Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
Más filtros

Bases de datos
Tipo del documento
Intervalo de año de publicación
1.
Hum Mol Genet ; 31(4): 499-509, 2022 02 21.
Artículo en Inglés | MEDLINE | ID: mdl-34505136

RESUMEN

Limb-girdle muscular dystrophy R3 (LGMDR3) is caused by mutations in the SGCA gene coding for α-sarcoglycan (SG). Together with ß- γ- and δ-SG, α-SG forms a tetramer embedded in the dystrophin associated protein complex crucial for protecting the sarcolemma from mechanical stresses elicited by muscle contraction. Most LGMDR3 cases are due to missense mutations, which result in non-properly folded, even though potentially functional α-SG. These mutants are prematurely discarded by the cell quality control. Lacking one subunit, the SG-complex is disrupted. The resulting loss of function leads to sarcolemma instability, muscle fiber damage and progressive limb muscle weakness. LGMDR3 is severely disabling and, unfortunately, still incurable. Here, we propose the use of small molecules, belonging to the class of cystic fibrosis transmembrane regulator (CFTR) correctors, for recovering mutants of α-SG defective in folding and trafficking. Specifically, CFTR corrector C17 successfully rerouted the SG-complex containing the human R98H-α-SG to the sarcolemma of hind-limb muscles of a novel LGMDR3 murine model. Notably, the muscle force of the treated model animals was fully recovered. To our knowledge, this is the first time that a compound designated for cystic fibrosis is successfully tested in a muscular dystrophy and may represent a novel paradigm of treatment for LGMDR3 as well as different other indications in which a potentially functional protein is prematurely discarded as folding-defective. Furthermore, the use of small molecules for recovering the endogenous mutated SG has an evident advantage over complex procedures such as gene or cell transfer.


Asunto(s)
Fibrosis Quística , Distrofia Muscular de Cinturas , Distrofias Musculares , Animales , Fibrosis Quística/tratamiento farmacológico , Fibrosis Quística/genética , Fibrosis Quística/metabolismo , Regulador de Conductancia de Transmembrana de Fibrosis Quística/genética , Regulador de Conductancia de Transmembrana de Fibrosis Quística/metabolismo , Ratones , Músculo Esquelético/metabolismo , Distrofias Musculares/metabolismo , Distrofia Muscular de Cinturas/genética , Sarcoglicanos/genética , Sarcoglicanos/metabolismo
2.
J Physiol ; 600(23): 5055-5075, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36255030

RESUMEN

Skeletal muscle weakness has been associated with different pathological conditions, including sarcopenia and muscular dystrophy, and is accompanied by altered mammalian target of rapamycin (mTOR) signalling. We wanted to elucidate the functional role of mTOR in muscle contractility. Most loss-of-function studies for mTOR signalling have used the drug rapamycin to inhibit some of the signalling downstream of mTOR. However, given that rapamycin does not inhibit all mTOR signalling completely, we generated a double knockout for mTOR and for the scaffold protein of mTORC1, raptor, in skeletal muscle. We found that double knockout in mice results in a more severe phenotype compared with deletion of raptor or mTOR alone. Indeed, these animals display muscle weakness, increased fibre denervation and a slower muscle relaxation following tetanic stimulation. This is accompanied by a shift towards slow-twitch fibres and changes in the expression levels of calcium-related genes, such as Serca1 and Casq1. Double knockout mice show a decrease in calcium decay kinetics after tetanus in vivo, suggestive of a reduced calcium reuptake. In addition, RNA sequencing analysis revealed that many downregulated genes, such as Tcap and Fhod3, are linked to sarcomere organization. These results suggest a key role for mTOR signalling in maintaining proper fibre relaxation in skeletal muscle. KEY POINTS: Skeletal muscle wasting and weakness have been associated with different pathological conditions, including sarcopenia and muscular dystrophy, and are accompanied by altered mammalian target of rapamycin (mTOR) signalling. Mammalian target of rapamycin plays a crucial role in the maintenance of muscle mass and functionality. We found that the loss of both mTOR and raptor results in contractile abnormalities, with severe muscle weakness and delayed relaxation following tetanic stimulation. These results are associated with alterations in the expression of genes involved in sarcomere organization and calcium handling and with an impairment in calcium reuptake after contraction. Taken together, these results provide a mechanistic insight into the role of mTOR in muscle contractility.


Asunto(s)
Proteína Reguladora Asociada a mTOR , Sarcopenia , Serina-Treonina Quinasas TOR , Animales , Ratones , Calcio/metabolismo , Ratones Noqueados , Debilidad Muscular , Músculo Esquelético/fisiología , Proteína Reguladora Asociada a mTOR/genética , Proteína Reguladora Asociada a mTOR/metabolismo , Sarcopenia/metabolismo , Sirolimus/farmacología , Sirolimus/metabolismo , Serina-Treonina Quinasas TOR/genética , Serina-Treonina Quinasas TOR/metabolismo , Eliminación de Gen
3.
FASEB J ; 35(12): e22031, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34767636

RESUMEN

Loss of skeletal muscle mass and force is of critical importance in numerous pathologies, like age-related sarcopenia or cancer. It has been shown that the Akt-mTORC1 pathway is critical for stimulating adult muscle mass and function, however, it is unknown if mTORC1 is the only mediator downstream of Akt and which intracellular processes are required for functional muscle growth. Here, we show that loss of Raptor reduces muscle hypertrophy after Akt activation and completely prevents increases in muscle force. Interestingly, the residual hypertrophy after Raptor deletion can be completely prevented by administration of the mTORC1 inhibitor rapamycin. Using a quantitative proteomics approach we find that loss of Raptor affects the increases in mitochondrial proteins, while rapamycin mainly affects ribosomal proteins. Taken together, these results suggest that mTORC1 is the key mediator of Akt-dependent muscle growth and its regulation of the mitochondrial proteome is critical for increasing muscle force.


Asunto(s)
Hipertrofia/fisiopatología , Diana Mecanicista del Complejo 1 de la Rapamicina/metabolismo , Mitocondrias/metabolismo , Proteínas Mitocondriales/metabolismo , Músculo Esquelético/metabolismo , Proteoma/metabolismo , Proteína Reguladora Asociada a mTOR/fisiología , Animales , Femenino , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Mitocondrias/patología , Músculo Esquelético/patología , Fosforilación , Proteoma/análisis , Transducción de Señal
4.
J Physiol ; 599(12): 3037-3061, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-33881176

RESUMEN

KEY POINTS: Few days of unloading are sufficient to induce a decline of skeletal muscle mass and function; notably, contractile force is lost at a faster rate than muscle mass. The reasons behind this disproportionate loss of muscle force are still poorly understood. We provide strong evidence of two mechanisms only hypothesized until now for the rapid muscle force loss in only 10 days of bed rest. Our results show that an initial neuromuscular junction instability, accompanied by alterations in the innervation status and impairment of single fibre sarcoplasmic reticulum function contribute to the loss of contractile force in front of a preserved myofibrillar function and central activation capacity. Early onset of neuromuscular junction instability and impairment in calcium dynamics involved in excitation-contraction coupling are proposed as eligible determinants to the greater decline in muscle force than in muscle size during unloading. ABSTRACT: Unloading induces rapid skeletal muscle atrophy and functional decline. Importantly, force is lost at a much higher rate than muscle mass. We aimed to investigate the early determinants of the disproportionate loss of force compared to that of muscle mass in response to unloading. Ten young participants underwent 10 days of bed rest (BR). At baseline (BR0) and at 10 days (BR10), quadriceps femoris (QF) volume (VOL) and isometric maximum voluntary contraction (MVC) were assessed. At BR0 and BR10 blood samples and biopsies of vastus lateralis (VL) muscle were collected. Neuromuscular junction (NMJ) stability and myofibre innervation status were assessed, together with single fibre mechanical properties and sarcoplasmic reticulum (SR) calcium handling. From BR0 to BR10, QFVOL and MVC decreased by 5.2% (P = 0.003) and 14.3% (P < 0.001), respectively. Initial and partial denervation was detected from increased neural cell adhesion molecule (NCAM)-positive myofibres at BR10 compared with BR0 (+3.4%, P = 0.016). NMJ instability was further inferred from increased C-terminal agrin fragment concentration in serum (+19.2% at BR10, P = 0.031). Fast fibre cross-sectional area (CSA) showed a trend to decrease by 15% (P = 0.055) at BR10, while single fibre maximal tension (force/CSA) was unchanged. However, at BR10 SR Ca2+ release in response to caffeine decreased by 35.1% (P < 0.002) and 30.2% (P < 0.001) in fast and slow fibres, respectively, pointing to an impaired excitation-contraction coupling. These findings support the view that the early onset of NMJ instability and impairment in SR function are eligible mechanisms contributing to the greater decline in muscle force than in muscle size during unloading.


Asunto(s)
Calcio , Retículo Sarcoplasmático , Humanos , Contracción Muscular , Músculo Esquelético , Unión Neuromuscular , Músculo Cuádriceps
5.
Am J Physiol Cell Physiol ; 316(5): C722-C730, 2019 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-30865515

RESUMEN

Electron paramagnetic resonance (EPR), coupled with site-directed spin labeling, has been proven to be a particularly suitable technique to extract information on the fraction of myosin heads strongly bound to actin upon muscle contraction. The approach can be used to investigate possible structural changes occurring in myosin of fiber s altered by diseases and aging. In this work, we labeled myosin at position Cys707, located in the SH1-SH2 helix in the myosin head cleft, with iodoacetamide spin label, a spin label that is sensitive to the reorientational motion of this protein during the ATPase cycle and characterized the biochemical states of the labeled myosin head by means of continuous wave EPR. After checking the sensitivity and the power of the technique on different muscles and species, we investigated whether changes in the fraction of strongly bound myosin heads might explain the contractile alterations observed in atrophic and hypertrophic murine muscles. In both conditions, the difference in contractile force could not be justified simply by the difference in muscle mass. Our results showed that in atrophic muscles the decrease in force generation was attributable to a lower fraction of strongly bound cross bridges during maximal activation. In contrast in hypertrophic muscles, the increase in force generation was likely due to several factors, as pointed out by the comparison of the EPR experiments with the tension measurements on single skinned fibers.


Asunto(s)
Contracción Muscular/fisiología , Músculo Esquelético/patología , Músculo Esquelético/fisiología , Atrofia Muscular/patología , Atrofia Muscular/fisiopatología , Animales , Espectroscopía de Resonancia por Spin del Electrón/métodos , Humanos , Hipertrofia/patología , Hipertrofia/fisiopatología , Ratones , Ratones Noqueados , Ratones Transgénicos , Técnicas de Cultivo de Órganos , Conejos
6.
Proc Natl Acad Sci U S A ; 113(46): 13009-13014, 2016 11 15.
Artículo en Inglés | MEDLINE | ID: mdl-27799519

RESUMEN

We identify a target for treating obesity and type 2 diabetes, the consumption of calories by an increase in the metabolic rate of resting skeletal muscle. The metabolic rate of skeletal muscle can be increased by shifting myosin heads from the super-relaxed state (SRX), with a low ATPase activity, to a disordered relaxed state (DRX), with a higher ATPase activity. The shift of myosin heads was detected by a change in fluorescent intensity of a probe attached to the myosin regulatory light chain in skinned skeletal fibers, allowing us to perform a high-throughput screen of 2,128 compounds. The screen identified one compound, which destabilized the super-relaxed state, piperine (the main alkaloid component of black pepper). Destabilization of the SRX by piperine was confirmed by single-nucleotide turnover measurements. The effect was only observed in fast twitch skeletal fibers and not in slow twitch fibers or cardiac tissues. Piperine increased ATPase activity of skinned relaxed fibers by 66 ± 15%. The Kd was ∼2 µM. Piperine had little effect on the mechanics of either fully active or resting muscle fibers. Previous work has shown that piperine can mitigate both obesity and type 2 diabetes in rodent models of these conditions. We propose that the increase in resting muscle metabolism contributes to these positive effects. The results described here show that up-regulation of resting muscle metabolism could treat obesity and type 2 diabetes and that piperine would provide a useful lead compound for the development of these therapies.


Asunto(s)
Alcaloides/farmacología , Metabolismo Basal/efectos de los fármacos , Benzodioxoles/farmacología , Diabetes Mellitus Tipo 2/metabolismo , Fibras Musculares de Contracción Rápida/efectos de los fármacos , Obesidad/metabolismo , Piperidinas/farmacología , Alcamidas Poliinsaturadas/farmacología , Adenosina Trifosfatasas/metabolismo , Alcaloides/uso terapéutico , Animales , Benzodioxoles/uso terapéutico , Diabetes Mellitus Tipo 2/tratamiento farmacológico , Ensayos Analíticos de Alto Rendimiento , Fibras Musculares de Contracción Rápida/metabolismo , Obesidad/tratamiento farmacológico , Piperidinas/uso terapéutico , Alcamidas Poliinsaturadas/uso terapéutico , Conejos , Miosinas del Músculo Esquelético/metabolismo , Regulación hacia Arriba
7.
Hum Mutat ; 39(4): 579-587, 2018 04.
Artículo en Inglés | MEDLINE | ID: mdl-29316027

RESUMEN

The WAS gene product is expressed exclusively in the cytoplasm of hematopoietic cells and constitutional genetic abrogation of WASP leads to Wiskott-Aldrich syndrome (WAS). Moreover, mutational activation of WASP has been associated with X-linked neutropenia. Although studies reported that patients with constitutional WAS mutations affecting functional WASP expression may present juvenile myelomonocytic leukemia (JMML)-like features, confounding differential diagnosis above all in the copresence of mutated RAS, an activating somatic mutation of WASP has not been previously described in JMML patients. In our ongoing studies on JMML genomics, we at first detected a somatic WAS mutation in a major clone found at two consecutive relapses in one of two twins with JMML. Both twins were treated with hematopoietic stem cell transplantation after diagnosis of JMML. The somatic WAS mutation detected here displayed an activating WASP phenotype. Screening of 46 sporadic JMML patients at disease onset for mutations in the same PBD domain of WAS revealed two additional singleton patients carrying minor mutated clones. This is the first study to associate somatically acquired WASP mutations with a hematopoietic malignancy and increases insight in the complexity of the genomic landscape of JMML that shows low recurrent mutations concomitant with general hyperactivation of RAS pathway signaling.


Asunto(s)
Mutación con Ganancia de Función , Leucemia Mielomonocítica Juvenil/genética , Proteína del Síndrome de Wiskott-Aldrich/genética , Proteínas ras/genética , Niño , Humanos , Masculino , Transducción de Señal/genética
8.
J Proteome Res ; 17(10): 3333-3347, 2018 10 05.
Artículo en Inglés | MEDLINE | ID: mdl-30142977

RESUMEN

Skeletal muscles are composed of heterogeneous collections of fibers with different metabolic profiles. With varied neuronal innervation and fiber-type compositions, each muscle fulfils specific functions and responds differently to stimuli and perturbations. We assessed individual fibers by mass spectrometry to dissect protein changes after loss of neuronal innervation due to section of the sciatic nerve in mice. This proteomics approach enabled us to quantify ∼600 proteins per individual soleus and EDL (extensor digitorum longus) muscle fiber. Expression of myosin heavy chain (MyHC) in individual fibers enabled clustering of specific fiber types; comparison of fibers from control and denervated muscles with the same MyHC expression revealed restricted regulation of a total of 240 proteins in type-I, -IIa, or -IIb fibers 7 days after denervation. The levels of several mitochondrial and proteasomal proteins were significantly altered, indicating rapid adaption of metabolic processes after denervation. Furthermore, we observed fiber-type-specific regulation of proteins involved in calcium ion binding and transport, such as troponins, parvalbumin, and ATP2A2, indicating marked remodeling of muscle contractility after denervation. This study provides novel insight into how different muscle fiber types remodel their proteomes during muscular atrophy.


Asunto(s)
Fibras Musculares de Contracción Rápida/metabolismo , Fibras Musculares Esqueléticas/metabolismo , Fibras Musculares de Contracción Lenta/metabolismo , Proteoma/metabolismo , Proteómica/métodos , Animales , Ratones Endogámicos C57BL , Proteínas Mitocondriales/metabolismo , Contracción Muscular , Desnervación Muscular , Proteínas Musculares/metabolismo , Músculo Esquelético/inervación , Músculo Esquelético/metabolismo , Atrofia Muscular/metabolismo , Atrofia Muscular/fisiopatología , Cadenas Pesadas de Miosina/metabolismo , Complejo de la Endopetidasa Proteasomal/metabolismo
9.
Arch Biochem Biophys ; 659: 75-84, 2018 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-30287237

RESUMEN

Piperine, an alkaloid from black pepper, was found to inhibit the super-relaxed state (SRX) of myosin in fast-twitch skeletal muscle fibers. In this work we report that the piperine molecule binds heavy meromyosin (HMM), whereas it does not interact with the regulatory light chain (RLC)-free subfragment-1 (S1) or with control proteins from the same muscle molecular machinery, G-actin and tropomyosin. To further narrow down the location of piperine binding, we studied interactions between piperine and a fragment of skeletal myosin consisting of the full-length RLC and a fragment of the heavy chain (HCF). The sequence of HCF was designed to bind RLC and to dimerize via formation of a stable coiled coil, thus producing a well-folded isolated fragment of the myosin neck. Both chains were co-expressed in Escherichia coli, the RLC/HCF complex was purified and tested for stability, composition and binding to piperine. RLC and HCF chains formed a stable heterotetrameric complex (RLC/HCF)2 which was found to bind piperine. The piperine molecule was also found to bind isolated RLC. Piperine binding to RLC in (RLC/HCF)2 altered the compactness of the complex, suggesting that the mechanism of SRX inhibition by piperine is based on changing conformation of the myosin.


Asunto(s)
Alcaloides/metabolismo , Alcaloides/farmacología , Benzodioxoles/metabolismo , Benzodioxoles/farmacología , Cadenas Ligeras de Miosina/antagonistas & inhibidores , Cadenas Ligeras de Miosina/metabolismo , Piperidinas/metabolismo , Piperidinas/farmacología , Alcamidas Poliinsaturadas/metabolismo , Alcamidas Poliinsaturadas/farmacología , Secuencia de Aminoácidos , Animales , Ratones , Modelos Moleculares , Mutación , Cadenas Pesadas de Miosina/química , Cadenas Pesadas de Miosina/genética , Cadenas Pesadas de Miosina/metabolismo , Cadenas Ligeras de Miosina/química , Unión Proteica , Conformación Proteica , Estabilidad Proteica/efectos de los fármacos
10.
PLoS One ; 19(5): e0304380, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38820523

RESUMEN

Skeletal muscle atrophy is characterized by a decrease in muscle mass and strength caused by an imbalance in protein synthesis and degradation. This process naturally occurs upon reduced or absent physical activity, often related to illness, forced bed rest, or unhealthy lifestyles. Currently, no treatment is available for atrophy, and it can only be prevented by overloading exercise, causing severe problems for patients who cannot exercise due to chronic diseases, disabilities, or being bedridden. The two murine models commonly used to induce muscle atrophy are hindlimb suspension and ankle joint immobilization, both of which come with criticalities. The lack of treatments and the relevance of this atrophic process require a unilateral, safe, and robust model to induce muscle atrophy. In this work, we designed and developed a 3D-printed cast to be used for the study of disuse skeletal muscle atrophy. Applying two halves of the cast is non-invasive, producing little to no swelling or skin damage. The application of the cast induces, in 2-weeks immobilized leg, the activation of atrophy-related genes, causing a muscle weight loss up to 25% in the gastrocnemius muscle, and 31% in the soleus muscle of the immobilized leg compared to the control leg. The cross-sectional area of the fibers is decreased by 31% and 34% respectively, with a peculiar effect on fiber types. In the immobilized gastrocnemius, absolute muscle force is reduced by 38%, while normalized force is reduced by 16%. The contralateral leg did not show signs of overload or hypertrophy when compared to free roaming littermates, offering a good internal control over the immobilized limb. Upon removing the cast, the mice effectively recovered mass and force in 3 weeks.


Asunto(s)
Modelos Animales de Enfermedad , Músculo Esquelético , Atrofia Muscular , Impresión Tridimensional , Animales , Músculo Esquelético/patología , Ratones , Atrofia Muscular/patología , Atrofia Muscular/etiología , Atrofia Muscular/terapia , Masculino , Trastornos Musculares Atróficos/patología , Trastornos Musculares Atróficos/terapia , Suspensión Trasera/efectos adversos , Ratones Endogámicos C57BL
11.
Acta Physiol (Oxf) ; 240(9): e14208, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39077881

RESUMEN

AIM: Parvalbumin (PV) is a primary calcium buffer in mouse fast skeletal muscle fibers. Previous work showed that PV ablation has a limited impact on cytosolic Ca2+ ([Ca2+]cyto) transients and contractile response, while it enhances mitochondrial density and mitochondrial matrix-free calcium concentration ([Ca2+]mito). Here, we aimed to quantitatively test the hypothesis that mitochondria act to compensate for PV deficiency. METHODS: We determined the free Ca2+ redistribution during a 2 s 60 Hz tetanic stimulation in the sarcoplasmic reticulum, cytosol, and mitochondria. Via a reaction-diffusion Ca2+ model, we quantitatively evaluated mitochondrial uptake and storage capacity requirements to compensate for PV lack and analyzed possible extracellular export. RESULTS: [Ca2+]mito during tetanic stimulation is greater in knock-out (KO) (1362 ± 392 nM) than in wild-type (WT) (855 ± 392 nM), p < 0.05. Under the assumption of a non-linear intramitochondrial buffering, the model predicts an accumulation of 725 µmoles/L fiber (buffering ratio 1:11 000) in KO, much higher than in WT (137 µmoles/L fiber, ratio 1:4500). The required transport rate via mitochondrial calcium uniporter (MCU) reaches 3 mM/s, compatible with available literature. TEM images of calcium entry units and Mn2+ quenching showed a greater capacity of store-operated calcium entry in KO compared to WT. However, levels of [Ca2+]cyto during tetanic stimulation were not modulated to variations of extracellular calcium. CONCLUSIONS: The model-based analysis of experimentally determined calcium distribution during tetanic stimulation showed that mitochondria can act as a buffer to compensate for the lack of PV. This result contributes to a better understanding of mitochondria's role in modulating [Ca2+]cyto in skeletal muscle fibers.


Asunto(s)
Calcio , Citosol , Ratones Noqueados , Parvalbúminas , Animales , Parvalbúminas/metabolismo , Citosol/metabolismo , Calcio/metabolismo , Ratones , Fibras Musculares de Contracción Rápida/metabolismo , Mitocondrias Musculares/metabolismo , Ratones Endogámicos C57BL , Retículo Sarcoplasmático/metabolismo , Mitocondrias/metabolismo , Masculino , Contracción Muscular/fisiología , Músculo Esquelético/metabolismo
12.
Antioxidants (Basel) ; 13(6)2024 May 21.
Artículo en Inglés | MEDLINE | ID: mdl-38929061

RESUMEN

Duchenne muscular dystrophy (DMD) is one of the most frequent and severe childhood muscle diseases. Its pathophysiology is multifaceted and still incompletely understood, but we and others have previously shown that oxidative stress plays an important role. In particular, we have demonstrated that inhibition of mitochondrial monoamine oxidases could improve some functional and biohumoral markers of the pathology. In the present study we report the use of dystrophic mdx mice to evaluate the efficacy of a dual monoamine oxidase B (MAO-B)/semicarbazide-sensitive amine oxidase (SSAO) inhibitor, PXS-5131, in reducing inflammation and fibrosis and improving muscle function. We found that a one-month treatment starting at three months of age was able to decrease reactive oxygen species (ROS) production, fibrosis, and inflammatory infiltrate in the tibialis anterior (TA) and diaphragm muscles. Importantly, we also observed a marked improvement in the capacity of the gastrocnemius muscle to maintain its force when challenged with eccentric contractions. Upon performing a bulk RNA-seq analysis, PXS-5131 treatment affected the expression of genes involved in inflammatory processes and tissue remodeling. We also studied the effect of prolonged treatment in older dystrophic mice, and found that a three-month administration of PXS-5131 was able to greatly reduce the progression of fibrosis not only in the diaphragm but also in the heart. Taken together, these results suggest that PXS-5131 is an effective inhibitor of fibrosis and inflammation in dystrophic muscles, a finding that could open a new therapeutic avenue for DMD patients.

13.
Cell Rep Med ; 5(3): 101439, 2024 Mar 19.
Artículo en Inglés | MEDLINE | ID: mdl-38402623

RESUMEN

Selenoprotein N (SEPN1) is a protein of the endoplasmic reticulum (ER) whose inherited defects originate SEPN1-related myopathy (SEPN1-RM). Here, we identify an interaction between SEPN1 and the ER-stress-induced oxidoreductase ERO1A. SEPN1 and ERO1A, both enriched in mitochondria-associated membranes (MAMs), are involved in the redox regulation of proteins. ERO1A depletion in SEPN1 knockout cells restores ER redox, re-equilibrates short-range MAMs, and rescues mitochondrial bioenergetics. ERO1A knockout in a mouse background of SEPN1 loss blunts ER stress and improves multiple MAM functions, including Ca2+ levels and bioenergetics, thus reversing diaphragmatic weakness. The treatment of SEPN1 knockout mice with the ER stress inhibitor tauroursodeoxycholic acid (TUDCA) mirrors the results of ERO1A loss. Importantly, muscle biopsies from patients with SEPN1-RM exhibit ERO1A overexpression, and TUDCA-treated SEPN1-RM patient-derived primary myoblasts show improvement in bioenergetics. These findings point to ERO1A as a biomarker and a viable target for intervention and to TUDCA as a pharmacological treatment for SEPN1-RM.


Asunto(s)
Proteínas Musculares , Enfermedades Musculares , Humanos , Ratones , Animales , Enfermedades Musculares/tratamiento farmacológico , Enfermedades Musculares/genética , Enfermedades Musculares/metabolismo , Ácido Tauroquenodesoxicólico/farmacología , Oxidorreductasas , Ratones Noqueados
14.
JCI Insight ; 8(15)2023 08 08.
Artículo en Inglés | MEDLINE | ID: mdl-37551712

RESUMEN

Age-associated sarcopenia, characterized by a progressive loss in muscle mass and strength, is the largest cause of frailty and disability in the elderly worldwide. Current treatments involve nonpharmacological guidelines that few subjects can abide by, highlighting the need for effective drugs. Preclinical models were employed to test the benefits of RJx-01, a combination drug composed of metformin and galantamine, on sarcopenia. In worms, RJx-01 treatment improved lifespan, locomotion, pharyngeal pumping, and muscle fiber organization. The synergistic effects of RJx-01 were recapitulated in a transgenic mouse model that displays an exacerbated aging phenotype (Opa1-/-). In these mice, RJx-01 ameliorated physical performance, muscle mass and force, neuromuscular junction stability, and systemic inflammation. RJx-01 also improved physical performance and muscle strength in 22-month-old WT mice and also improved skeletal muscle ultrastructure, mitochondrial morphology, autophagy, lysosomal function, and satellite cell content. Denervation and myofiber damage were decreased in RJx-01-treated animals compared with controls. RJx-01 improved muscle quality rather than quantity, indicating that the improvement in quality underlies the beneficial effects of the combination drug. The studies herein indicate synergistic beneficial effects of RJx-01 in the treatment of sarcopenia and support the pursuit of RJx-01 in a human clinical trial as a therapeutic intervention for sarcopenia.


Asunto(s)
Metformina , Sarcopenia , Humanos , Ratones , Animales , Anciano , Lactante , Sarcopenia/tratamiento farmacológico , Galantamina/farmacología , Metformina/farmacología , Envejecimiento/fisiología , Músculo Esquelético/patología , Ratones Transgénicos
15.
Nat Commun ; 14(1): 602, 2023 02 06.
Artículo en Inglés | MEDLINE | ID: mdl-36746942

RESUMEN

Polyglutamine expansion in the androgen receptor (AR) causes spinobulbar muscular atrophy (SBMA). Skeletal muscle is a primary site of toxicity; however, the current understanding of the early pathological processes that occur and how they unfold during disease progression remains limited. Using transgenic and knock-in mice and patient-derived muscle biopsies, we show that SBMA mice in the presymptomatic stage develop a respiratory defect matching defective expression of genes involved in excitation-contraction coupling (ECC), altered contraction dynamics, and increased fatigue. These processes are followed by stimulus-dependent accumulation of calcium into mitochondria and structural disorganization of the muscle triads. Deregulation of expression of ECC genes is concomitant with sexual maturity and androgen raise in the serum. Consistent with the androgen-dependent nature of these alterations, surgical castration and AR silencing alleviate the early and late pathological processes. These observations show that ECC deregulation and defective mitochondrial respiration are early but reversible events followed by altered muscle force, calcium dyshomeostasis, and dismantling of triad structure.


Asunto(s)
Andrógenos , Atrofia Bulboespinal Ligada al X , Ratones , Animales , Andrógenos/metabolismo , Atrofia Bulboespinal Ligada al X/genética , Calcio/metabolismo , Músculo Esquelético/metabolismo , Receptores Androgénicos/metabolismo , Mitocondrias/metabolismo , Respiración , Modelos Animales de Enfermedad
16.
J Cachexia Sarcopenia Muscle ; 13(1): 648-661, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-34741441

RESUMEN

BACKGROUND: Cancer-related muscle wasting occurs in most cancer patients. An important regulator of adult muscle mass and function is the Akt-mTORC1 pathway. While Akt-mTORC1 signalling is important for adult muscle homeostasis, it is also a major target of numerous cancer treatments. Which role Akt-mTORC1 signalling plays during cancer cachexia in muscle is currently not known. Here, we aimed to determine how activation or inactivation of the pathway affects skeletal muscle during cancer cachexia. METHODS: We used inducible, muscle-specific Raptor ko (mTORC1) mice to determine the effect of reduced mTOR signalling during cancer cachexia. On the contrary, in order to understand if skeletal muscles maintain their anabolic capacity and if activation of Akt-mTORC1 signalling can reverse cancer cachexia, we generated mice in which we can inducibly activate Akt specifically in skeletal muscles. RESULTS: We found that mTORC1 signalling is impaired during cancer cachexia, using the Lewis lung carcinoma and C26 colon cancer model, and is accompanied by a reduction in protein synthesis rates of 57% (P < 0.01). Further reduction of mTOR signalling, as seen in Raptor ko animals, leads to a 1.5-fold increase in autophagic flux (P > 0.001), but does not further increase muscle wasting. On the other hand, activation of Akt-mTORC1 signalling in already cachectic animals completely reverses the 15-20% loss in muscle mass and force (P < 0.001). Interestingly, Akt activation only in skeletal muscle completely normalizes the transcriptional deregulation observed in cachectic muscle, despite having no effect on tumour size or spleen mass. In addition to stimulating muscle growth, it is also sufficient to prevent the increase in protein degradation normally observed in muscles from tumour-bearing animals. CONCLUSIONS: Here, we show that activation of Akt-mTORC1 signalling is sufficient to completely revert cancer-dependent muscle wasting. Intriguingly, these results show that skeletal muscle maintains its anabolic capacities also during cancer cachexia, possibly giving a rationale behind some of the beneficial effects observed in exercise in cancer patients.


Asunto(s)
Caquexia , Carcinoma Pulmonar de Lewis , Animales , Caquexia/patología , Carcinoma Pulmonar de Lewis/patología , Humanos , Diana Mecanicista del Complejo 1 de la Rapamicina , Ratones , Músculo Esquelético/patología , Proteínas Proto-Oncogénicas c-akt/metabolismo
17.
Skelet Muscle ; 11(1): 24, 2021 11 02.
Artículo en Inglés | MEDLINE | ID: mdl-34727990

RESUMEN

BACKGROUND: Human skeletal muscle is composed of three major fiber types, referred to as type 1, 2A, and 2X fibers. This heterogeneous cellular composition complicates the interpretation of studies based on whole skeletal muscle lysate. A single-fiber proteomics approach is required to obtain a fiber-type resolved quantitative information on skeletal muscle pathophysiology. METHODS: Single fibers were dissected from vastus lateralis muscle biopsies of young adult males and processed for mass spectrometry-based single-fiber proteomics. We provide and analyze a resource dataset based on relatively pure fibers, containing at least 80% of either MYH7 (marker of slow type 1 fibers), MYH2 (marker of fast 2A fibers), or MYH1 (marker of fast 2X fibers). RESULTS: In a dataset of more than 3800 proteins detected by single-fiber proteomics, we selected 404 proteins showing a statistically significant difference among fiber types. We identified numerous type 1 or 2X fiber type-specific protein markers, defined as proteins present at 3-fold or higher levels in these compared to other fiber types. In contrast, we could detect only two 2A-specific protein markers in addition to MYH2. We observed three other major patterns: proteins showing a differential distribution according to the sequence 1 > 2A > 2X or 2X > 2A > 1 and type 2-specific proteins expressed in 2A and 2X fibers at levels 3 times greater than in type 1 fibers. In addition to precisely quantifying known fiber type-specific protein patterns, our study revealed several novel features of fiber type specificity, including the selective enrichment of components of the dystrophin and integrin complexes, as well as microtubular proteins, in type 2X fibers. The fiber type-specific distribution of some selected proteins revealed by proteomics was validated by immunofluorescence analyses with specific antibodies. CONCLUSION: We here show that numerous muscle proteins, including proteins whose function is unknown, are selectively enriched in specific fiber types, pointing to potential implications in muscle pathophysiology. This reinforces the notion that single-fiber proteomics, together with recently developed approaches to single-cell proteomics, will be instrumental to explore and quantify muscle cell heterogeneity.


Asunto(s)
Músculo Esquelético , Proteómica , Humanos , Masculino , Fibras Musculares Esqueléticas , Proteínas Musculares
18.
Nat Commun ; 12(1): 4900, 2021 08 12.
Artículo en Inglés | MEDLINE | ID: mdl-34385433

RESUMEN

Skeletal muscle subsarcolemmal mitochondria (SSM) and intermyofibrillar mitochondria subpopulations have distinct metabolic activity and sensitivity, though the mechanisms that localize SSM to peripheral areas of muscle fibers are poorly understood. A protein interaction study and complexome profiling identifies PERM1 interacts with the MICOS-MIB complex. Ablation of Perm1 in mice reduces muscle force, decreases mitochondrial membrane potential and complex I activity, and reduces the numbers of SSM in skeletal muscle. We demonstrate PERM1 interacts with the intracellular adaptor protein ankyrin B (ANKB) that connects the cytoskeleton to the plasma membrane. Moreover, we identify a C-terminal transmembrane helix that anchors PERM1 into the outer mitochondrial membrane. We conclude PERM1 functions in the MICOS-MIB complex and acts as an adapter to connect the mitochondria with the sarcolemma via ANKB.


Asunto(s)
Ancirinas/metabolismo , Mitocondrias Musculares/metabolismo , Complejos Multiproteicos/metabolismo , Proteínas Musculares/metabolismo , Sarcolema/metabolismo , Animales , Membrana Celular/metabolismo , Citoesqueleto/metabolismo , Potencial de la Membrana Mitocondrial/genética , Potencial de la Membrana Mitocondrial/fisiología , Ratones Noqueados , Proteínas Mitocondriales/metabolismo , Proteínas Musculares/genética , Músculo Esquelético/metabolismo , Músculo Esquelético/fisiología
19.
Biomaterials ; 269: 120653, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-33461058

RESUMEN

Biological scaffolds derived from decellularized tissues are being investigated as a promising approach to repair volumetric muscle losses (VML). Indeed, extracellular matrix (ECM) from decellularized tissues is highly biocompatible and mimics the original tissue. However, the development of fibrosis and the muscle stiffness still represents a major problem. Intercellular signals mediating tissue repair are conveyed via extracellular vesicles (EVs), biologically active nanoparticles secreted by the cells. This work aimed at using muscle ECM and human EVs derived from Wharton Jelly mesenchymal stromal cells (MSC EVs) to boost tissue regeneration in a VML murine model. Mice transplanted with muscle ECM and treated with PBS or MSC EVs were analyzed after 7 and 30 days. Flow cytometry, tissue analysis, qRT-PCR and physiology test were performed. We demonstrated that angiogenesis and myogenesis were enhanced while fibrosis was reduced after EV treatment. Moreover, the inflammation was directed toward tissue repair. M2-like, pro-regenerative macrophages were significantly increased in the MSC EVs treated group compared to control. Strikingly, the histological improvements were associated with enhanced functional recovery. These results suggest that human MSC EVs can be a naturally-derived boost able to ameliorate the efficacy of tissue-specific ECM in muscle regeneration up to the restored tissue function.


Asunto(s)
Vesículas Extracelulares , Células Madre Mesenquimatosas , Animales , Modelos Animales de Enfermedad , Matriz Extracelular , Ratones , Músculos
20.
J Cachexia Sarcopenia Muscle ; 11(1): 208-225, 2020 02.
Artículo en Inglés | MEDLINE | ID: mdl-31651100

RESUMEN

BACKGROUND: Skeletal muscle is a plastic tissue that can adapt to different stimuli. It is well established that Mammalian Target of Rapamycin Complex 1 (mTORC1) signalling is a key modulator in mediating increases in skeletal muscle mass and function. However, the role of mTORC1 signalling in adult skeletal muscle homeostasis is still not well defined. METHODS: Inducible, muscle-specific Raptor and mTOR k.o. mice were generated. Muscles at 1 and 7 months after deletion were analysed to assess muscle histology and muscle force. RESULTS: We found no change in muscle size or contractile properties 1 month after deletion. Prolonging deletion of Raptor to 7 months, however, leads to a very marked phenotype characterized by weakness, muscle regeneration, mitochondrial dysfunction, and autophagy impairment. Unexpectedly, reduced mTOR signalling in muscle fibres is accompanied by the appearance of markers of fibre denervation, like the increased expression of the neural cell adhesion molecule (NCAM). Both muscle-specific deletion of mTOR or Raptor, or the use of rapamycin, was sufficient to induce 3-8% of NCAM-positive fibres (P < 0.01), muscle fibrillation, and neuromuscular junction (NMJ) fragmentation in 24% of examined fibres (P < 0.001). Mechanistically, reactivation of autophagy with the small peptide Tat-beclin1 is sufficient to prevent mitochondrial dysfunction and the appearance of NCAM-positive fibres in Raptor k.o. muscles. CONCLUSIONS: Our study shows that mTOR signalling in skeletal muscle fibres is critical for maintaining proper fibre innervation, preserving the NMJ structure in both the muscle fibre and the motor neuron. In addition, considering the beneficial effects of exercise in most pathologies affecting the NMJ, our findings suggest that part of these beneficial effects of exercise are through the well-established activation of mTORC1 in skeletal muscle during and after exercise.


Asunto(s)
Músculo Esquelético/fisiopatología , Unión Neuromuscular/fisiopatología , Serina-Treonina Quinasas TOR/metabolismo , Animales , Modelos Animales de Enfermedad , Humanos , Ratones , Ratones Noqueados
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA