Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
1.
Glob Chang Biol ; 30(1): e17066, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38273563

RESUMEN

Groundwater is a vital ecosystem of the global water cycle, hosting unique biodiversity and providing essential services to societies. Despite being the largest unfrozen freshwater resource, in a period of depletion by extraction and pollution, groundwater environments have been repeatedly overlooked in global biodiversity conservation agendas. Disregarding the importance of groundwater as an ecosystem ignores its critical role in preserving surface biomes. To foster timely global conservation of groundwater, we propose elevating the concept of keystone species into the realm of ecosystems, claiming groundwater as a keystone ecosystem that influences the integrity of many dependent ecosystems. Our global analysis shows that over half of land surface areas (52.6%) has a medium-to-high interaction with groundwater, reaching up to 74.9% when deserts and high mountains are excluded. We postulate that the intrinsic transboundary features of groundwater are critical for shifting perspectives towards more holistic approaches in aquatic ecology and beyond. Furthermore, we propose eight key themes to develop a science-policy integrated groundwater conservation agenda. Given ecosystems above and below the ground intersect at many levels, considering groundwater as an essential component of planetary health is pivotal to reduce biodiversity loss and buffer against climate change.


Asunto(s)
Ecosistema , Agua Subterránea , Biodiversidad , Agua Dulce , Contaminación Ambiental
2.
Environ Res ; 214(Pt 1): 113765, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-35792169

RESUMEN

PCDD/Fs (polychlorinated dibenzo-p-dioxins/dibenzofurans) and PCBs (polychlorinated biphenyls) are ubiquitous persistent pollutants with reduced bioavailability, which bioremediation using soil fauna is still managed to treat. This research set out to: (i) study the suitability of earthworms (Eisenia fetida), alone and associated with plants (Lepidium sativum), for the decontamination of PCDD/F and PCB polluted soils in Brescia-Caffaro (Italy), at total and congener concentration levels; (ii) simulate the action of earthworms in groundwater contamination process and nutrient mobility. Five treatments were set up: (i) uncontaminated soil with E. fetida (NC); (ii) contaminated soil (C); (iii) contaminated soil with E. fetida (CEf); (iv) contaminated soil with L. sativum (CLs); (v) contaminated soil with E. fetida and L. sativum (CEfLs). PCBs and PCDD/Fs in the soil prior to testing were measured. Analysis was repeated in soil treatments and percolating water at the end of the test period (4 months). Dissolved nutrient concentrations were measured in percolated water. PCB and PCDD/F concentrations, initially 259333.33 ± 10867.89 ng/kg and 176 ± 10.69 ngTE/kg, were significantly reduced after 4 months in all treatments. Treatments did not differ in total PCBs concentration (from 160,000 ng/kg to 194,000 ng/kg), but CEfLs congeners concentrations were less environmentally threatening; CEf and CLs resulted in lower PCDD/Fs concentration (79.43 ± 3.34 ngTE/kg and 73.03 ± 4.09 ngTE/kg, respectively). The action of earthworms could enhance contaminants and soluble reactive phosphorous content in percolating water.


Asunto(s)
Oligoquetos , Bifenilos Policlorados , Dibenzodioxinas Policloradas , Contaminantes del Suelo , Animales , Dibenzofuranos , Dibenzofuranos Policlorados , Suelo , Agua
3.
Curr Microbiol ; 75(9): 1147-1155, 2018 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-29766233

RESUMEN

The environmental factors controlling the abundance of Bacteria and Archaea in lagoon ecosystems are poorly understood. Here, an integrated physico-chemical, biogeochemical, and microbiological survey was applied in the Sacca di Goro lagoon (Po River Delta, Italy) to investigate the variation of bacterial and archaeal abundance, as assessed by Fluorescence In Situ Hybridization, along winter and summer environmental gradients. We hypothesised that bacterial and archaeal cells respond differentially to physico-chemical parameters of the sediment, which can be manifested in variations of total cells number. Our results suggest that Archaea are an important component of microbial communities (up to 20%) and they are also quite constant along the sediment depth investigated, while Bacteria tend to decrease in the subsurface sediments. The abiotic (i.e. temperature, ammonium, pH) and trophic parameters (i.e. chlorophyll a) explain differentially the variations of bacterial and archaeal distribution, and raise interesting questions about the ecological significance of the microbial composition in this area.


Asunto(s)
Archaea/crecimiento & desarrollo , Bacterias/crecimiento & desarrollo , Ambiente , Sedimentos Geológicos/química , Sedimentos Geológicos/microbiología , Humedales , Archaea/citología , Bacterias/citología , Biodiversidad , Microbiología Ambiental , Hibridación Fluorescente in Situ , Italia , Región Mediterránea , Estaciones del Año
4.
Sci Total Environ ; 912: 169444, 2024 Feb 20.
Artículo en Inglés | MEDLINE | ID: mdl-38114027

RESUMEN

The identification of ecologically sound thresholds represents an important step toward improving the ecological status of rivers through appropriate measures to contain nutrient loads. The aim of the present study was to estimate phosphorus and nitrogen concentrations compatible with the achievement of the "good" ecological status of rivers from data collected in the Po River District, the largest hydrographic system in Italy. For this purpose, relationships between the diatom index used in Italy for the national assessment of the stream ecological status, the ICMi (Intercalibration Common Metric index), and total phosphorus and nitrate concentrations were analyzed using monitoring data collected between 2009 and 2019. The Po River Basin encompasses five distinct river types, from Alpine to Mediterranean to Lowlands, characterized by different anthropogenic pressures and water quality. Through regression analysis between the ICMi and nutrient concentrations, we estimated ranges of the latter values corresponding to a "good" ecological status for each river type. The resulting thresholds are far more stringent than the limits set by the Italian legislation for water quality classification. This is particularly true for total phosphorus, whose threshold value should be roughly halved for all river types. For nitrates, the results are more differentiated according to river type: the estimated thresholds are much more stringent than those currently in use for siliceous Alpine and Mediterranean rivers. Moreover, the availability of such a large database allowed also to assess the influence of one nutrient over the other on the diatom community and to highlight some critical issues in the formulation of ICMi for Mediterranean rivers.

5.
Data Brief ; 54: 110449, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38711741

RESUMEN

In the last few decades, perennial mountain streams are becoming increasingly intermittent, due to global climate change and anthropogenic pressures. This phenomenon leads to negative effects on benthic communities' biodiversity and river ecosystems functionality. However, the impact of flow intermittency in previously perennial Alpine streams is still poorly investigated. This dataset consists of all the data collected during a spring sampling campaign performed in April-May 2017 along 13 mountain streams located in the SW Italian Alps. These watercourses have been selected because it was possible to identify two different sampling sites: one perennial, where water has always been flowing throughout the years, and one intermittent, which showed flowing water during the sampling campaign but, in the last decade, has experienced summer dry phases. All the sites have been characterized defining the microhabitats in which samples were retrieved, and physico-chemical data were collected at each site. Biological sampling included benthic macroinvertebrates and diatoms. Therefore, the present dataset offers various biological, ecological and physico-chemical information regarding Alpine streams which have recently become intermittent. Potentially, it could be used for comparisons with different benthic communities present in mountain rivers worldwide which are facing drying events too. The broad range of information present in this dataset offers the possibility to examine only the perennial sites themselves, as an example of good river functionality due to continuous flowing water, or only the intermittent ones, to better understand the effects of drying events on these peculiar ecosystems.

6.
Biol Rev Camb Philos Soc ; 97(5): 1967-1998, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-35770724

RESUMEN

Identification of ecosystem services, i.e. the contributions that ecosystems make to human well-being, has proven instrumental in galvanising public and political support for safeguarding biodiversity and its benefits to people. Here we synthesise the global evidence on ecosystem services provided and disrupted by freshwater bivalves, a heterogenous group of >1200 species, including some of the most threatened (in Unionida) and invasive (e.g. Dreissena polymorpha) taxa globally. Our systematic literature review resulted in a data set of 904 records from 69 countries relating to 24 classes of provisioning (N = 189), cultural (N = 491) and regulating (N = 224) services following the Common International Classification of Ecosystem Services (CICES). Prominent ecosystem services included (i) the provisioning of food, materials and medicinal products, (ii) knowledge acquisition (e.g. on water quality, past environments and historical societies), ornamental and other cultural contributions, and (iii) the filtration, sequestration, storage and/or transformation of biological and physico-chemical water properties. About 9% of records provided evidence for the disruption rather than provision of ecosystem services. Synergies and trade-offs of ecosystem services were observed. For instance, water filtration by freshwater bivalves can be beneficial for the cultural service 'biomonitoring', while negatively or positively affecting food consumption or human recreation. Our evidence base spanned a total of 91 genera and 191 species, dominated by Unionida (55% of records, 76% of species), Veneroida (21 and 9%, respectively; mainly Corbicula spp.) and Myoida (20 and 4%, respectively; mainly Dreissena spp.). About one third of records, predominantly from Europe and the Americas, related to species that were non-native to the country of study. The majority of records originated from Asia (35%), with available evidence for 23 CICES classes, as well as Europe (29%) and North America (23%), where research was largely focused on 'biomonitoring'. Whilst the earliest record (from 1949) originated from North America, since 2000, annual output of records has increased rapidly in Asia and Europe. Future research should focus on filling gaps in knowledge in lesser-studied regions, including Africa and South America, and should look to provide a quantitative valuation of the socio-economic costs and benefits of ecosystem services shaped by freshwater bivalves.


Asunto(s)
Bivalvos , Ecosistema , Animales , Biodiversidad , Agua Dulce , Humanos , Calidad del Agua
7.
Water Res ; 190: 116727, 2021 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-33333436

RESUMEN

Although sewage diversion outside of a lake's watershed is now ordinary practice in the restoration of eutrophic lakes, often the observed recovery is slower than expected and the internal load from the lake anoxic sediments is identified as a possible reason. However, in the case of combined sewer, the quantification of the residual nutrient load discharged from sewer spillways must also be questioned. In this paper, the diversion efficiency of the sewer system along the east coast of Lake Iseo, a prealpine Italian lake where eutrophication effects are still severe, is investigated. To this purpose, a representative part of the sewer system was modelled by PCSWMM and calibrated by using an extensive series of discharge measurements. Water quality monitoring during wet weather periods reveals that the first flush is common in tributary sewers, whereas it is absent along the main collector. Moreover, flow discharges are strongly affected by infiltration waters, which are controlled by the lake water level. The calibrated model, including infiltration modeling, was used to assess the annual overflow volumes and the nutrient load through a continuous 10-year simulation. Simulations were conducted both with regard to the current conditions and to a climate change scenario. Results show that the discharged residual load is at least 7 times larger than the design value, with the water infiltration contributing to 17% to the overflow volume and that non-structural practices could considerably reduce the overall impact of the sewer. This research thus provides important insight into the potential impact of combined sewer overflows on lacustrine environments and addresses effective mitigation measures in similar contexts.


Asunto(s)
Eutrofización , Lagos , Nutrientes , Aguas del Alcantarillado , Calidad del Agua
8.
Sci Total Environ ; 703: 134804, 2020 Feb 10.
Artículo en Inglés | MEDLINE | ID: mdl-31757540

RESUMEN

Over recent decades, a great number of pit lakes have been formed, as a result of sand and gravel quarrying in river floodplains that are often also heavily exploited for agriculture. These lakes can act as nutrient filters and regulate the nitrogen pollution resulting from agricultural fertiliser use. In this paper we report the main outcomes of a study of the major nitrogen pathways in five pit lakes of differing trophic status, located along a lowland stretch of the Po river (Northern Italy). Benthic nitrogen fluxes and denitrification rates were determined in the hypolimnion and denitrification and reactive nitrogen assimilation by microphytobenthos in the littoral zone. We tested the hypothesis that lake depth and trophic status can impair denitrification and/or reactive nitrogen assimilation, compromising the function of the lakes as nutrient filters. In the studied lakes, denitrification and reactive nitrogen assimilation by primary producer communities accounted for substantial nitrogen removal rates, which were among the highest reported in the literature. Benthic nitrogen fluxes and denitrification varied between and within lakes, with depth. The littoral zone and surface waters also supported primary production, favouring nitrogen assimilation and temporal retention in the primary producer biomass. In all lakes, denitrification rates decreased from littoral to hypolimnetic sites. Denitrification rates and net nitrogen assimilation also diminished from oligotrophic to eutrophic conditions. To some extent, in eutrophic lakes there was a transfer of primary production from the benthos to the water column and the benthic system became heterotrophic, reducing the capacity for net nitrogen removal. Overall these results highlight that floodplain pit lakes can provide ecosystem services formerly supplied by natural wetlands. An important factor for management is the development of extensive littoral and shallow water zones, which are critical for maximising the nitrogen removal.

9.
Front Microbiol ; 11: 612700, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33584578

RESUMEN

The interaction between microbial communities and benthic algae as nitrogen (N) regulators in poorly illuminated sediments is scarcely investigated in the literature. The role of sediments as sources or sinks of N was analyzed in spring and summer in sandy and muddy sediments in a turbid freshwater estuary, the Curonian Lagoon, Lithuania. Seasonality in this ecosystem is strongly marked by phytoplankton community succession with diatoms dominating in spring and cyanobacteria dominating in summer. Fluxes of dissolved gas and inorganic N and rates of denitrification of water column nitrate (Dw) and of nitrate produced by nitrification (Dn) and sedimentary features, including the macromolecular quality of organic matter (OM), were measured. Shallow/sandy sites had benthic diatoms, while at deep/muddy sites, settled pelagic microalgae were found. The OM in surface sediments was always higher at muddy than at sandy sites, and biochemical analyses revealed that at muddy sites the OM nutritional value changed seasonally. In spring, sandy sediments were net autotrophic and retained N, while muddy sediments were net heterotrophic and displayed higher rates of denitrification, mostly sustained by Dw. In summer, benthic oxygen demand increased dramatically, whereas denitrification, mostly sustained by Dn, decreased in muddy and remained unchanged in sandy sediments. The ratio between denitrification and oxygen demand was significantly lower in sandy compared with muddy sediments and in summer compared with spring. Muddy sediments displayed seasonally distinct biochemical composition with a larger fraction of lipids coinciding with cyanobacteria blooms and a seasonal switch from inorganic N sink to source. Sandy sediments had similar composition in both seasons and retained inorganic N also in summer. Nitrogen uptake by microphytobenthos at sandy sites always exceeded the amount loss via denitrification, and benthic diatoms appeared to inhibit denitrification, even in the dark and under conditions of elevated N availability. In spring, denitrification attenuated N delivery from the estuary to the coastal area by nearly 35%. In summer, denitrification was comparable (~100%) with the much lower N export from the watershed, but N loss was probably offset by large rates of N-fixation.

10.
Sci Total Environ ; 639: 1574-1587, 2018 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-29929320

RESUMEN

The aim of the present study is to analyze relationships between land uses and anthropogenic pressures, and nutrient loadings in the Po river basin, the largest hydrographic system in Italy, together with the changes they have undergone in the last half century. Four main points are addressed: 1) spatial distribution and time evolution of land uses and associated N and P budgets; 2) long-term trajectories of the reactive N and P loadings exported from the Po river; 3) relationships between budgets and loadings; 4) brief review of relationships between N and P loadings and eutrophication in the Northern Adriatic Sea. Net Anthropogenic N (NANI) and P (NAPI) inputs, and N and P surpluses in the cropland between 1960 and 2010 were calculated. The annual loadings of dissolved inorganic nitrogen (DIN) and soluble reactive phosphorus (SRP) exported by the river were calculated for the whole 1968-2016 period. N and P loadings increased from the 1960s to the 1980s, as NAPI and NANI and N and P surpluses increased. Thereafter SRP declined, while DIN remained steadily high, resulting in a notable increase of the N:P molar ratio from 47 to 100. In the same period, the Po river watershed underwent a trajectory from net autotrophy to net heterotrophy, which reflected its specialization toward livestock farming. This study also demonstrates that in a relatively short time, i.e. almost one decade, N and P sources were relocated within the watershed, due to discordant environmental policies and mismanagement on the local scale, with frequent episodes of heavy pollution. This poses key questions about the spatial scale on which problems have to be dealt with in order to harmonize policies, set sustainable management goals, restore river basins and, ultimately, protect the adjacent coastal seas from eutrophication.

11.
Mar Pollut Bull ; 127: 524-535, 2018 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-29475692

RESUMEN

As bivalve aquaculture expands globally, an understanding of how it alters nitrogen is important to minimize impacts. This study investigated nitrogen cycling associated with clam aquaculture in the Sacca di Goro, Italy (Ruditapes philipinarum) and the Eastern Shore, USA (Mercenaria mercenaria). Ammonium and dissolved oxygen fluxes were positively correlated with clam biomass; R. philippinarum consumed ~6 times more oxygen and excreted ~5 times more NH4+ than M. mercenaria. There was no direct effect of clams on denitrification or dissimilatory nitrate reduction to ammonium (DNRA); rather, nitrate availability controlled the competition between these microbial pathways. Highest denitrification rates were measured at sites where both water column nitrate and nitrification were elevated due to high densities of a burrowing amphipod (Corophium sp.). DNRA exceeded denitrification where water column nitrate was low and nitrification was suppressed in highly reduced sediment, potentially due to low hydrologic flow and high clam densities.


Asunto(s)
Acuicultura , Bivalvos/metabolismo , Monitoreo del Ambiente/métodos , Sedimentos Geológicos/química , Ciclo del Nitrógeno , Compuestos de Amonio/análisis , Animales , Desnitrificación , Hidrología , Italia , Nitrificación , Nitrógeno/análisis
12.
Mar Pollut Bull ; 50(11): 1386-97, 2005 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-16045942

RESUMEN

The aim of this study was to quantify the N removal efficiency of an Ulva-based phytotreatment system receiving wastewaters from a land-based fish farm (Orbetello, Italy), to identify the main biogeochemical pathways involved and to provide basic guidelines for treatment implementation and management. Fluxes of O2 and nutrients in bare and in Ulva colonised sediments were assessed by light/dark core incubations; denitrification by the isotope pairing technique and Ulva growth by in situ incubation of macroalgal disks in cages. O2 and nutrient budgets were estimated as sum of individual processes and further verified by 24-h investigations of overall inlet and outlet loads. Ulva uptake (up to 7.8 mmol Nm(-2) h(-1)) represented a net sink for water column and regenerated NH4+ whilst N removal via denitrification (10-170 micromol Nm(-2) h(-1)) accounted for a small percentage of inorganic nitrogen load (<5%). Laboratory experiments demonstrated a high potential for denitrification (over 800 microM Nm(-2) h(-1)) indicating that N loss could be enhanced. The control of Ulva standing stocks by optimised harvesting of surplus biomass may represent an effective strategy to maximise DIN removal and could result in the assimilation of approximately 50% of produced inorganic nitrogen.


Asunto(s)
Acuicultura , Nitrógeno/química , Nitrógeno/metabolismo , Ulva/metabolismo , Eliminación de Residuos Líquidos , Contaminantes Químicos del Agua/análisis , Purificación del Agua/métodos , Análisis de Varianza , Animales , Carbono/metabolismo , Sedimentos Geológicos/análisis , Italia , Oxígeno/metabolismo , Ulva/crecimiento & desarrollo
13.
Mar Pollut Bull ; 62(6): 1276-87, 2011 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-21453937

RESUMEN

Effects of suspended mussel and infaunal clam cultivation on sediment characteristics, and benthic organic and inorganic nitrogen and phosphorus fluxes were compared in a shallow coastal lagoon. The two species had different impacts on sediment features, but both created "hotspots" of nutrient fluxes with annual N and P regeneration rates being 4.9 and 13.5 (mussel) and 4.5 and 14.9 (clams) fold greater than those of unfarmed control sediments. Mussel farming also caused considerable nutrient regeneration within the water column with the mussel ropes contributing ∼25% of total inorganic N and P production and at times dominating the sediments (e.g. 95% of SRP production in summer and 45% of DIN production in winter). Such nutrient regeneration rates seriously question the proposal that suspension-feeding bivalves act as a eutrophication buffer, especially during summer when nutrient regeneration rates are maximal, but other nutrient sources (freshwater run-off and unfarmed sediments) are at their lowest.


Asunto(s)
Acuicultura/estadística & datos numéricos , Bivalvos/crecimiento & desarrollo , Nitrógeno/análisis , Fósforo/análisis , Contaminantes Químicos del Agua/análisis , Animales , Eutrofización , Sedimentos Geológicos/química , Estaciones del Año , Agua de Mar/química , Contaminación Química del Agua/estadística & datos numéricos
14.
Water Res ; 44(9): 2715-24, 2010 May.
Artículo en Inglés | MEDLINE | ID: mdl-20206960

RESUMEN

We analyzed benthic fluxes of inorganic nitrogen, denitrification and dissimilatory nitrate reduction to ammonium (DNRA) rates in hypolimnetic sediments of lowland lakes. Two neighbouring mesotrophic (Ca' Stanga; CS) and hypertrophic (Lago Verde; LV) lakes, which originated from sand and gravel mining, were considered. Lakes are affected by high nitrate loads (0.2-0.7 mM) and different organic loads. Oxygen consumption, dissolved inorganic carbon, methane and nitrogen fluxes, denitrification and DNRA were measured under summer thermal stratification and late winter overturn. Hypolimnetic sediments of CS were a net sink of dissolved inorganic nitrogen (-3.5 to -4.7 mmol m(-2)d(-1)) in both seasons due to high nitrate consumption. On the contrary, LV sediments turned from being a net sink during winter overturn (-3.5 mmol m(-2)d(-1)) to a net source of dissolved inorganic nitrogen under summer conditions (8.1 mmol m(-2)d(-1)), when significant ammonium regeneration was measured at the water-sediment interface. Benthic denitrification (0.7-4.1 mmol m(-2)d(-1)) accounted for up to 84-97% of total NO(3)(-) reduction and from 2 to 30% of carbon mineralization. It was mainly fuelled by water column nitrate. In CS, denitrification rates were similar in winter and in summer, while in LV summer rates were 4 times lower. DNRA rates were generally low in both lakes (0.07-0.12 mmol m(-2)d(-1)). An appreciable contribution of DNRA was only detected in the more reducing sediments of LV in summer (15% of total NO(3)(-) reduction), while during the same period only 3% of reduced NO(3)(-) was recycled into ammonium in CS. Under summer stratification benthic denitrification was mainly nitrate-limited due to nitrate depletion in hypolimnetic waters and parallel oxygen depletion, hampering nitrification. Organic enrichment and reducing conditions in the hypolimnetic sediment shifted nitrate reduction towards more pronounced DNRA, which resulted in the inorganic nitrogen recycling and retention within the bottom waters. The prevalence of DNRA could favour the accumulation of mineral nitrogen with detrimental effects on ecosystem processes and water quality.


Asunto(s)
Eutrofización , Agua Dulce/química , Sedimentos Geológicos/química , Nitratos/química , Temperatura , Compuestos de Calcio , Ecosistema , Compuestos Orgánicos , Oxidación-Reducción , Óxidos , Compuestos de Amonio Cuaternario
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA