Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 139
Filtrar
Más filtros

Bases de datos
Tipo del documento
Intervalo de año de publicación
1.
Nature ; 619(7971): 844-850, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-37380778

RESUMEN

The tumour microenvironment plays an essential role in malignancy, and neurons have emerged as a key component of the tumour microenvironment that promotes tumourigenesis across a host of cancers1,2. Recent studies on glioblastoma (GBM) highlight bidirectional signalling between tumours and neurons that propagates a vicious cycle of proliferation, synaptic integration and brain hyperactivity3-8; however, the identity of neuronal subtypes and tumour subpopulations driving this phenomenon is incompletely understood. Here we show that callosal projection neurons located in the hemisphere contralateral to primary GBM tumours promote progression and widespread infiltration. Using this platform to examine GBM infiltration, we identified an activity-dependent infiltrating population present at the leading edge of mouse and human tumours that is enriched for axon guidance genes. High-throughput, in vivo screening of these genes identified SEMA4F as a key regulator of tumourigenesis and activity-dependent progression. Furthermore, SEMA4F promotes the activity-dependent infiltrating population and propagates bidirectional signalling with neurons by remodelling tumour-adjacent synapses towards brain network hyperactivity. Collectively our studies demonstrate that subsets of neurons in locations remote to primary GBM promote malignant progression, and also show new mechanisms of glioma progression that are regulated by neuronal activity.


Asunto(s)
Neoplasias Encefálicas , Carcinogénesis , Glioma , Neuronas , Microambiente Tumoral , Humanos , Encéfalo/patología , Neoplasias Encefálicas/patología , Neoplasias Encefálicas/fisiopatología , Carcinogénesis/patología , Línea Celular Tumoral , Transformación Celular Neoplásica/patología , Glioblastoma/patología , Glioblastoma/fisiopatología , Glioma/patología , Glioma/fisiopatología , Neuronas/patología , Proliferación Celular , Sinapsis , Progresión de la Enfermedad , Animales , Ratones , Axones , Cuerpo Calloso/patología , Vías Nerviosas
2.
Cell ; 145(7): 1036-48, 2011 Jun 24.
Artículo en Inglés | MEDLINE | ID: mdl-21703448

RESUMEN

Ion channel mutations are an important cause of rare Mendelian disorders affecting brain, heart, and other tissues. We performed parallel exome sequencing of 237 channel genes in a well-characterized human sample, comparing variant profiles of unaffected individuals to those with the most common neuronal excitability disorder, sporadic idiopathic epilepsy. Rare missense variation in known Mendelian disease genes is prevalent in both groups at similar complexity, revealing that even deleterious ion channel mutations confer uncertain risk to an individual depending on the other variants with which they are combined. Our findings indicate that variant discovery via large scale sequencing efforts is only a first step in illuminating the complex allelic architecture underlying personal disease risk. We propose that in silico modeling of channel variation in realistic cell and network models will be crucial to future strategies assessing mutation profile pathogenicity and drug response in individuals with a broad spectrum of excitability disorders.


Asunto(s)
Epilepsia/genética , Perfilación de la Expresión Génica , Canales Iónicos/genética , Polimorfismo de Nucleótido Simple , Simulación por Computador , Epistasis Genética , Hipocampo/metabolismo , Humanos , Mutación Missense , Neuronas/metabolismo , Medición de Riesgo
3.
Cell ; 147(6): 1384-96, 2011 Dec 09.
Artículo en Inglés | MEDLINE | ID: mdl-22153080

RESUMEN

The double-stranded RNA-activated protein kinase (PKR) was originally identified as a sensor of virus infection, but its function in the brain remains unknown. Here, we report that the lack of PKR enhances learning and memory in several behavioral tasks while increasing network excitability. In addition, loss of PKR increases the late phase of long-lasting synaptic potentiation (L-LTP) in hippocampal slices. These effects are caused by an interferon-γ (IFN-γ)-mediated selective reduction in GABAergic synaptic action. Together, our results reveal that PKR finely tunes the network activity that must be maintained while storing a given episode during learning. Because PKR activity is altered in several neurological disorders, this kinase presents a promising new target for the treatment of cognitive dysfunction. As a first step in this direction, we show that a selective PKR inhibitor replicates the Pkr(-/-) phenotype in WT mice, enhancing long-term memory storage and L-LTP.


Asunto(s)
Hipocampo/fisiología , Interferón gamma/metabolismo , Potenciación a Largo Plazo , eIF-2 Quinasa/antagonistas & inhibidores , eIF-2 Quinasa/metabolismo , Animales , Electrofisiología , Técnicas In Vitro , Interferón gamma/genética , Ratones , Ratones de la Cepa 129 , Ratones Endogámicos C57BL , Sinapsis , eIF-2 Quinasa/genética
4.
Nature ; 578(7793): 166-171, 2020 02.
Artículo en Inglés | MEDLINE | ID: mdl-31996845

RESUMEN

Glioblastoma is a universally lethal form of brain cancer that exhibits an array of pathophysiological phenotypes, many of which are mediated by interactions with the neuronal microenvironment1,2. Recent studies have shown that increases in neuronal activity have an important role in the proliferation and progression of glioblastoma3,4. Whether there is reciprocal crosstalk between glioblastoma and neurons remains poorly defined, as the mechanisms that underlie how these tumours remodel the neuronal milieu towards increased activity are unknown. Here, using a native mouse model of glioblastoma, we develop a high-throughput in vivo screening platform and discover several driver variants of PIK3CA. We show that tumours driven by these variants have divergent molecular properties that manifest in selective initiation of brain hyperexcitability and remodelling of the synaptic constituency. Furthermore, secreted members of the glypican (GPC) family are selectively expressed in these tumours, and GPC3 drives gliomagenesis and hyperexcitability. Together, our studies illustrate the importance of functionally interrogating diverse tumour phenotypes driven by individual, yet related, variants and reveal how glioblastoma alters the neuronal microenvironment.


Asunto(s)
Neoplasias Encefálicas/enzimología , Fosfatidilinositol 3-Quinasa Clase I/metabolismo , Glioblastoma/enzimología , Animales , Neoplasias Encefálicas/patología , Carcinogénesis/genética , Carcinogénesis/metabolismo , Fosfatidilinositol 3-Quinasa Clase I/química , Fosfatidilinositol 3-Quinasa Clase I/genética , Modelos Animales de Enfermedad , Glioblastoma/patología , Glipicanos/metabolismo , Ratones
5.
Int J Mol Sci ; 24(1)2023 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-36614191

RESUMEN

Glioblastoma is the most common malignant primary brain tumor. Recent studies have demonstrated that excitatory or activity-dependent signaling-both synaptic and non-synaptic-contribute to the progression of glioblastoma. Glutamatergic receptors may be stimulated via neuron-tumor synapses or release of glutamate by the tumor itself. Ion currents generated by these receptors directly alter the structure of membrane adhesion molecules and cytoskeletal proteins to promote migratory behavior. Additionally, the hyperexcitable milieu surrounding glioma increases the rate at which tumor cells proliferate and drive recurrent disease. Inhibition of excitatory signaling has shown to effectively reduce its pro-migratory and -proliferative effects.


Asunto(s)
Glioblastoma , Fenómenos Fisiológicos del Sistema Nervioso , Humanos , Glioblastoma/metabolismo , Neuronas/metabolismo , Sinapsis/metabolismo , Transducción de Señal , Moléculas de Adhesión Celular Neuronal/metabolismo
6.
Brain ; 144(9): 2863-2878, 2021 10 22.
Artículo en Inglés | MEDLINE | ID: mdl-33768249

RESUMEN

Spreading depolarization is a slowly propagating wave of massive cellular depolarization associated with acute brain injury and migraine aura. Genetic studies link depolarizing molecular defects in Ca2+ flux, Na+ current in interneurons, and glial Na+-K+ ATPase with spreading depolarization susceptibility, emphasizing the important roles of synaptic activity and extracellular ionic homeostasis in determining spreading depolarization threshold. In contrast, although gene mutations in voltage-gated potassium ion channels that shape intrinsic membrane excitability are frequently associated with epilepsy susceptibility, it is not known whether epileptogenic mutations that regulate membrane repolarization also modify spreading depolarization threshold and propagation. Here we report that the Kcnq2/Kv7.2 potassium channel subunit, frequently mutated in developmental epilepsy, is a spreading depolarization modulatory gene with significant control over the seizure-spreading depolarization transition threshold, bi-hemispheric cortical expression, and diurnal temporal susceptibility. Chronic DC-band cortical EEG recording from behaving conditional Kcnq2 deletion mice (Emx1cre/+::Kcnq2flox/flox) revealed spontaneous cortical seizures and spreading depolarization. In contrast to the related potassium channel deficient model, Kv1.1-KO mice, spontaneous cortical spreading depolarizations in Kcnq2 cKO mice are tightly coupled to the terminal phase of seizures, arise bilaterally, and are observed predominantly during the dark phase. Administration of the non-selective Kv7.2 inhibitor XE991 to Kv1.1-KO mice partly reproduced the Kcnq2 cKO-like spreading depolarization phenotype (tight seizure coupling and bilateral symmetry) in these mice, indicating that Kv7.2 currents can directly and actively modulate spreading depolarization properties. In vitro brain slice studies confirmed that Kcnq2/Kv7.2 depletion or pharmacological inhibition intrinsically lowers the cortical spreading depolarization threshold, whereas pharmacological Kv7.2 activators elevate the threshold to multiple depolarizing and hypometabolic spreading depolarization triggers. Together these results identify Kcnq2/Kv7.2 as a distinctive spreading depolarization regulatory gene, and point to spreading depolarization as a potentially significant pathophysiological component of KCNQ2-linked epileptic encephalopathy syndromes. Our results also implicate KCNQ2/Kv7.2 channel activation as a potential adjunctive therapeutic target to inhibit spreading depolarization incidence.


Asunto(s)
Encéfalo/fisiología , Depresión de Propagación Cortical/fisiología , Canal de Potasio KCNQ2/metabolismo , Proteínas del Tejido Nervioso/metabolismo , Anilidas/farmacología , Animales , Encéfalo/efectos de los fármacos , Compuestos Bicíclicos con Puentes/farmacología , Carbamatos/farmacología , Depresión de Propagación Cortical/efectos de los fármacos , Canal de Potasio KCNQ2/agonistas , Canal de Potasio KCNQ2/deficiencia , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Proteínas del Tejido Nervioso/agonistas , Proteínas del Tejido Nervioso/deficiencia , Técnicas de Cultivo de Órganos , Fenilendiaminas/farmacología
7.
Neurobiol Dis ; 153: 105329, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-33711494

RESUMEN

Children with severe intellectual disability have an increased prevalence of refractory seizures. Steroid treatment may improve seizure outcomes, but the mechanism remains unknown. Here we demonstrate that short term, daily delivery of an exogenous steroid 17ß-estradiol (40 ng/g) in early postnatal life significantly reduced the number and severity of seizures, but did not improve behavioural deficits, in mice modelling mutations in the Aristaless-related homeobox gene (ARX), expanding the first (PA1) or second (PA2) polyalanine tract. Frequency of observed seizures on handling (n = 14/treatment/genotype) were significantly reduced in PA1 (32% reduction) and more modestly reduced in PA2 mice (14% reduction) with steroid treatment compared to vehicle. Spontaneous seizures were assessed (n = 7/treatment/genotype) at 7 weeks of age coinciding with a peak of seizure activity in untreated mice. PA1 mice treated with steroids no longer present with the most severe category of prolonged myoclonic seizures. Treated PA2 mice had an earlier onset of seizures coupled with a subsequent reduction in seizures later in postnatal life, with a complete absence of any seizures during the analysis at 7 weeks of age. Despite the reduction in seizures, 17ß-estradiol treated mice showed no improvement in behavioural or cognitive outcomes in adulthood. For the first time we show that these deficits due to mutations in Arx are already present before seizure onset and do not worsen with seizures. ARX is a transcription factor and Arx PA mutant mice have deregulated transcriptome profiles in the developing embryonic brain. At postnatal day 10, treatment completion, RNAseq identified 129 genes significantly deregulated (Log2FC > ± 0.5, P-value<0.05) in the frontal cortex of mutant compared to wild-type mice. This list reflects genes deregulated in disease and was particularly enriched for known genes in neurodevelopmental disorders and those involved in signalling and developmental pathways. 17ß-estradiol treatment of mutant mice significantly deregulated 295 genes, with only 23 deregulated genes overlapping between vehicle and steroid treated mutant mice. We conclude that 17ß-estradiol treatment recruits processes and pathways to reduce the frequency and severity of seizures in the Arx PA mutant mice but does not precisely correct the deregulated transcriptome nor improve mortality or behavioural and cognitive deficits.


Asunto(s)
Conducta Animal/efectos de los fármacos , Estradiol/farmacología , Estrógenos/farmacología , Regulación de la Expresión Génica/efectos de los fármacos , Proteínas de Homeodominio/genética , Convulsiones/genética , Factores de Transcripción/genética , Animales , Animales Recién Nacidos , Intervención Médica Temprana , Regulación de la Expresión Génica/genética , Humanos , Recién Nacido , Discapacidad Intelectual/genética , Discapacidad Intelectual/fisiopatología , Ratones , Trastornos del Neurodesarrollo/genética , Péptidos/genética , Convulsiones/fisiopatología , Espasmos Infantiles/genética , Espasmos Infantiles/fisiopatología
8.
Brain ; 143(1): 161-174, 2020 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-31800012

RESUMEN

Inborn errors of CACNA1A-encoded P/Q-type calcium channels impair synaptic transmission, producing early and lifelong neurological deficits, including childhood absence epilepsy, ataxia and dystonia. Whether these impairments owe their pathologies to defective channel function during the critical period for thalamic network stabilization in immature brain remains unclear. Here we show that mice with tamoxifen-induced adult-onset ablation of P/Q channel alpha subunit (iKOp/q) display identical patterns of dysfunction, replicating the inborn loss-of-function phenotypes and, therefore demonstrate that these neurological defects do not rely upon developmental abnormality. Unexpectedly, unlike the inborn model, the adult-onset pattern of excitability changes believed to be pathogenic within the thalamic network is non-canonical. Specifically, adult ablation of P/Q channels does not promote Cacna1g-mediated burst firing or T-type calcium current (IT) in the thalamocortical relay neurons; however, burst firing in thalamocortical relay neurons remains essential as iKOp/q mice generated on a Cacna1g deleted background show substantially diminished seizure generation. Moreover, in thalamic reticular nucleus neurons, burst firing is impaired accompanied by attenuated IT. Interestingly, inborn deletion of thalamic reticular nucleus-enriched, human childhood absence epilepsy-linked gene Cacna1h in iKOp/q mice reduces thalamic reticular nucleus burst firing and promotes rather than reduces seizure, indicating an epileptogenic role for loss-of-function Cacna1h gene variants reported in human childhood absence epilepsy cases. Together, our results demonstrate that P/Q channels remain critical for maintaining normal thalamocortical oscillations and motor control in the adult brain, and suggest that the developmental plasticity of membrane currents regulating pathological rhythmicity is both degenerate and age-dependent.


Asunto(s)
Ataxia/genética , Canales de Calcio Tipo N/genética , Corteza Cerebral/metabolismo , Epilepsia Tipo Ausencia/genética , Neuronas/metabolismo , Tálamo/metabolismo , Potenciales de Acción , Factores de Edad , Animales , Ataxia/metabolismo , Ataxia/fisiopatología , Canales de Calcio Tipo T/genética , Canales de Calcio Tipo T/metabolismo , Corteza Cerebral/fisiopatología , Modelos Animales de Enfermedad , Epilepsia Tipo Ausencia/metabolismo , Epilepsia Tipo Ausencia/fisiopatología , Potenciales Postsinápticos Excitadores/genética , Potenciales Postsinápticos Inhibidores/genética , Potenciales de la Membrana/genética , Ratones , Ratones Noqueados , Técnicas de Placa-Clamp , Núcleos Talámicos/citología , Tálamo/fisiopatología
9.
J Neurophysiol ; 121(4): 1266-1278, 2019 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-30699052

RESUMEN

Cholinergic vagal nerves projecting from neurons in the brain stem nucleus ambiguus (NAm) play a predominant role in cardiac parasympathetic pacemaking control. Central adrenergic signaling modulates the tone of this vagal output; however, the exact excitability mechanisms are not fully understood. We investigated responses of NAm neurons to adrenergic agonists using in vitro mouse brain stem slices. Preganglionic NAm neurons were identified by ChAT-tdTomato fluorescence in young adult transgenic mice, and their cardiac projection was confirmed by retrograde dye tracing. Juxtacellular recordings detected sparse or absent spontaneous action potentials (AP) in NAm neurons. However, bath application of epinephrine or norepinephrine strongly and reversibly activated most NAm neurons regardless of their basal firing rate. Epinephrine was more potent than norepinephrine, and this activation largely depends on α1-adrenoceptors. Interestingly, adrenergic activation of NAm neurons does not require an ionotropic synaptic mechanism, because postsynaptic excitatory or inhibitory receptor blockade did not occlude the excitatory effect, and bath-applied adrenergic agonists did not alter excitatory or inhibitory synaptic transmission. Instead, adrenergic agonists significantly elevated intrinsic membrane excitability to facilitate generation of recurrent action potentials. T-type calcium current and hyperpolarization-activated current are involved in this excitation pattern, although not required for spontaneous AP induction by epinephrine. In contrast, pharmacological blockade of persistent sodium current significantly inhibited the adrenergic effects. Our results demonstrate that central adrenergic signaling enhances the intrinsic excitability of NAm neurons and that persistent sodium current is required for this effect. This central balancing mechanism may counteract excessive peripheral cardiac excitation during increased sympathetic tone. NEW & NOTEWORTHY Cardiac preganglionic cholinergic neurons in the nucleus ambiguus (NAm) are responsible for slowing cardiac pacemaking. This study identified that adrenergic agonists can induce rhythmic action potentials in otherwise quiescent cholinergic NAm preganglionic neurons in brain stem slice preparation. The modulatory influence of adrenaline on central parasympathetic outflow may contribute to both physiological and deleterious cardiovascular regulation.


Asunto(s)
Potenciales de Acción , Agonistas Adrenérgicos/farmacología , Fibras Autónomas Preganglionares/efectos de los fármacos , Corazón/inervación , Bulbo Raquídeo/fisiología , Periodicidad , Animales , Fibras Autónomas Preganglionares/metabolismo , Fibras Autónomas Preganglionares/fisiología , Canales de Calcio Tipo T/metabolismo , Epinefrina/farmacología , Femenino , Masculino , Bulbo Raquídeo/efectos de los fármacos , Ratones , Norepinefrina/farmacología , Canales de Sodio/metabolismo , Potenciales Sinápticos
10.
Epilepsia ; 60 Suppl 3: S8-S16, 2019 12.
Artículo en Inglés | MEDLINE | ID: mdl-31904123

RESUMEN

Genetic alteration of the sodium channel provides a remarkable opportunity to understand how epilepsy and its comorbidities arise from a molecular disease of excitable membranes, and a chance to create a better future for children with epileptic encephalopathy. In a single cell, the channel reliably acts as a voltage-sensitive switch, enabling axon impulse firing, whereas at a network level, it becomes a variable rheostat for regulating dynamic patterns of neuronal oscillations, including those underlying cognitive development, seizures, and even premature lethality. Despite steady progress linking genetic variation of the channels with distinctive clinical syndromes, our understanding of the intervening biologic complexity underlying each of them is only just beginning. More research on the functional contribution of individual channel subunits to specific brain networks and cellular plasticity in the developing brain is needed before we can reliably advance from precision diagnosis to precision treatment of inherited sodium channel disorders.


Asunto(s)
Encefalopatías/genética , Epilepsia/genética , Canal de Sodio Activado por Voltaje NAV1.1/genética , Convulsiones Febriles/genética , Humanos , Mutación/genética , Neuronas/fisiología , Convulsiones Febriles/fisiopatología
11.
Epilepsia ; 60(6): 1045-1053, 2019 06.
Artículo en Inglés | MEDLINE | ID: mdl-31087652

RESUMEN

The revolution in high-throughput omics technologies has dramatically expanded our understanding of the epilepsies as complex diseases. It is now clear that further progress in treating the full spectrum of seizure disorders requires a systems-level framework for analyzing and integrating data from multiple omics technologies that moves beyond the search for single molecular alterations to an understanding of dysregulated pathways in epilepsy. Taking such a pathway-centered view requires further integrating the tools of systems biology into epilepsy research. In this appraisal, we highlight and summarize systems biology approaches in basic epilepsy studies as they were discussed during the 2017 Workshop on the Neurobiology of Epilepsy (WONOEP). During the 3-day event, participants exchanged emerging results and thoughts on developing the systems biology of epilepsy, and the promise and limitations of these approaches for the near term.


Asunto(s)
Epilepsia/genética , Biología de Sistemas/métodos , Epilepsia/fisiopatología , Genómica , Humanos , Neurobiología , Proteómica
12.
Proc Natl Acad Sci U S A ; 113(33): E4895-903, 2016 08 16.
Artículo en Inglés | MEDLINE | ID: mdl-27482086

RESUMEN

Cardiorespiratory failure is the most common cause of sudden unexplained death in epilepsy (SUDEP). Genetic autopsies have detected "leaky" gain-of-function mutations in the ryanodine receptor-2 (RyR2) gene in both SUDEP and sudden cardiac death cases linked to catecholaminergic polymorphic ventricular tachycardia that feature lethal cardiac arrhythmias without structural abnormality. Here we find that a human leaky RyR2 mutation, R176Q (RQ), alters neurotransmitter release probability in mice and significantly lowers the threshold for spreading depolarization (SD) in dorsal medulla, leading to cardiorespiratory collapse. Rare episodes of sinus bradycardia, spontaneous seizure, and sudden death were detected in RQ/+ mutant mice in vivo; however, when provoked, cortical seizures frequently led to apneas, brainstem SD, cardiorespiratory failure, and death. In vitro studies revealed that the RQ mutation selectively strengthened excitatory, but not inhibitory, synapses and facilitated SD in both the neocortex as well as brainstem dorsal medulla autonomic microcircuits. These data link defects in neuronal intracellular calcium homeostasis to the vulnerability of central autonomic brainstem pathways to hypoxic stress and implicate brainstem SD as a previously unrecognized site and mechanism contributing to premature death in individuals with leaky RYR2 mutations.


Asunto(s)
Tronco Encefálico/fisiología , Muerte Súbita Cardíaca/etiología , Mutación , Canal Liberador de Calcio Receptor de Rianodina/genética , Animales , Calcio/metabolismo , Electroencefalografía , Potenciales Postsinápticos Excitadores , Femenino , Homeostasis , Masculino , Ratones , Ratones Endogámicos C57BL , Canal Liberador de Calcio Receptor de Rianodina/fisiología , Transmisión Sináptica
13.
J Neurosci ; 37(47): 11311-11322, 2017 11 22.
Artículo en Inglés | MEDLINE | ID: mdl-29038240

RESUMEN

Spectrins form a submembranous cytoskeleton proposed to confer strength and flexibility to neurons and to participate in ion channel clustering at axon initial segments (AIS) and nodes of Ranvier. Neuronal spectrin cytoskeletons consist of diverse ß subunits and αII spectrin. Although αII spectrin is found in neurons in both axonal and somatodendritic domains, using proteomics, biochemistry, and superresolution microscopy, we show that αII and ßIV spectrin interact and form a periodic AIS cytoskeleton. To determine the role of spectrins in the nervous system, we generated Sptan1f/f mice for deletion of CNS αII spectrin. We analyzed αII spectrin-deficient mice of both sexes and found that loss of αII spectrin causes profound reductions in all ß spectrins. αII spectrin-deficient mice die before 1 month of age and have disrupted AIS and many other neurological impairments including seizures, disrupted cortical lamination, and widespread neurodegeneration. These results demonstrate the importance of the spectrin cytoskeleton both at the AIS and throughout the nervous system.SIGNIFICANCE STATEMENT Spectrin cytoskeletons play diverse roles in neurons, including assembly of excitable domains such as the axon initial segment (AIS) and nodes of Ranvier. However, the molecular composition and structure of these cytoskeletons remain poorly understood. Here, we show that αII spectrin partners with ßIV spectrin to form a periodic cytoskeleton at the AIS. Using a new αII spectrin conditional knock-out mouse, we show that αII spectrin is required for AIS assembly, neuronal excitability, cortical lamination, and to protect against neurodegeneration. These results demonstrate the broad importance of spectrin cytoskeletons for nervous system function and development and have important implications for nervous system injuries and diseases because disruption of the spectrin cytoskeleton is a common molecular pathology.


Asunto(s)
Axones/metabolismo , Citoesqueleto/metabolismo , Nódulos de Ranvier/metabolismo , Espectrina/metabolismo , Potenciales de Acción , Animales , Axones/fisiología , Células COS , Células Cultivadas , Chlorocebus aethiops , Eliminación de Gen , Hipocampo/citología , Hipocampo/metabolismo , Hipocampo/fisiología , Ratones , Ratones Endogámicos C57BL , Nódulos de Ranvier/fisiología , Espectrina/genética
14.
J Neurosci ; 36(2): 405-18, 2016 Jan 13.
Artículo en Inglés | MEDLINE | ID: mdl-26758833

RESUMEN

Generalized spike-wave seizures involving abnormal synchronization of cortical and underlying thalamic circuitry represent a major category of childhood epilepsy. Inborn errors of Cacna1a, the P/Q-type voltage-gated calcium channel α subunit gene, expressed throughout the brain destabilize corticothalamic rhythmicity and produce this phenotype. To determine the minimal cellular lesion required for this network disturbance, we used neurotensin receptor 1 (Ntsr1) cre-driver mice to ablate floxed Cacna1a in layer VI pyramidal neurons, which supply the sole descending cortical synaptic input to thalamocortical relay cells and reticular interneurons and activate intrathalamic circuits. Targeted Cacna1a ablation in layer VI cells resulted in mice that display a robust spontaneous spike-wave absence seizure phenotype accompanied by behavioral arrest and inhibited by ethosuximide. To verify the selectivity of the molecular lesion, we determined that P/Q subunit proteins were reduced in corticothalamic relay neuron terminal zones, and confirmed that P/Q-mediated glutamate release was reduced at these synapses. Spike-triggered exocytosis was preserved by N-type calcium channel rescue, demonstrating that evoked release at layer VI terminals relies on both P/Q and N-type channels. Whereas intrinsic excitability of the P/Q channel depleted layer VI neurons was unaltered, T-type calcium currents in the postsynaptic thalamic relay and reticular cells were dramatically elevated, favoring rebound bursting and seizure generation. We find that an early P/Q-type release defect, limited to synapses of a single cell-type within the thalamocortical circuit, is sufficient to remodel synchronized firing behavior and produce a stable generalized epilepsy phenotype. SIGNIFICANCE STATEMENT: This study dissects a critical component of the corticothalamic circuit in spike-wave epilepsy and identifies the developmental importance of P/Q-type calcium channel-mediated presynaptic glutamate release at layer VI pyramidal neuron terminals. Genetic ablation of Cacna1a in layer VI neurons produced synchronous spike-wave discharges in the cortex and thalamus that were inhibited by ethosuximide. These mice also displayed N-type calcium channel compensation at descending thalamic synapses, and consistent with other spike-wave models increased low-threshold T-type calcium currents within postsynaptic thalamic relay and reticular neurons. These results demonstrate, for the first time, that preventing the developmental homeostatic switch from loose to tightly coupled synaptic release at a single class of deep layer cortical excitatory output neurons results in generalized spike-wave epilepsy.


Asunto(s)
Canales de Calcio Tipo N/deficiencia , Epilepsia Tipo Ausencia/patología , Neuronas/patología , Tálamo/patología , Corteza Visual/patología , Animales , Anticonvulsivantes/farmacología , Anticonvulsivantes/uso terapéutico , Canales de Calcio Tipo N/genética , Modelos Animales de Enfermedad , Epilepsia Tipo Ausencia/tratamiento farmacológico , Epilepsia Tipo Ausencia/genética , Etosuximida/uso terapéutico , Potenciales Postsinápticos Excitadores/genética , Femenino , Proteínas Luminiscentes/genética , Proteínas Luminiscentes/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Trastornos Motores/etiología , Trastornos Motores/genética , Mutación/genética , Tiempo de Reacción/genética , Receptores de Neurotensina/metabolismo
15.
J Physiol ; 595(23): 7249-7260, 2017 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-28901011

RESUMEN

KEY POINTS: In two monogenic models of absence epilepsy, interictal beta/gamma power is augmented in homozygous stargazer (stg/stg) but not homozygous tottering (tg/tg) mice. There are distinct gene-linked patterns of aberrant phase-amplitude coupling in the interictal EEG of both stg/stg and tg/tg mice, compared to +/+ and stg/+ mice. Treatment with ethosuximide significantly blocks seizures in both genotypes, but the abnormal phase-amplitude coupling remains. Seizure-free stg/+ mice have normal power and phase-amplitude coupling, but beta/gamma power is significantly reduced with NMDA receptor blockade, revealing a latent cortical network phenotype that is separable from, and therefore not a result of, seizures. Altogether, these findings reveal gene-linked quantitative electrographic biomarkers free from epileptiform activity, and provide a potential network correlate for persistent cognitive deficits in absence epilepsy despite effective treatment. ABSTRACT: In childhood absence epilepsy, cortical seizures are brief and intermittent; however there are extended periods without behavioural or electrographic ictal events. This genetic disorder is associated with variable degrees of cognitive dysfunction, but no consistent functional biomarkers that might provide insight into interictal cortical function have been described. Previous work in monogenic mouse models of absence epilepsy have shown that the interictal EEG displays augmented beta/gamma power in homozygous stargazer (stg/stg) mice bearing a presynaptic AMPA receptor defect, but not homozygous tottering (tg/tg) mice with a P/Q type calcium channel mutation. To further evaluate the interictal EEG, we quantified phase-amplitude coupling (PAC) in stg/stg, stg/+, tg/tg and wild-type (+/+) mice. We found distinct gene-linked patterns of aberrant PAC in stg/stg and tg/tg mice compared to +/+ and stg/+ mice. Treatment with ethosuximide significantly blocks seizures in both stg/stg and tg/tg, but the abnormal PAC remains. Stg/+ mice are seizure free with normal baseline beta/gamma power and normal theta-gamma PAC, but like stg/stg mice, beta/gamma power is significantly reduced by NMDA receptor blockade, a treatment that paradoxically enhances seizures in stg/stg mice. Stg/+ mice, therefore, have a latent cortical network phenotype that is veiled by NMDA-mediated neurotransmission. Altogether, these findings reveal gene-linked quantitative electrographic biomarkers in the absence of epileptiform activity and provide a potential network correlate for persistent cognitive deficits in absence epilepsy despite effective treatment.


Asunto(s)
Anticonvulsivantes/farmacología , Ondas Encefálicas , Epilepsia Tipo Ausencia/fisiopatología , Etosuximida/farmacología , Genotipo , Animales , Anticonvulsivantes/uso terapéutico , Canales de Calcio/genética , Canales de Calcio Tipo N/genética , Corteza Cerebral/efectos de los fármacos , Corteza Cerebral/fisiopatología , Epilepsia Tipo Ausencia/tratamiento farmacológico , Epilepsia Tipo Ausencia/genética , Etosuximida/uso terapéutico , Femenino , Masculino , Ratones , Ratones Endogámicos C57BL
16.
Epilepsia ; 58 Suppl 4: 53-67, 2017 11.
Artículo en Inglés | MEDLINE | ID: mdl-29105070

RESUMEN

Electroencephalography (EEG)-the direct recording of the electrical activity of populations of neurons-is a tremendously important tool for diagnosing, treating, and researching epilepsy. Although standard procedures for recording and analyzing human EEG exist and are broadly accepted, there are no such standards for research in animal models of seizures and epilepsy-recording montages, acquisition systems, and processing algorithms may differ substantially among investigators and laboratories. The lack of standard procedures for acquiring and analyzing EEG from animal models of epilepsy hinders the interpretation of experimental results and reduces the ability of the scientific community to efficiently translate new experimental findings into clinical practice. Accordingly, the intention of this report is twofold: (1) to review current techniques for the collection and software-based analysis of neural field recordings in animal models of epilepsy, and (2) to offer pertinent standards and reporting guidelines for this research. Specifically, we review current techniques for signal acquisition, signal conditioning, signal processing, data storage, and data sharing, and include applicable recommendations to standardize collection and reporting. We close with a discussion of challenges and future opportunities, and include a supplemental report of currently available acquisition systems and analysis tools. This work represents a collaboration on behalf of the American Epilepsy Society/International League Against Epilepsy (AES/ILAE) Translational Task Force (TASK1-Workgroup 5), and is part of a larger effort to harmonize video-EEG interpretation and analysis methods across studies using in vivo and in vitro seizure and epilepsy models.


Asunto(s)
Comités Consultivos , Encéfalo/fisiopatología , Electroencefalografía , Epilepsia/fisiopatología , Programas Informáticos , Animales , Modelos Animales de Enfermedad , Electroencefalografía/instrumentación , Electroencefalografía/métodos , Electroencefalografía/normas , Programas Informáticos/normas
17.
J Neurosci ; 35(32): 11433-44, 2015 Aug 12.
Artículo en Inglés | MEDLINE | ID: mdl-26269648

RESUMEN

A specialized axonal ending, the basket cell "pinceau," encapsulates the Purkinje cell axon initial segment (AIS), exerting final inhibitory control over the integrated outflow of the cerebellar cortex. This nonconventional axo-axonic contact extends beyond the perisomatic chemical GABAergic synaptic boutons to the distal AIS, lacks both sodium channels and local exocytotic machinery, and yet contains a dense cluster of voltage-gated potassium channels whose functional contribution is unknown. Here, we show that ADAM11, a transmembrane noncatalytic disintegrin, is the first reported Kv1-interacting protein essential for localizing Kv1.1 and Kv1.2 subunit complexes to the distal terminal. Selective absence of these channels at the pinceau due to mutation of ADAM11 spares spontaneous GABA release from basket cells at the perisomatic synapse yet eliminates ultrarapid ephaptic inhibitory synchronization of Purkinje cell firing. Our findings identify a critical role for presynaptic K(+) channels at the pinceau in ephaptic control over the speed and stability of spike rate coding at the Purkinje cell AIS in mice. SIGNIFICANCE STATEMENT: This study identifies ADAM11 as the first essential molecule for the proper localization of potassium ion channels at presynaptic nerve terminals, where they modulate excitability and the release of neural transmitters. Genetic truncation of the transmembrane disintegrin and metalloproteinase protein ADAM11 resulted in the absence of Kv1 channels that are normally densely clustered at the terminals of basket cell axons in the cerebellar cortex. These specialized terminals are responsible for the release of the neurotransmitter GABA onto Purkinje cells and also display electrical signaling. In the ADAM11 mutant, GABAergic release was not altered, but the ultrarapid electrical signal was absent, demonstrating that the dense presynaptic cluster of Kv1 ion channels at these terminals mediate electrical transmission. Therefore, ADAM11 plays a critical role at this central synapse.


Asunto(s)
Proteínas ADAM/metabolismo , Potenciales de Acción/fisiología , Cerebelo/metabolismo , Proteínas de la Membrana/metabolismo , Neuronas/metabolismo , Canales de Potasio/metabolismo , Terminales Presinápticos/metabolismo , Células de Purkinje/metabolismo , Ácido gamma-Aminobutírico/metabolismo , Proteínas ADAM/genética , Animales , Cerebelo/citología , Proteínas de la Membrana/genética , Ratones , Neuronas/citología , Células de Purkinje/citología , Sinapsis/metabolismo
18.
Epilepsia ; 57(1): 79-88, 2016 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-26663261

RESUMEN

OBJECTIVE: Two monogenic mouse models of childhood absence epilepsy, stargazer and tottering, differ strikingly in their response to N-methyl-d-aspartate (NMDA) receptor blockade. We sought to evaluate the change in interictal relative gamma power as a reliable biomarker for this gene-linked antiepileptic drug (AED) response. METHODS: The effects of AEDs on absolute and relative (to the total) power of frequencies between 2 and 300 Hz were analyzed within the interictal electroencephalogram (EEG) and correlated with antiseizure efficacy in awake behaving stargazer, tottering, and wild-type (WT) littermate control mice. RESULTS: At baseline, we found a significant absolute as well as relative augmentation of 16-41 Hz power in stargazer compared to both tottering and WT mice. In stargazer, the NMDA receptor-antagonist MK-801 (0.5 mg/kg) paradoxically exacerbates absence seizures but normalizes the augmented beta/gamma band of power to WT levels, suggesting that the elevation in 16- to 41-Hz power is an NMDA receptor-mediated network property. In contrast, ethosuximide (200 mg/kg) and 4-aminopyridine (2.5 mg/kg) reduce seizure activity and increase relative power within the gamma range in both stargazer and tottering mice. Intraperitoneal saline injection had no significant effect on either seizure frequency or relative gamma power. Along with results using carbamazepine and flupirtine, there was a strong inverse relationship between relative change in seizure duration and change in peak relative gamma power (r(2) = 0.726). SIGNIFICANCE: In these two models of absence epilepsy, drugs that reduce relative gamma power are associated with an increase in seizures, whereas drugs that augment relative gamma power reduce seizures. Therefore, drug-induced modulation of relative gamma power may serve as a biomarker for AED efficacy in absence epilepsy. Given the relationship between gamma power and fast-spiking interneurons, these results also suggest that a drug's effect may in part be determined by its impact on specific inhibitory networks.


Asunto(s)
Anticonvulsivantes/uso terapéutico , Epilepsia Tipo Ausencia/tratamiento farmacológico , Epilepsia Tipo Ausencia/fisiopatología , Ritmo Gamma/genética , Animales , Ritmo beta/efectos de los fármacos , Ritmo beta/genética , Biomarcadores , Canales de Calcio/genética , Canales de Calcio Tipo N/genética , Modelos Animales de Enfermedad , Electroencefalografía , Epilepsia Tipo Ausencia/genética , Ritmo Gamma/efectos de los fármacos , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Mutación/genética , Grabación en Video
19.
Alzheimer Dis Assoc Disord ; 30(2): 186-92, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-26756385

RESUMEN

Alzheimer disease (AD) is the most frequent cause of major neurocognitive disorders with a huge economical and medical burden. Several studies pointed out that AD is associated with a high risk for developing epileptic seizures. The aims of our review were to evaluate and to summarize the current literature (ending in September 2015) of animal and human studies in the relation of AD and epileptic seizures. It seems likely that epileptic hyperexcitation could be partially responsible for the progression of AD due to the increased rate of amyloid deposition. Pathologic changes in animal models of AD are similar to those seen in human temporal lobe epilepsy. Antiepileptic treatment had a positive effect on cognitive function in animal and human studies. Because the detection of seizures in patients with cognitive decline is extremely difficult because of methodological problems, the true prevalence of seizures has remained unclear. Nonconvulsive seizures with no overt clinical symptoms may be frequent seizure types in AD. These are difficult to detect by clinical observation and with standard scalp electroencephalogram (EEG) methods. We propose that long-term EEG recording and video-EEG monitoring is necessary to prove the presence of epileptiform activity in demented patients.


Asunto(s)
Enfermedad de Alzheimer/fisiopatología , Convulsiones/fisiopatología , Enfermedad de Alzheimer/complicaciones , Animales , Anticonvulsivantes/uso terapéutico , Electroencefalografía/métodos , Humanos , Convulsiones/complicaciones , Convulsiones/etiología
20.
Nature ; 468(7321): 263-9, 2010 Nov 11.
Artículo en Inglés | MEDLINE | ID: mdl-21068835

RESUMEN

Mutations in the X-linked MECP2 gene, which encodes the transcriptional regulator methyl-CpG-binding protein 2 (MeCP2), cause Rett syndrome and several neurodevelopmental disorders including cognitive disorders, autism, juvenile-onset schizophrenia and encephalopathy with early lethality. Rett syndrome is characterized by apparently normal early development followed by regression, motor abnormalities, seizures and features of autism, especially stereotyped behaviours. The mechanisms mediating these features are poorly understood. Here we show that mice lacking Mecp2 from GABA (γ-aminobutyric acid)-releasing neurons recapitulate numerous Rett syndrome and autistic features, including repetitive behaviours. Loss of MeCP2 from a subset of forebrain GABAergic neurons also recapitulates many features of Rett syndrome. MeCP2-deficient GABAergic neurons show reduced inhibitory quantal size, consistent with a presynaptic reduction in glutamic acid decarboxylase 1 (Gad1) and glutamic acid decarboxylase 2 (Gad2) levels, and GABA immunoreactivity. These data demonstrate that MeCP2 is critical for normal function of GABA-releasing neurons and that subtle dysfunction of GABAergic neurons contributes to numerous neuropsychiatric phenotypes.


Asunto(s)
Trastorno Autístico/fisiopatología , Proteína 2 de Unión a Metil-CpG/deficiencia , Proteína 2 de Unión a Metil-CpG/metabolismo , Síndrome de Rett/fisiopatología , Transducción de Señal , Trastorno de Movimiento Estereotipado/fisiopatología , Ácido gamma-Aminobutírico/metabolismo , Animales , Trastorno Autístico/complicaciones , Trastorno Autístico/genética , Trastorno Autístico/patología , Encéfalo/citología , Conducta Compulsiva/complicaciones , Conducta Compulsiva/genética , Conducta Compulsiva/fisiopatología , Modelos Animales de Enfermedad , Electroencefalografía , Genotipo , Glutamato Descarboxilasa/metabolismo , Hipocampo/patología , Hipocampo/fisiopatología , Proteínas de Homeodominio/genética , Potenciales Postsinápticos Inhibidores , Potenciación a Largo Plazo , Masculino , Proteína 2 de Unión a Metil-CpG/genética , Ratones , Ratones Transgénicos , Inhibición Neural , Plasticidad Neuronal , Neuronas/metabolismo , Fenotipo , Terminales Presinápticos/metabolismo , Trastornos Psicomotores/complicaciones , Trastornos Psicomotores/genética , Trastornos Psicomotores/fisiopatología , Reflejo de Sobresalto/genética , Respiración , Síndrome de Rett/complicaciones , Síndrome de Rett/genética , Síndrome de Rett/patología , Conducta Autodestructiva/complicaciones , Conducta Autodestructiva/genética , Conducta Autodestructiva/fisiopatología , Trastorno de Movimiento Estereotipado/complicaciones , Trastorno de Movimiento Estereotipado/genética , Trastorno de Movimiento Estereotipado/patología , Tasa de Supervivencia , Transmisión Sináptica , Proteínas del Transporte Vesicular de Aminoácidos Inhibidores/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA