Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 51
Filtrar
1.
Biopharm Drug Dispos ; 45(2): 93-106, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38488691

RESUMEN

Alzheimer's disease is a complex multifactorial neurodegenerative disorder wherein age is a major risk factor. The appropriateness of the Hartley guinea pig (GP), which displays high sequence homologies of its amyloid-ß (Aß40 and Aß42) peptides, Mdr1 and APP (amyloid precursor protein) and similarity in lipid handling to humans, was appraised among 9-40 weeks old guinea pigs. Protein expression levels of P-gp (Abcb1) and Cyp46a1 (24(S)-hydroxylase) for Aß40, and Aß42 efflux and cholesterol metabolism, respectively, were decreased with age, whereas those for Lrp1 (low-density lipoprotein receptor related protein 1), Rage (receptor for advanced glycation endproducts) for Aß efflux and influx, respectively, and Abca1 (the ATP binding cassette subfamily A member 1) for cholesterol efflux, were unchanged among the ages examined. There was a strong, negative correlation of the brain Aß peptide concentrations and Abca1 protein expression levels with free cholesterol. The correlation of Aß peptide concentrations with Cyp46a1 was, however, not significant, and concentrations of the 24(S)-hydroxycholesterol metabolite revealed a decreasing trend from 20 weeks old toward 40 weeks old guinea pigs. The composite data suggest a role for free cholesterol on brain Aß accumulation. The decreases in P-gp and Lrp1 protein levels should further exacerbate the accumulation of Aß peptides in guinea pig brain.


Asunto(s)
Péptidos beta-Amiloides , Precursor de Proteína beta-Amiloide , Cobayas , Humanos , Animales , Péptidos beta-Amiloides/metabolismo , Precursor de Proteína beta-Amiloide/metabolismo , Receptor para Productos Finales de Glicación Avanzada/metabolismo , Colesterol 24-Hidroxilasa/metabolismo , Encéfalo/metabolismo , Envejecimiento , Colesterol/metabolismo
2.
Biopharm Drug Dispos ; 44(1): 71-83, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-35508078

RESUMEN

Efficiently removing blood from the brain vasculature is critical to evaluate accurately the brain penetration and biodistribution of drug candidates, especially for biologics as their blood concentrations are substantially higher than the brain concentrations. Transcardial perfusion has been used widely to remove residual blood in the brain; however, the perfusion conditions (such as the perfusion rate and time) reported in the literature are quite varied, and the performance of these methods on blood removal has not been investigated thoroughly. In this study, the effectiveness of the perfusion conditions was assessed by measuring brain hemoglobin levels. Sodium nitrite (NaNO2 ) as an additive in the perfusate was evaluated at different concentrations. Blood removal was significantly improved with 2% NaNO2 over a 20 min perfusion in mouse without disrupting the integrity of the blood-brain barrier (BBB). In mice, the optimized perfusion method significantly lowered the measured brain-to-plasma ratio (Kp,brain ) for monoclonal antibodies due to the removal of blood contamination and small molecules with a moderate-to-high BBB permeability and with a high brain-unbound-fraction (fu,brain ) presumably due to flux out of the brain during perfusion. Perfusion with or without NaNO2 clearly removed the residual blood in rat brain but with no difference observed in Kp,brain between the perfusion groups with or without 2% NaNO2 . In conclusion, a perfusion method was successfully developed to evaluate the brain penetration of small molecules and biologics in rodents for the first time. The transcardial perfusion with 2% NaNO2 effectively removed the residual blood in the brain and significantly improved the assessment of brain penetration of biologics. For small molecules, however, transcardial perfusion may not be performed, as small molecule compounds could be washed away from the brain by the perfusion procedure.


Asunto(s)
Productos Biológicos , Roedores , Ratas , Ratones , Animales , Distribución Tisular , Encéfalo , Barrera Hematoencefálica , Perfusión
3.
Drug Metab Dispos ; 49(2): 142-151, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-33262223

RESUMEN

In drug discovery, the extent of brain penetration as measured by free brain/plasma concentration ratio (Kp,uu) is normally determined from one experiment after constant intravenous infusion, and pharmacokinetics (PK) parameters, including clearance (CL), volume of distribution at steady state (Vss), and effective half-life (t 1/2 ,eff) are determined from another experiment after a single intravenous bolus injection. The objective of the present study was to develop and verify a method to simultaneously determine Kp,uu and PK parameters from a single intravenous infusion experiment. In this study, nine compounds (atenolol, loperamide, minoxidil, N-[3-(4'-fluorophenyl)-3-(4'-phenylphenoxy)propyl]sarcosine, sulpiride, and four proprietary compounds) were intravenously infused for 4 hours at 1 mg/kg or 24 hours at 1 or 6 mg/kg or bolus injected at 1 mg/kg. Plasma samples were serially collected, and brain and cerebrospinal fluid samples were collected at the end of infusion. The PK parameters were obtained using noncompartmental analysis (NCA) and compartmental analysis. The Kp,uu,brain values of those compounds increased up to 2.86-fold from 4 to 24 hours. The CL calculated from infusion rate over steady-state concentration from the 24-hour infusion studies was more consistent with the CL from the intravenous bolus studies than that from 4-hour infusion studies (CL avg. fold of difference 1.19-1.44 vs. 2.10). The compartmental analysis using one- and two-compartment models demonstrated better performance than NCA regardless of study design. In addition, volume of distribution at steady state and t 1/2,eff could be accurately obtained by one-compartment analysis within 2-fold difference. In conclusion, both unbound brain-to-plasma ratio and PK parameters can be successfully estimated from a 24-hour intravenous infusion study design. SIGNIFICANCE STATEMENT: We demonstrated that the extent of brain penetration and pharmacokinetic parameters (such as clearance, Vss, and effective t 1/2) can be determined from a single constant intravenous infusion study in rats.


Asunto(s)
Encéfalo/metabolismo , Preparaciones Farmacéuticas/administración & dosificación , Farmacocinética , Animales , Barrera Hematoencefálica , Infusiones Intravenosas , Masculino , Preparaciones Farmacéuticas/líquido cefalorraquídeo , Preparaciones Farmacéuticas/metabolismo , Ratas , Ratas Sprague-Dawley
4.
Drug Metab Dispos ; 48(10): 944-955, 2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-32759365

RESUMEN

Amyloid-ß peptides of 40 and 42 amino acid lengths, which are synthesized in neurons and degraded in the brain and liver, have the potential to aggregate and form neuritic plaques in Alzheimer disease. The kinetics of human amyloid-ß (hAß) 40 were examined in the rat pursuant to intravenous and intracerebroventricular administration after pretreatment with calcitriol, the active vitamin D receptor ligand (6.4 nmol·kg-1 in 0.3 ml corn oil every other day for four intraperitoneal doses) to induce P-glycoprotein (P-gp) and enhance hAß40 brain efflux. The interference of hAß40 by media matrix that suppressed absorbance readings in the ELISA assay was circumvented with use of different calibration curves prepared in Standard Dilution Buffer, undiluted, 10-10,000 or 5-fold diluted plasma, or artificial cerebrospinal fluid. Simultaneous fitting of hAß40 plasma and cerebrospinal fluid (CSF) data after intravenous and intracerebroventricular administration were described by catenary-mammillary models comprising of a central and two peripheral compartments, the brain, and one to four CSF compartments. The model with only one CSF compartment (model I) best fitted the intravenous data that showed a faster plasma decay t1/2 and slower equilibration between plasma and brain/CSF. Calcitriol induction increased the brain efflux rate constant, k41 (1.8-fold), at the blood-brain barrier when compared with the control group, as confirmed by the 2-fold (P < 0.05) increase in brain P-gp relative protein expression. SIGNIFICANCE STATEMENT: An accurate description of the kinetic behavior of human amyloid-ß (hAß) 40 is needed in defining the toxic peptide as a biomarker of Alzheimer disease. Modeling of hAß40 data after intravenous and intracerebroventricular administration to the rat revealed an initially faster plasma half-life that reflected faster peripheral distribution but slower equilibration between plasma and brain/cerebrospinal fluid even with calcitriol pretreatment that increased P-glycoprotein protein expression and enhanced efflux clearance from brain.


Asunto(s)
Subfamilia B de Transportador de Casetes de Unión a ATP/metabolismo , Péptidos beta-Amiloides/farmacocinética , Barrera Hematoencefálica/metabolismo , Calcitriol/administración & dosificación , Fragmentos de Péptidos/farmacocinética , Subfamilia B de Transportador de Casetes de Unión a ATP/agonistas , Enfermedad de Alzheimer/sangre , Enfermedad de Alzheimer/líquido cefalorraquídeo , Enfermedad de Alzheimer/diagnóstico , Péptidos beta-Amiloides/administración & dosificación , Animales , Humanos , Inyecciones Intravenosas , Inyecciones Intraventriculares , Masculino , Modelos Animales , Fragmentos de Péptidos/administración & dosificación , Ratas
5.
Biopharm Drug Dispos ; 41(3): 126-148, 2020 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-32319119

RESUMEN

Calcitriol or 1,25-dihydroxyvitamin D3 [1,25(OH)2 D3 ] is the active ligand of the vitamin D receptor (VDR) that plays a vital role in health and disease. Vitamin D is converted to the relatively inactive metabolite, 25-hydroxyvitamin D3 [25(OH)D3 ], by CYP27A1 and CYP2R1 in the liver, then to 1,25(OH)2 D3 by a specific, mitochondrial enzyme, CYP27B1 (1α-hydroxylase) that is present primarily in the kidney. The degradation of both metabolites is mostly carried out by the more ubiquitous mitochondrial enzyme, CYP24A1. Despite the fact that calcitriol inhibits its formation and degradation, allometric scaling revealed strong interspecies correlation of the net calcitriol clearance (CL estimated from dose/AUC∞ ), production rate (PR), and basal, plasma calcitriol concentration with body weight (BW). PBPK-PD (physiologically based pharmacokinetic-pharmacodynamic) modeling confirmed the dynamic interactions between calcitriol and Cyp27b1/Cyp24a1 on the decrease in the PR and increase in CL in mice. Close scrutiny of the literature revealed that basal levels of calcitriol had not been taken into consideration for estimating the correct AUC∞ and CL after exogenous calcitriol dosing in both animals and humans, leading to an overestimation of AUC∞ and underestimation of the plasma CL. In humans, CL was decreased in chronic kidney disease but increased in cancer. Collectively, careful pharmacokinetic data analysis and improved definition are achieved with PBPK-PD modeling, which embellishes the complexity of dose, enzyme regulation, and disease conditions. Allometric scaling and PBPK-PD modeling were applied successfully to extend the PBPK model to predict calcitriol kinetics in cancer patients.


Asunto(s)
Vitamina D/análogos & derivados , Animales , Sistema Enzimático del Citocromo P-450/metabolismo , Humanos , Cinética , Ratones , Modelos Biológicos , Receptores de Calcitriol/metabolismo , Vitamina D/metabolismo , Vitamina D/farmacocinética
6.
Int J Mol Sci ; 21(5)2020 Mar 09.
Artículo en Inglés | MEDLINE | ID: mdl-32182820

RESUMEN

Duloxetine (DLX) is a potent drug investigated for the treatment of depression and urinary incontinence. DLX is extensively metabolized in the liver by two P450 isozymes, CYP2D6 and CYP1A2. Propolis (PPL) is one of the popular functional foods known to have effects on activities of CYPs, including CYP1A2. Due to the high probability of using DLX and PPL simultaneously, the present study was designed to investigate the potent effect of PPL on pharmacokinetics (PKs) of DLX after co-administration in humans. A PK study was first conducted in 18 rats (n = 6/group), in which the plasma concentration of DLX and its major metabolite 4-hydroxy duloxetine (4-HD) with or without administration of PPL was recorded. Population PKs and potential effects of PPL were then analyzed using NONMEM software. Lastly, these results were extrapolated from rats to humans using the allometric scaling and the liver blood flow method. PPL (15,000 mg/day) exerts a statistically significant increase in DLX exposures at steady state, with a 20.2% and 24.6% increase in DLX C m a x , s s and the same 28.0% increase in DLX A U C s s when DLX (40 or 60 mg) was administered once or twice daily, respectively. In conclusion, safety issues are required to be attended to when individuals simultaneously use DLX and PPL at high doses, and the possibility of interactions between DLX and PPL might be noted.


Asunto(s)
Interacciones Farmacológicas/fisiología , Clorhidrato de Duloxetina/metabolismo , Própolis/metabolismo , Animales , Área Bajo la Curva , Citocromo P-450 CYP1A2/metabolismo , Citocromo P-450 CYP2D6/metabolismo , Clorhidrato de Duloxetina/farmacocinética , Humanos , Hígado/metabolismo , Própolis/farmacocinética , Ratas
7.
J Toxicol Environ Health A ; 82(8): 502-513, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31140386

RESUMEN

Occupational exposure of workers to 1-bromopropane (1-BP) has raised concerns in industry for many years. Despite the known toxicity of this chemical, molecular events attributed to exposure to 1-BP have not been extensively studied. The aim of the present study was to examine the effects of 1-BP exposure on adduct formation with DNA and glutathione (GSH) in male Sprague-Dawley rats in an attempt to determine the early stages of toxicity. Following 6 h after either single or daily exposure to 1-BP for 3 days, N7-propyl guanine and S-propyl GSH were quantified in several organs by using liquid chromatography-mass spectrometry (LC-MS/MS). The results showed that N7-propyl guanine was maximally formed in liver followed by spleen, testes, and lung in both dose- and time-dependent manners. However, DNA adduct was not detected in cardiac tissue. In the case of S-propyl GSH, this compound was formed in the following order in various organs: liver > testes > spleen > kidney > lung > heart. In a subsequent in vitro study, formation of N7-propyl guanine initiated by 1-BP in calf thymus DNA was not markedly affected by addition of liver homogenates, which indicated that this chemical may be acting as a direct alkylating agent. In contrast, an in vitro study with free GSH demonstrated that 1-BP reduced GSH and elevated production of S-propyl GSH, and that the production of this adduct was significantly higher in the presence of active liver homogenates. Data indicated that formation of GSH adducts initiated by 1-BP might be associated with an enzyme-driven process. Although further characterization is necessary, it would appear that N7-propyl guanine and S-propyl GSH might serve as useful markers in cases of exposure assessment of 1-BP.


Asunto(s)
Aductos de ADN/efectos de los fármacos , Contaminantes Ambientales/efectos adversos , Glutatión/efectos de los fármacos , Solventes/efectos adversos , Animales , Aductos de ADN/metabolismo , Glutatión/metabolismo , Hidrocarburos Bromados/efectos adversos , Hígado/efectos de los fármacos , Masculino , Distribución Aleatoria , Ratas , Ratas Sprague-Dawley
8.
Mar Drugs ; 17(3)2019 Mar 17.
Artículo en Inglés | MEDLINE | ID: mdl-30884884

RESUMEN

An ilimquinone (IQ) mixture isolated from Hippiospongia metachromia, consisting of IQ and epi-ilimaquinone (epi-IQ), exerts anti-HIV, anti-microbial, anti-inflammatory, and anti-cancer effects. An HPLC-MS/MS method was developed for simultaneous determination of the two epimers in rat plasma, separating them using a biphenyl column. Ascorbic acid is added during the sample preparation to ensure the stability of both isomers. The plasma concentrations of the isomers were monitored following intravenous and oral administration of the IQ mixture in rats as well as the individual epimers that were separately orally administered. Compare to IQ, epi-IQ was much more stable in rat plasma, likely due to its configurations of decalin. Both substances decayed in more than bi-exponential pattern, with an elimination rate constant of 1.2 h-1 for IQ and 1.7 h-1 for epi-IQ. The epi-IQ was distributed more widely than IQ by about two-fold. Consequently, the clearance of epi-IQ was greater than that of IQ by about three-fold. The oral absolute bioavailability for IQ was 38%, and, that for epi-IQ, was 13%. Although the systemic exposure of IQ was greater than that of epi-IQ by ~8.7-fold, the clearance of each isomer was similar when administered either orally or intravenously, when normalized for bioavailability. The stereo-specific behavior of the isomers appears to originate from differences in both their tissue distribution and gastrointestinal permeability.


Asunto(s)
Poríferos/química , Quinonas/química , Quinonas/farmacocinética , Sesquiterpenos/química , Sesquiterpenos/farmacocinética , Animales , Disponibilidad Biológica , Cromatografía Líquida de Alta Presión/métodos , Isomerismo , Masculino , Quinonas/administración & dosificación , Quinonas/sangre , Ratas , Ratas Sprague-Dawley , Sesquiterpenos/administración & dosificación , Sesquiterpenos/sangre , Espectrometría de Masas en Tándem/métodos
9.
Biopharm Drug Dispos ; 40(5-6): 195-213, 2019 May.
Artículo en Inglés | MEDLINE | ID: mdl-31099032

RESUMEN

The intestine is endowed with a plethora of enzymes and transporters and regulates the flow of substrate to the liver. Physiologically-based pharmacokinetic models have surfaced to describe intestinal removal. The traditional model (TM) describes the intestinal flow as a whole perfusing the entire tissue that contains the intestinal transporters and enzymes. The segregated flow model (SFM) describes that only a fraction (fQ  < 0.2) of the intestinal blood flow perfuses the enterocyte region where the intestinal enzymes and transporters are housed, rendering a lower drug distribution/intestinal clearance when drug enters via the circulation than from the gut lumen. As shown by simulations, a higher intestinal clearance and extraction ratio (EI,iv ) exists for the TM than for SFM after iv dosing. By contrast, the EI,po after po dosing is higher for the SFM, due to the smaller volume of distribution for the enterocyte region and a lower flow rate that result in increased mean residence time and higher drug extraction. Under MBI (mechanism-based inhibition), the AUCR,po after oral bolus is the highest for drug when inhibitor is given orally, with SFM > TM. Competitive inhibition of intestinal enzymes leads to higher liver metabolism; again, when both drug and inhibitor are given orally, changes in the SFM > TM. However, less definitive patterns result with inhibition of both intestinal and liver enzymes. In conclusion, differences exist for EI and drug-drug interaction (DDI) between the TM and SFM. The fractional intestinal blood flow (fQ ) is a key factor affecting different extents of intestinal/liver metabolism of the drug after oral as well as intravenous administration.


Asunto(s)
Mucosa Intestinal/metabolismo , Intestinos/irrigación sanguínea , Modelos Biológicos , Preparaciones Farmacéuticas/metabolismo , Administración Intravenosa , Administración Oral , Interacciones Farmacológicas , Hígado/metabolismo , Tasa de Depuración Metabólica , Preparaciones Farmacéuticas/administración & dosificación
10.
Biopharm Drug Dispos ; 39(2): 99-115, 2018 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-29243851

RESUMEN

The vitamin D-deficient model, established in the C57BL/6 mouse after 8 weeks of feeding vitamin D-deficient diets in the absence or presence of added calcium, was found associated with elevated levels of plasma parathyroid hormone (PTH) and plasma and liver cholesterol, and a reduction in cholesterol 7α-hydroxylase (Cyp7a1, rate-limiting enzyme for cholesterol metabolism) and renal Oat3 mRNA/protein expression levels. However, there was no change in plasma calcium and phosphate levels. Appraisal of the liver revealed an up-regulation of mRNA expressions of the small heterodimer partner (Shp) and attenuation of Cyp7a1, which contributed to hypercholesterolemia in vitamin D-deficiency. When vitamin D-sufficient or D-deficient mice were further rendered hypercholesterolemic with 3 weeks of feeding the respective, high fat/high cholesterol (HF/HC) diets, treatment with 1α,25-dihydroxyvitamin D3 [1,25(OH)2 D3 ], active vitamin D receptor (VDR) ligand, or vitamin D (cholecalciferol) to HF/HC vitamin D-deficient mice lowered the cholesterol back to baseline levels. Cholecalciferol treatment partially restored renal Oat3 mRNA/protein expression back to that of vitamin D-sufficient mice. When the protein expression of protein kinase C (PKC), a known, negative regulator of Oat3, was examined in murine kidney, no difference in PKC expression was observed for any of the diets with/without 1,25(OH)2 D3 /cholecalciferol treatment, inferring that VDR regulation of renal Oat3 did not involve PKC in mice. As expected, plasma calcium levels were not elevated by cholecalciferol treatment of vitamin D-deficient mice, while 1,25(OH)2 D3 treatment led to hypercalcemia. In conclusion, vitamin D-deficiency resulted in down-regulation of liver Cyp7a1 and renal Oat3, conditions that are alleviated upon replenishment of cholecalciferol.


Asunto(s)
Colesterol 7-alfa-Hidroxilasa/biosíntesis , Regulación hacia Abajo , Regulación Enzimológica de la Expresión Génica , Riñón/metabolismo , Hígado/metabolismo , Transportadores de Anión Orgánico Sodio-Independiente/biosíntesis , Deficiencia de Vitamina D/enzimología , Deficiencia de Vitamina D/genética , Animales , Ácidos y Sales Biliares/metabolismo , Calcifediol/sangre , Calcio/sangre , Calcio/farmacología , Colecalciferol/farmacología , Colesterol/sangre , Colesterol/metabolismo , Colesterol 7-alfa-Hidroxilasa/sangre , Colesterol 7-alfa-Hidroxilasa/genética , Dieta/métodos , Vesícula Biliar/metabolismo , Humanos , Mucosa Intestinal/metabolismo , Ratones , Ratones Endogámicos C57BL , Transportadores de Anión Orgánico Sodio-Independiente/genética , Hormona Paratiroidea/sangre , Vitamina D/análogos & derivados , Vitamina D/sangre
11.
Biopharm Drug Dispos ; 38(3): 231-250, 2017 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-27977852

RESUMEN

Merits of the segregated flow model (SFM), highlighting the intestine as inert serosa and active enterocyte regions, with a smaller fractional (fQ < 0.3) intestinal flow (QI ) perfusing the enterocyte region, are described. Less drug in the circulation reaches the enterocytes due to the lower flow (fQ QI ) in comparison with drug administered into the gut lumen, fostering the idea of route-dependent intestinal removal. The SFM has been found superior to the traditional model (TM), which views the serosa and enterocytes totally as a well-mixed tissue perfused by 100% of the intestinal flow, QI . The SFM model is able to explain the lower extents of intestinal metabolism of enalapril, morphine and midazolam with i.v. vs. p.o. dosing. For morphine, the urine/bile ratio of the metabolite, morphine glucuronide MGurineMGbile for p.o. was 2.6× that of i.v. This was due to the higher proportion of intestinally formed morphine glucuronide, appearing more in urine than in bile due to its low permeability and greater extent of intestinal formation with p.o. administration. By contrast, the TM predicted the same MGurineMGbile for p.o. vs. i.v. The TM predicted that the contributions of the intestine:liver to first-pass removal were 46%:54% for both p.o. and i.v. The SFM predicted same 46%:54% (intestine:liver) for p.o., but 9%:91% for i.v. By contrast, the kinetics of codeine, the precursor of morphine, was described equally well by the SFM- and TM-PBPK models, a trend suggesting that intestinal metabolism of codeine is negligible. Fits to these PBPK models further provide insightful information towards metabolite formation: available fractions and the fractions of hepatic and total clearances that form the metabolite in question. The SFM-PBPK model is useful to identify not only the presence of intestinal metabolism but the contributions of the intestine and liver for metabolite formation. Copyright © 2016 John Wiley & Sons, Ltd.


Asunto(s)
Codeína/farmacocinética , Mucosa Intestinal/metabolismo , Hígado/metabolismo , Modelos Biológicos , Morfina/farmacocinética , Administración Intravenosa , Administración Oral , Animales , Bilis/metabolismo , Codeína/administración & dosificación , Humanos , Morfina/administración & dosificación
12.
Biopharm Drug Dispos ; 38(1): 50-74, 2017 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-27925239

RESUMEN

The physiologically based model with segregated flow to the intestine (SFM-PBPK; partial, lower flow to enterocyte region vs. greater flow to serosal region) was found to describe the first-pass glucuronidation of morphine (M) to morphine-3ß-glucuronide (MG) in rats after intraduodenal (i.d.) and intravenous (i.v.) administration better than the traditional model (TM), for which a single intestinal flow perfused the whole of the intestinal tissue. The segregated flow model (SFM) described a disproportionately greater extent of intestinal morphine glucuronidation for i.d. vs. i.v. administration. The present study applied the same PBPK modeling approaches to examine the contributions of the intestine and liver on the first-pass metabolism of the precursor, codeine (C, 3-methylmorphine) in the rat. Unexpectedly, the profiles of codeine, morphine and morphine-3ß-glucuronide in whole blood, bile and urine, assayed by LCMS, were equally well described by both the TM-PBPK and SFM-PBPK. The fitted parameters for the models were similar, and the net formation intrinsic clearance of morphine (from codeine) for the liver was much higher, being 9- to 13-fold that of the intestine. Simulations, based on the absence of intestinal formation of morphine, correlated well with observations. The lack of discrimination of SFM and TM with the codeine data did not invalidate the SFM-PBPK model but rather suggests that the liver is the only major organ for codeine metabolism. Because of little or no contribution by the intestine to the metabolism of codeine, both the TM- and SFM-PBPK models are equally consistent with the data. Copyright © 2016 John Wiley & Sons, Ltd.


Asunto(s)
Analgésicos Opioides/farmacocinética , Codeína/farmacocinética , Mucosa Intestinal/metabolismo , Modelos Biológicos , Analgésicos Opioides/sangre , Analgésicos Opioides/orina , Animales , Bilis/metabolismo , Codeína/sangre , Codeína/orina , Absorción Intestinal , Hígado/metabolismo , Masculino , Morfina/sangre , Morfina/orina , Derivados de la Morfina/sangre , Derivados de la Morfina/orina , Ratas Sprague-Dawley
13.
Biopharm Drug Dispos ; 38(5): 326-339, 2017 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-28102538

RESUMEN

The liver and kidney functions of recipients of liver transplantation (LT) surgery with heart beating (HBD, n = 13) or living donors (LD, n = 9) with different cold ischemia times were examined during the neohepatic phase for the elimination of rocuronium bromide (ROC, cleared by liver and kidney) and tranexamic acid (TXA, cleared by kidney). Solid phase micro-extraction and LC-MS/MS was applied to determine the plasma concentrations of ROC and TXA, and creatinine was determined by standard laboratory methods. Metabolomics and the relative expressions of miR-122, miR-148a and γ-glutamyltranspeptidase (GGT), liver injury biomarkers, were also measured. The ROC clearance for HBD was significantly lower than that for LD (0.147 ± 0.052 vs. 0.265 ± 0.148 ml·min-1 ·g-1 liver) after intravenous injection (0.6 mg·kg-1 ). The clearance of TXA, a compound cleared by glomerular filtration, given as a 1 g bolus followed by infusion (10 mg·kg-1 ·h-1 ), was similar between HBD and LD groups (~ 1 ml·min-1 ·kg-1 ). The TXA clearance in both groups was lower than the GFR, showing a small extent of hepatorenal coupling. The miR-122 and miR-148a expressions were similar for the HBD and LD groups, whereas GGT expression was significantly increased for HBD. The lower ROC clearance and the higher GGT levels in the HBD group of longer cold ischemia times performed worse than the LD group during the neophase. Metabololmics further showed clusters of bile acids, phospholipids and lipid ω-oxidation products for the LD and HBD groups. In conclusion, ROC CL and GGT expression, and metabolomics could serve as sensitive indices of early graft function. Copyright © 2017 John Wiley & Sons, Ltd.


Asunto(s)
Fallo Hepático , Trasplante de Hígado , Donantes de Tejidos , Adulto , Anciano , Androstanoles/sangre , Androstanoles/farmacocinética , Biomarcadores/análisis , Femenino , Humanos , Fallo Hepático/genética , Fallo Hepático/metabolismo , Masculino , Metabolómica , MicroARNs/genética , Persona de Mediana Edad , Modelos Biológicos , Proyectos Piloto , Rocuronio , Ácido Tranexámico/sangre , Ácido Tranexámico/farmacocinética , gamma-Glutamiltransferasa/genética
14.
Molecules ; 21(3): 337, 2016 03 10.
Artículo en Inglés | MEDLINE | ID: mdl-26978333

RESUMEN

Since many glycoside compounds in natural products are hydrolyzed by intestinal microbiota when administered orally, it is of interest to know whether their pharmacological effects are derived from the glycoside itself or from the aglycone form in vivo. An interesting example is baicalin versus baicalein, the aglycone of baicalin, which is contained in some herbs from Labiatae including Scutellaria baicalensis Georgi and Scutellaria lateriflora Linne. The herbs have been extensively used for treatment of inflammatory diseases in Asia. Although there have been numerous reports regarding the pharmacological effects of baicalin and baicalein in vivo and in vitro, some reports indicated that the glycoside form would hardly be absorbed in the intestine and that it should be hydrolyzed to baicalein in advance for absorption. Therefore, the role of metabolism by intestinal microbiota should also be considered in the metabolism of baicalin. In addition, baicalin contains a glucuronide moiety in its structure, by which baicalin and baicalein show complex pharmacokinetic behaviors, due to the interconversion between them by phase II enzymes in the body. Recently, concerns about drug interaction with baicalin and/or baicalein have been raised, because of the co-administration of Scutellaria species with certain drugs. Herein, we reviewed the role of intestinal microbiota in pharmacokinetic characteristics of baicalin and baicalein, with regards to their pharmacological and toxicological effects.


Asunto(s)
Interacciones Farmacológicas , Flavonoides/farmacología , Microbioma Gastrointestinal , Animales , Biomarcadores , Flavanonas/química , Flavanonas/farmacocinética , Flavanonas/farmacología , Flavonoides/química , Flavonoides/farmacocinética , Humanos , Absorción Intestinal , Mucosa Intestinal/metabolismo , Mucosa Intestinal/microbiología , Estructura Molecular , Ratas
15.
J Toxicol Environ Health A ; 77(22-24): 1346-58, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-25343285

RESUMEN

To investigate the nephrotoxic potential of melamine (MEL) and cyanuric acid (CA) in male Sprague-Dawley rats, 7-d repeated-dose studies were performed. The experimental groups of MEL100 and CA100 were orally administered with MEL and CA at 100 mg/kg/d for 7 d, respectively. In groups dosed with MEL-CA mixtures, melamine and cyanuric acid (1:1) were simultaneously administered at 4, 20, or 100 mg/kg/d for 7 d (i.e., MEL-CA4, MEL-CA20, or MEL-CA100, respectively). Body weights were not markedly affected in MEL100, CA100, and MEL-CA4 groups, but significantly reduced in MEL-CA 20 and 100 rats. Most parameters determined in sera and tissues were not markedly altered in MEL100, CA100, and MEL-CA4-treated rodents. However, BUN, creatinine, total protein, and kidney weights were significantly increased in MEL-CA20- and MEL-CA100-treated animals. Renal histopathologic findings also revealed signs of toxicity, including tubular dilatation, crystal deposition, granulomatous tubulo-interstitial inflammation, and tubular necrosis with regeneration. Data suggested that the combination of MEL and CA might be responsible for observed nephrotoxicity that was not seen following individual exposure to either MEL or CA alone. Subsequently, the concentrations of MEL and CA were determined in serum, urine, and kidney tissues by using liquid chromatography-mass spectrometry. Toxicokinetic studies indicated that MEL or CA alone might be eliminated almost completely within 24 h after dosing showing no accumulation in kidney. However, the combined MEL-CA dose produced marked accumulation of chemicals in blood and kidneys. These results suggested that combined MEL and CA might produce renal toxicity due to significant chemical accumulation in kidney accompanied by low excretion.


Asunto(s)
Riñón/efectos de los fármacos , Triazinas/farmacocinética , Triazinas/toxicidad , Administración Oral , Animales , Peso Corporal/efectos de los fármacos , Relación Dosis-Respuesta a Droga , Inflamación/inducido químicamente , Inflamación/patología , Riñón/metabolismo , Masculino , Ratas , Ratas Sprague-Dawley , Toxicocinética , Triazinas/administración & dosificación
16.
J Food Sci ; 89(1): 701-709, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38051020

RESUMEN

Although systemic exposure to peptides, such as Gly-Pro-Hyp, Pro-Hyp, and Gly-Pro, has been reported following administration of collagen hydrolysates from fish scale and porcine skin in vivo, the individual peptide pharmacokinetics remain unknown. We administered the three peptides individually to rats via the intravenous (5 mg/kg) and intragastric (100 mg/kg) routes and then monitored systemic exposure and urinary excretion. The peptides in biological samples were analyzed via liquid chromatography/tandem mass spectrometry. Gly-Pro-Hyp tended to exhibit higher first-pass metabolism than Pro-Hyp; the absolute oral bioavailabilities of Gly-Pro-Hyp and Pro-Hyp were 4.4% and 19.3%, respectively. Gly-Pro levels were very low in the systemic circulation. Pro-Hyp biotransformed from Gly-Pro-Hyp behaved similarly to Pro-Hyp alone when administered orally. Flip-flop kinetics (elimination rate ≫ absorption rate) were evident, probably reflecting transporter-mediated slow absorption. A double-peak phenomenon was observed for Gly-Pro-Hyp and Pro-Hyp when administered orally, and 5.9% ± 2.6% and 1.9% ± 0.3% of each dose were excreted in urine after intravenous administration, respectively. Urinary recovery of Gly-Pro was limited to 0.4% ± 0.5% of the intravenous dose. This work represents the first individual pharmacokinetics of Gly-Pro-Hyp, Pro-Hyp, and Gly-Pro in vivo.


Asunto(s)
Colágeno , Dipéptidos , Oligopéptidos , Ratas , Animales , Dipéptidos/metabolismo , Colágeno/química , Péptidos
17.
J Sep Sci ; 35(17): 2219-22, 2012 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-22807412

RESUMEN

We developed a method for the simultaneous quantification of aceclofenac and its three major metabolites in rat plasma. After protein precipitation with acetonitrile including flufenamic acid as an internal standard (IS), aceclofenac, diclofenac, 4'-hydroxyaceclofenac, 4'-hydroxydiclofenac, and the IS were chromatographed on a reverse-phase C18 analytical column. The isocratic mobile phase of acetonitrile/0.1% formic acid (aq; 9:1 [v/v]) was eluted at 0.3 mL/min. Quantification was performed on a triple-quadrupole mass spectrometer using electrospray ionization, and the ion transitions were monitored in selective reaction-monitoring mode. The coefficient of variation in the assay precision was less than 8%, and the accuracy was 92-103%. This method was successfully used to measure the concentrations of aceclofenac and its three major metabolites in rat plasma following the oral administration of a single 20 mg/kg oral dose of aceclofenac.


Asunto(s)
Antiinflamatorios/metabolismo , Cromatografía Líquida de Alta Presión/métodos , Diclofenaco/análogos & derivados , Diclofenaco/sangre , Espectrometría de Masas en Tándem/métodos , Animales , Antiinflamatorios/sangre , Diclofenaco/metabolismo , Ratas
18.
Biomed Chromatogr ; 26(2): 152-5, 2012 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-21594879

RESUMEN

Daumone, a pheromone secreted by Caenorhabditis elegans, is an essential regulator of chemosensory processes in development and aging. A quantification method using HPLC/MS-MS was developed for the determination of daumone in mouse plasma. After simple protein precipitation with acetonitrile including methaqualone (an internal standard), the analytes were chromatographed on a reversed-phase column and detected by liquid chromatography/tandem mass spectrometry with electrospray ionization. The accuracy and precision of the assay were in accordance with FDA regulations for validation of bioanalytical methods. This method was applied to measure the plasma daumone concentrations following a 5-week repeated oral administration of daumone in mice.


Asunto(s)
Cromatografía Líquida de Alta Presión/métodos , Ácidos Grasos/sangre , Feromonas/sangre , Espectrometría de Masas en Tándem/métodos , Animales , Estabilidad de Medicamentos , Límite de Detección , Modelos Lineales , Masculino , Ratones , Reproducibilidad de los Resultados
19.
AAPS J ; 24(4): 71, 2022 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-35650371

RESUMEN

The vitamin D receptor (VDR), in addition to other nuclear receptors, the pregnane X receptor (PXR) and constitutive androstane receptor (CAR), is involved in the regulation of enzymes, transporters and receptors, and therefore intimately affects drug disposition, tissue health, and the handling of endogenous and exogenous compounds. This review examines the role of 1α,25-dihydroxyvitamin D3 or calcitriol, the natural VDR ligand, on activation of the VDR and its crosstalk with other nuclear receptors towards the regulation of enzymes and transporters, notably many of the cytochrome P450s including CYP3A4 and sulfotransferase 2A1 (SULT2A1) as well as cholesterol 7α-hydroxylase (CYP7A1). Moreover, the VDR upregulates the intestinal channel, TRPV6, for calcium absorption, LDL receptor-related protein 1 (LRP1) and receptor for advanced glycation end products (RAGE) in brain for ß-amyloid peptide efflux and influx, the sodium phosphate transporters (NaPi), the apical sodium-dependent bile acid transporter (ASBT) and organic solute transporters (OSTα-OSTß) for bile acid absorption and efflux, respectively, the renal organic anion transporter 3 (OAT3) and several of the ATP-binding cassette protein transporters-the multidrug resistance protein 1 (MDR1) and the multidrug resistance-associated proteins (MRPs). Hence, the role of the VDR is increasingly being recognized for its therapeutic potential and pharmacologic activity, giving rise to drug-drug interactions (DDI). Therapeutically, ligand-activated VDR shows anti-inflammatory effects towards the suppression of inflammatory mediators, improves cognition by upregulating amyloid-beta (Aß) peptide clearance in brain, and maintains phosphate, calcium, and parathyroid hormone (PTH) balance and kidney function and bone health, demonstrating the crucial roles of the VDR in disease progression and treatment of diseases.


Asunto(s)
Calcio , Receptores de Calcitriol , Calcio/metabolismo , Ligandos , Proteínas de Transporte de Membrana , Receptores de Calcitriol/metabolismo , Receptores Citoplasmáticos y Nucleares/metabolismo
20.
Biomed Chromatogr ; 25(7): 779-82, 2011 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-20845371

RESUMEN

Cefetamet is a potent antibiotic to treat respiratory and urinary tract infections. To improve oral bioavailability, it is administered as a prodrug, cefetamet pivoxyl hydrolyzed by esterase following absorption. A quantification method using a mass spectrometry was developed for the determination of cefetamet in human plasma. After a protein precipitation with acetonitrile, the analytes were chromatographed on a reversed-phase C18 column and detected by a tandem mass spectrometer with electrospray ionization. The accuracy and precision of the assay were in accordance with FDA regulations for the validation of bioanalytical methods. This method was used to measure the concentrations of the cefetamet in plasma after a single oral administration of 500 mg cefetamet pivoxyl.


Asunto(s)
Ceftizoxima/análogos & derivados , Cromatografía de Fase Inversa/métodos , Espectrometría de Masas en Tándem/métodos , Adulto , Ceftizoxima/administración & dosificación , Ceftizoxima/sangre , Ceftizoxima/farmacocinética , Estabilidad de Medicamentos , Humanos , Masculino , Profármacos/administración & dosificación , Profármacos/farmacocinética , Reproducibilidad de los Resultados , Sensibilidad y Especificidad , Espectrometría de Masa por Ionización de Electrospray , Adulto Joven
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA