Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Bases de datos
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Nano Lett ; 24(25): 7724-7731, 2024 Jun 26.
Artículo en Inglés | MEDLINE | ID: mdl-38864413

RESUMEN

Perovskite monocrystalline films are regarded as desirable candidates for the integration of high-performance optoelectronics due to their unique photophysical properties. However, the heterogeneous integration of a perovskite monocrystalline film with other semiconductors is fundamentally limited by the lattice mismatch, which hinders direct epitaxy. Herein, the van der Waals (vdW) integration strategy for 3D perovskites is developed, where perovskite monocrystalline films are epitaxially grown on the mother substrate, followed by its peeling off and transferring to arbitrary semiconductors, forming monocrystalline heterojunctions. The as-achieved CsPbBr3-Nb-doped SrTiO3 (Nb:STO) vdW p-n heterojunction exhibited comparable performance to their directly epitaxial counterpart, demonstrating the feasibility of vdW integration for 3D perovskites. Furthermore, the vdW integration could be extended to silicon substrates, rendering the CsPbBr3-n-Si and CsPbCl3-p-Si p-n heterojunction with apparent rectification behaviors and photoresponse. The vdW integration significantly enriches the selections of semiconductors hybridizing with perovskites and provides opportunities for monocrystalline perovskite optoelectronics with complex configurations and multiple functionalities.

2.
Small ; : e2402159, 2024 Apr 28.
Artículo en Inglés | MEDLINE | ID: mdl-38678535

RESUMEN

The fabrication of perovskite single crystal-based optoelectronics with improved performance is largely hindered by limited processing techniques. Particularly, the local halide composition manipulation, which dominates the bandgap and thus the formation of heterostructures and emission of multiple-wavelength light, is realized via prevalent liquid- or gas-phase anion exchange with the utilization of lithography, while the monocrystalline nature is sacrificed due to polycrystalline transition in exchange with massive defects emerging, impeding carrier separation and transportation. Thus, a damage-free and lithography-free solid-state anion exchange strategy, aiming at in situ halide manipulation in perovskite monocrystalline film, is developed. Typically, CsPbCl3 working as medium to deliver halide is van der Waals (vdW) assembled to specific spots of CsPbBr3, followed by the removal of CsPbCl3 after anion exchange, with the halide composition in contact area modulated and monocrystalline nature of CsPbBr3 preserved. CsPbBr3-CsPbBrxCl3-x monocrystalline heterostructure has been achieved without lithography. Device based on the heterostructure shows apparent rectification behavior and improved photo-response rate. Heterostructure arrays can also be constructed with customized medium crystal. Furthermore, the halide composition can be accurately tuned to enable full coverage of visible spectra. The solid-state exchange enriches the toolbox for processing vulnerable perovskite and paves the way for the integration of monocrystalline perovskite optoelectronics.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA