloproteinasa 14 de la Matriz/metabolismo , Proteínas ADAMTS/metabolismo , Animales , Línea Celular Tumoral , Colágeno/metabolismo , Elastina/metabolismo , Fibroblastos/metabolismo , Fibronectinas/metabolismo , Proteínas Ligadas a GPI/deficiencia , Gelatina/metabolismo , Células HEK293 , Humanos , Integrinas/metabolismo , Metaloproteinasa 14 de la Matriz/deficiencia , Ratones Endogámicos C57BL , Ratones Noqueados , Especificidad de Órganos , Proteolisis , Piel/metabolismo
4.
Cancer Sci ; 112(10): 4166-4175, 2021 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-34288272

RESUMEN

Various molecular-targeting drugs have markedly improved the treatment of patients with breast cancer. As yet, therapies for triple-negative breast cancer are mainly cytotoxic agents. To investigate the novel therapy for triple-negative breast cancer, we herein examined the effects of a new combination therapy comprising a RAF/MEK inhibitor CH5126766, also known as VS-6766, which we originally discovered, and eribulin. The combination of CH5126766 and eribulin potently inhibited cell growth in the triple-negative breast cancer cell lines tested. The underlying mechanism in the efficacy of this combination treatment in vitro and in vivo was due to enhanced apoptosis through the suppression of survivin and Bcl-2 family proteins. We also showed the suppressed expression of programmed cell death ligand 1 (PD-L1) in combination therapy in vivo. We found that combination therapy with eribulin and CH5126766 for triple-negative breast cancer inhibited cell growth by apoptosis and raised a possibility that immune responses through suppression of PD-L1 might partially contribute to inhibition of tumor growth, indicating the potential of this combination as a novel strategy for triple-negative breast cancer.


Asunto(s)
Protocolos de Quimioterapia Combinada Antineoplásica/uso terapéutico , Cumarinas/uso terapéutico , Furanos/uso terapéutico , Cetonas/uso terapéutico , Quinasas de Proteína Quinasa Activadas por Mitógenos/antagonistas & inhibidores , Inhibidores de Proteínas Quinasas/uso terapéutico , Proteínas Proto-Oncogénicas c-raf/antagonistas & inhibidores , Neoplasias de la Mama Triple Negativas/tratamiento farmacológico , Animales , Apoptosis/efectos de los fármacos , Antígeno B7-H1/metabolismo , Ciclo Celular/efectos de los fármacos , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Femenino , Ratones , Ratones Endogámicos BALB C , Proteína Oncogénica v-akt/metabolismo , Proteínas Proto-Oncogénicas c-bcl-2/metabolismo , Distribución Aleatoria , Survivin/metabolismo , Neoplasias de la Mama Triple Negativas/inmunología , Neoplasias de la Mama Triple Negativas/metabolismo , Ensayo de Tumor de Célula Madre
5.
Breast Cancer Res Treat ; 171(1): 43-52, 2018 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-29752686

RESUMEN

PURPOSE: Triple-negative breast cancer (TNBC) is the most aggressive subtype of breast cancer. Eribulin was approved for the treatment of metastatic breast cancer through the EMBRACE trial, and a subgroup analysis in this clinical trial indicated the efficacy of eribulin in patients with TNBC. However, the prognosis of patients with TNBC is still poor due to various molecular characteristics. Therefore, there is an urgent need for a more effective treatment for the management of TNBC. METHODS: We investigated the synergistic effect of a novel histone deacetylase (HDAC) inhibitor, OBP-801, and eribulin in TNBC cell lines because OBP-801 has been known to enhance the anti-tumor activities of other chemotherapeutic agents. The cell growth was analyzed, and the flow cytometry analysis was conducted to evaluate the effects on cell cycle and the induction of apoptosis. The mechanism underlying the enhancement of inhibition of TNBC cell growth was investigated through Western blot analyses. RESULTS: The combination treatment of OBP-801 with eribulin showed the synergistic inhibition of the growth in TNBC cells, involved with the enhancement of apoptosis. We, for the first time, found that eribulin upregulated survivin and also that OBP-801 could remarkably suppress the upregulation of survivin by eribulin. Moreover, this combination potently suppressed Bcl-xL and the MAPK pathway compared with either agent alone. CONCLUSION: We found that the combination of OBP-801 and eribulin synergistically inhibited the growth with apoptosis in TNBC cells, suggesting that this combination might be a promising novel strategy for treating TNBC patients.


Asunto(s)
Furanos/farmacología , Inhibidores de Histona Desacetilasas/farmacología , Cetonas/farmacología , Proteínas Quinasas Activadas por Mitógenos/metabolismo , Péptidos Cíclicos/farmacología , Transducción de Señal/efectos de los fármacos , Survivin/metabolismo , Neoplasias de la Mama Triple Negativas/metabolismo , Proteína bcl-X/metabolismo , Apoptosis/efectos de los fármacos , Ciclo Celular/efectos de los fármacos , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Sinergismo Farmacológico , Femenino , Humanos , Proteínas Quinasas Activadas por Mitógenos/genética , Survivin/genética , Neoplasias de la Mama Triple Negativas/genética , Proteína bcl-X/genética
6.
Int J Oncol ; 56(3): 848-856, 2020 03.
Artículo en Inglés | MEDLINE | ID: mdl-32124968

RESUMEN

Squamous cell lung carcinoma (SQCLC) is an aggressive type of lung cancer. In contrast with the marked advances that have been achieved in the treatment of lung adenocarcinoma, there are currently no effective targeted therapies for SQCLC, for with cytotoxic drugs are still the main treatment strategy. Therefore, the present study aimed to develop novel combination therapies for SQCLC. The results demonstrated that a combined treatment with the potent histone deacetylase (HDAC) inhibitor OBP­801 and the third­generation anthracycline amrubicin synergistically inhibited the viability of SQCLC cell lines by inducing apoptosis signal­regulating kinase 1 (ASK1)­dependent, as well as JNK­ and p38 mitogen­activated protein kinase (MAPK)­independent apoptosis. OBP­801 treatment strongly induced the protein expression levels of thioredoxin­interacting protein (TXNIP), and amrubicin treatment increased the levels of intracellular reactive oxygen species (ROS), which suggested that this combination oxidized and dissociated thioredoxin 2 (Trx2) from mitochondrial ASK1 and activated ASK1. Moreover, mouse xenograft experiments using human H520 SQCLC cells revealed that the co­treatment potently suppressed tumor growth in vivo. These results suggested that a combined treatment with OBP­801 and amrubicin may have potential as a therapeutic strategy for SQCLC.


Asunto(s)
Antraciclinas/administración & dosificación , Carcinoma de Pulmón de Células no Pequeñas/tratamiento farmacológico , Inhibidores de Histona Desacetilasas/administración & dosificación , Neoplasias Pulmonares/tratamiento farmacológico , MAP Quinasa Quinasa Quinasa 5/metabolismo , Péptidos Cíclicos/administración & dosificación , Animales , Antraciclinas/farmacología , Carcinoma de Pulmón de Células no Pequeñas/metabolismo , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Sinergismo Farmacológico , Femenino , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Inhibidores de Histona Desacetilasas/farmacología , Humanos , Neoplasias Pulmonares/metabolismo , Ratones , Péptidos Cíclicos/farmacología , Ensayos Antitumor por Modelo de Xenoinjerto
7.
Biol Open ; 7(10)2018 Oct 04.
Artículo en Inglés | MEDLINE | ID: mdl-30287421

RESUMEN

The tumor suppressor protein RECK has been implicated in the regulation of matrix metalloproteinases (MMPs), NOTCH-signaling and WNT7-signaling. It remains unclear, however, how broad the spectrum of RECK targets extends. To find novel RECK binding partners, we took the unbiased approach of yeast two-hybrid screening. This approach detected ADAMTS10 as a RECK-interactor. ADAMTS10 has been characterized as a metalloproteinase involved in fibrillin-rich microfibril biogenesis, and its mutations have been implicated in the connective tissue disorder Weill-Marchesani syndrome. Experiments in vitro using recombinant proteins expressed in mammalian cells indicated that RECK indeed binds ADAMTS10 directly, that RECK protects ADAMTS10 from fragmentation following chemical activation and that ADAMTS10 interferes with the activity of RECK to inhibit MT1-MMP. In cultured cells, RECK increases the amount of ADAMTS10 associated with the cells. Hence, the present study has uncovered novel interactions between two molecules of known clinical importance, RECK and ADAMTS10.This article has an associated First Person interview with the first author of the paper.

8.
Oncotarget ; 1(4): 252-64, 2010 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-21304177

RESUMEN

The membrane-anchored matrix metalloproteinase-regulator RECK is often downregulated in various types of cancers; the levels of residual RECK in resected tumors often correlate with better prognosis. Forced expression of RECK in cancer cells suppresses tumor angiogenesis, invasion, and metastasis in xenograft models. RECK is therefore a promising marker for benignancy and a potential effector in cancer therapy. We established a cell line containing two transgene systems: (1) the secreted alkaline phosphatase (SEAP) gene fused to Reck promoter and (2) the HRAS(12V) oncogene driven by the Tet-off promoter system. This cell line exhibits transformed phenotype in regular medium and flat morphology with increased SEAP activity in the presence of doxycycline, allowing the assessment of RECK-inducing activity of chemicals in the contexts of both transformed and untransformed cells. Our pilot experiments with 880 known bioactive compounds detected 34 compounds that activate RECK promoter; among these, 10 were authentic anticancer drugs. Four selected compounds up-regulated endogenous RECK protein in several human cancer cell lines. The top-ranking compound, disulfiram, strongly suppressed spontaneous lung-metastasis of human fibrosarcoma cells in nude mice. Our data demonstrate the value of this screen in discovering effective cancer therapeutics.


Asunto(s)
Antineoplásicos/farmacología , Ensayos de Selección de Medicamentos Antitumorales/métodos , Proteínas Ligadas a GPI/genética , Regiones Promotoras Genéticas , Fosfatasa Alcalina/genética , Animales , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Disulfiram/farmacología , Doxiciclina/farmacología , Descubrimiento de Drogas , Regulación Neoplásica de la Expresión Génica , Humanos , Immunoblotting , Ratones , Metástasis de la Neoplasia , Pronóstico , Proteínas Proto-Oncogénicas p21(ras)/genética , Ratas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA