Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
1.
Microb Cell Fact ; 23(1): 207, 2024 Jul 24.
Artículo en Inglés | MEDLINE | ID: mdl-39044227

RESUMEN

The engineering of non ribosomal peptide synthetases (NRPS) for new substrate specificity is a potent strategy to incorporate non-canonical amino acids into peptide sequences, thereby creating peptide diversity and broadening applications. The non-ribosomal peptide pyoverdine is the primary siderophore produced by Pseudomonas aeruginosa and holds biomedical promise in diagnosis, bio-imaging and antibiotic vectorization. We engineered the adenylation domain of PvdD, the terminal NRPS in pyoverdine biosynthesis, to accept a functionalized amino acid. Guided by molecular modeling, we rationally designed mutants of P. aeruginosa with mutations at two positions in the active site. A single amino acid change results in the successful incorporation of an azido-L-homoalanine leading to the synthesis of a new pyoverdine analog, functionalized with an azide function. We further demonstrated that copper free click chemistry is efficient on the functionalized pyoverdine and that the conjugated siderophore retains the iron chelation properties and its capacity to be recognized and transported by P. aeruginosa. The production of clickable pyoverdine holds substantial biotechnological significance, paving the way for numerous downstream applications.


Asunto(s)
Química Clic , Oligopéptidos , Péptido Sintasas , Ingeniería de Proteínas , Pseudomonas aeruginosa , Oligopéptidos/biosíntesis , Oligopéptidos/metabolismo , Pseudomonas aeruginosa/enzimología , Pseudomonas aeruginosa/genética , Pseudomonas aeruginosa/metabolismo , Péptido Sintasas/metabolismo , Péptido Sintasas/genética , Ingeniería de Proteínas/métodos , Sideróforos/biosíntesis , Sideróforos/metabolismo , Proteínas Bacterianas/metabolismo , Proteínas Bacterianas/genética , Proteínas Bacterianas/química , Dominio Catalítico , Especificidad por Sustrato
2.
J Biol Chem ; 290(27): 16595-606, 2015 Jul 03.
Artículo en Inglés | MEDLINE | ID: mdl-26023235

RESUMEN

The molecular seal between epithelial cells, called the tight junction (TJ), is built by several membrane proteins, with claudins playing the most prominent role. The scaffold proteins of the zonula occludens family are required for the correct localization of claudins and hence formation of the TJ. The intracellular C terminus of claudins binds to the N-terminal PDZ domain of zonula occludens proteins (PDZ1). Of the 23 identified human claudin proteins, nine possess a tyrosine at the -6 position. Here we show that the claudin affinity for PDZ1 is dependent on the presence or absence of this tyrosine and that the affinity is reduced if the tyrosine is modified by phosphorylation. The PDZ1 ß2-ß3 loop undergoes a significant conformational change to accommodate this tyrosine. Cell culture experiments support a regulatory role for this tyrosine. Plasticity has been recognized as a critical property of TJs that allow cell remodeling and migration. Our work provides a molecular framework for how TJ plasticity may be regulated.


Asunto(s)
Claudina-1/metabolismo , Claudina-2/metabolismo , Proteína de la Zonula Occludens-1/química , Secuencias de Aminoácidos , Secuencia de Aminoácidos , Claudina-1/química , Claudina-1/genética , Claudina-2/química , Claudina-2/genética , Humanos , Datos de Secuencia Molecular , Dominios PDZ , Fosforilación , Unión Proteica , Estructura Secundaria de Proteína , Alineación de Secuencia , Uniones Estrechas/química , Uniones Estrechas/genética , Uniones Estrechas/metabolismo , Tirosina/química , Tirosina/genética , Tirosina/metabolismo , Proteína de la Zonula Occludens-1/genética , Proteína de la Zonula Occludens-1/metabolismo
3.
Acta Crystallogr D Biol Crystallogr ; 70(Pt 1): 68-78, 2014 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-24419380

RESUMEN

Deoxycytidine kinase (dCK) is a key enzyme in the nucleoside salvage pathway that is also required for the activation of several anticancer and antiviral nucleoside analog prodrugs. Additionally, dCK has been implicated in immune disorders and has been found to be overexpressed in several cancers. To allow the probing and modulation of dCK activity, a new class of small-molecule inhibitors of the enzyme were developed. Here, the structural characterization of four of these inhibitors in complex with human dCK is presented. The structures reveal that the compounds occupy the nucleoside-binding site and bind to the open form of dCK. Surprisingly, a slight variation in the nature of the substituent at the 5-position of the thiazole ring governs whether the active site of the enzyme is occupied by one or two inhibitor molecules. Moreover, this substituent plays a critical role in determining the affinity, improving it from >700 to 1.5 nM in the best binder. These structures lay the groundwork for future modifications that would result in even tighter binding and the correct placement of moieties that confer favorable pharmacodynamics and pharmacokinetic properties.


Asunto(s)
Desoxicitidina Quinasa/antagonistas & inhibidores , Desoxicitidina Quinasa/química , Inhibidores de Proteínas Quinasas/química , Inhibidores de Proteínas Quinasas/farmacología , Cristalografía por Rayos X , Humanos , Modelos Moleculares , Unión Proteica , Conformación Proteica/efectos de los fármacos , Uridina Difosfato/metabolismo
4.
Biochemistry ; 51(34): 6816-26, 2012 Aug 28.
Artículo en Inglés | MEDLINE | ID: mdl-22861376

RESUMEN

Asparaginases catalyze the hydrolysis of the amino acid asparagine to aspartate and ammonia. Bacterial asparaginases are used in cancer chemotherapy to deplete asparagine from the blood, because several hematological malignancies depend on extracellular asparagine for growth. To avoid the immune response against the bacterial enzymes, it would be beneficial to replace them with human asparaginases. However, unlike the bacterial asparaginases, the human enzymes have a millimolar K(m) value for asparagine, making them inefficient in depleting the amino acid from blood. To facilitate the development of human variants suitable for therapeutic use, we determined the structure of human l-asparaginase (hASNase3). This asparaginase is an N-terminal nucleophile (Ntn) family member that requires autocleavage between Gly167 and Thr168 to become catalytically competent. For most Ntn hydrolases, this autoproteolytic activation occurs efficiently. In contrast, hASNas3 is relatively stable in its uncleaved state, and this allowed us to observe the structure of the enzyme prior to cleavage. To determine the structure of the cleaved state, we exploited our discovery that the free amino acid glycine promotes complete cleavage of hASNase3. Both enzyme states were elucidated in the absence and presence of the product aspartate. Together, these structures provide insight into the conformational changes required for cleavage and the precise enzyme-substrate interactions. The new understanding of hASNase3 will serve to guide the design of variants that possess a decreased K(m) value for asparagine, making the human enzyme a suitable replacement for the bacterial asparaginases in cancer therapy.


Asunto(s)
Asparaginasa/química , Asparaginasa/metabolismo , Asparagina/metabolismo , Secuencia de Aminoácidos , Apoenzimas/química , Apoenzimas/genética , Apoenzimas/metabolismo , Asparaginasa/genética , Sitios de Unión , Biocatálisis , Humanos , Cinética , Modelos Moleculares , Datos de Secuencia Molecular , Alineación de Secuencia , Especificidad por Sustrato
5.
J Biol Chem ; 286(50): 43352-60, 2011 Dec 16.
Artículo en Inglés | MEDLINE | ID: mdl-22030391

RESUMEN

Tight junctions are cell-cell contacts that regulate the paracellular flux of solutes and prevent pathogen entry across cell layers. The assembly and permeability of this barrier are dependent on the zonula occludens (ZO) membrane-associated guanylate kinase (MAGUK) proteins ZO-1, -2, and -3. MAGUK proteins are characterized by a core motif of protein-binding domains that include a PDZ domain, a Src homology 3 (SH3) domain, and a region of homology to guanylate kinase (GUK); the structure of this core motif has never been determined for any MAGUK. To better understand how ZO proteins organize the assembly of protein complexes we have crystallized the entire PDZ3-SH3-GUK core motif of ZO-1. We have also crystallized this core motif in complex with the cytoplasmic tail of the ZO-1 PDZ3 ligand, junctional adhesion molecule A (JAM-A) to determine how the activity of different domains is coordinated. Our study shows a new feature for PDZ class II ligand binding that implicates the two highly conserved Phe(-2) and Ser(-3) residues of JAM. Our x-ray structures and NMR experiments also show for the first time a role for adjacent domains in the binding of ligands to PDZ domains in the MAGUK proteins family.


Asunto(s)
Proteínas de la Membrana/metabolismo , Dominios PDZ/fisiología , Fosfoproteínas/metabolismo , Dominios Homologos src/fisiología , Moléculas de Adhesión Celular/metabolismo , Cristalografía por Rayos X , Humanos , Moléculas de Adhesión de Unión , Proteínas de la Membrana/química , Proteínas de la Membrana/genética , Dominios PDZ/genética , Fosfoproteínas/química , Fosfoproteínas/genética , Unión Proteica , Estructura Secundaria de Proteína , Estructura Terciaria de Proteína , Uniones Estrechas/metabolismo , Proteína de la Zonula Occludens-1 , Dominios Homologos src/genética
6.
Genes Cells ; 13(5): 471-81, 2008 May.
Artículo en Inglés | MEDLINE | ID: mdl-18429819

RESUMEN

Human Rad51 is a key element of recombinational DNA repair and is related to the resistance of cancer cells to chemo- and radiotherapies. The protein is thus a potential target of anti-cancer treatment. The crystallographic analysis shows that the BRC-motif of the BRCA2 tumor suppressor is in contact with the subunit-subunit interface of Rad51 and could thus prevent filament formation of Rad51. However, biochemical analysis indicates that a BRC-motif peptide of 69 amino acids preferentially binds to the N-terminal part of Rad51. We show experimentally that a short peptide of 28 amino acids derived from the BRC4 motif binds to the subunit-subunit interface and dissociates its filament, both in the presence and absence of DNA, certainly by binding to dissociated monomers. The inhibition is efficient and specific for Rad51: the peptide does not even interact with Rad51 homologs or prevent their interaction with DNA. Neither the N-terminal nor the C-terminal half of the peptide interacts with human Rad51, indicating that both parts are involved in the interaction, as expected from the crystal structure. These results suggest the possibility of developing inhibitors of human Rad51 based on this peptide.


Asunto(s)
Proteína BRCA2/química , Proteína BRCA2/metabolismo , Péptidos/farmacología , Recombinasa Rad51/antagonistas & inhibidores , Secuencias de Aminoácidos , Proteínas Reguladoras de la Apoptosis , ADN/metabolismo , Humanos , Péptidos/química , Recombinasa Rad51/química , Recombinasa Rad51/metabolismo
7.
Protein Sci ; 26(11): 2240-2248, 2017 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-28851027

RESUMEN

Mitotic-spindle organizing protein associated with a ring of γ-tubulin 1 (MOZART1) is an 8.5 kDa protein linked to regulation of γ-tubulin ring complexes (γTuRCs), which are involved in nucleation of microtubules. Despite its small size, MOZART1 represents a challenging target for detailed characterization in vitro. We described herein a protocol for efficient production of recombinant human MOZART1 in Escherichia coli and assessed the properties of the purified protein using a combination of size exclusion chromatography coupled with multiangle light scattering (SEC-MALS), dynamic light scattering (DLS), and nuclear magnetic resonance (NMR) experiments. MOZART1 forms heterogeneous oligomers in solution. We identified optimal detergent and buffer conditions for recording well resolved NMR experiments allowing nearly full protein assignment and identification of three distinct alpha-helical structured regions. Finally, using NMR, we showed that MOZART1 interacts with the N-terminus (residues 1-250) of GCP3 (γ-tubulin complex protein 3). Our data illustrate the capacity of MOZART1 to form oligomers, promoting multiple contacts with a subset of protein partners in the context of microtubule nucleation.


Asunto(s)
Secuencia Conservada , Proteínas Asociadas a Microtúbulos/química , Secuencia de Aminoácidos , Arabidopsis/química , Betaína/análogos & derivados , Betaína/química , Sitios de Unión , Clonación Molecular , Escherichia coli/genética , Escherichia coli/metabolismo , Expresión Génica , Humanos , Cinética , Proteínas Asociadas a Microtúbulos/genética , Proteínas Asociadas a Microtúbulos/metabolismo , Microtúbulos/química , Resonancia Magnética Nuclear Biomolecular , Unión Proteica , Conformación Proteica en Hélice alfa , Dominios y Motivos de Interacción de Proteínas , Multimerización de Proteína , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Schizosaccharomyces/química , Alineación de Secuencia , Homología de Secuencia de Aminoácido
8.
J Mol Biol ; 426(13): 2471-85, 2014 Jun 26.
Artículo en Inglés | MEDLINE | ID: mdl-24768817

RESUMEN

Our long-term goal is the design of a human l-asparaginase (hASNase3) variant, suitable for use in cancer therapy without the immunogenicity problems associated with the currently used bacterial enzymes. Asparaginases catalyze the hydrolysis of the amino acid asparagine to aspartate and ammonia. The key property allowing for the depletion of blood asparagine by bacterial asparaginases is their low micromolar KM value. In contrast, human enzymes have a millimolar KM for asparagine. Toward the goal of engineering an hASNase3 variant with micromolar KM, we conducted a structure/function analysis of the conserved catalytic threonine triad of this human enzyme. As a member of the N-terminal nucleophile family, to become enzymatically active, hASNase3 must undergo autocleavage between residues Gly167 and Thr168. To determine the individual contribution of each of the three conserved active-site threonines (threonine triad Thr168, Thr186, Thr219) for the enzyme-activating autocleavage and asparaginase reactions, we prepared the T168S, T186V and T219A/V mutants. These mutants were tested for their ability to cleave and to catalyze asparagine hydrolysis, in addition to being examined structurally. We also elucidated the first N-terminal nucleophile plant-type asparaginase structure in the covalent intermediate state. Our studies indicate that, while not all triad threonines are required for the cleavage reaction, all are essential for the asparaginase activity. The increased understanding of hASNase3 function resulting from these studies reveals the key regions that govern cleavage and the asparaginase reaction, which may inform the design of variants that attain a low KM for asparagine.


Asunto(s)
Asparaginasa/química , Asparaginasa/metabolismo , Sustitución de Aminoácidos , Asparaginasa/genética , Asparagina/metabolismo , Dominio Catalítico/genética , Secuencia Conservada , Cristalografía por Rayos X , Humanos , Hidrólisis , Cinética , Modelos Moleculares , Mutagénesis Sitio-Dirigida , Conformación Proteica , Ingeniería de Proteínas , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Treonina/química
9.
J Med Chem ; 57(22): 9480-94, 2014 Nov 26.
Artículo en Inglés | MEDLINE | ID: mdl-25341194

RESUMEN

Recently, we have shown that small molecule dCK inhibitors in combination with pharmacological perturbations of de novo dNTP biosynthetic pathways could eliminate acute lymphoblastic leukemia cells in animal models. However, our previous lead compound had a short half-life in vivo. Therefore, we set out to develop dCK inhibitors with favorable pharmacokinetic properties. We delineated the sites of the inhibitor for modification, guided by crystal structures of dCK in complex with the lead compound and with derivatives. Crystal structure of the complex between dCK and the racemic mixture of our new lead compound indicated that the R-isomer is responsible for kinase inhibition. This was corroborated by kinetic analysis of the purified enantiomers, which showed that the R-isomer has >60-fold higher affinity than the S-isomer for dCK. This new lead compound has significantly improved metabolic stability, making it a prime candidate for dCK-inhibitor based therapies against hematological malignancies and, potentially, other cancers.


Asunto(s)
Desoxicitidina Quinasa/antagonistas & inhibidores , Leucemia-Linfoma Linfoblástico de Células Precursoras/tratamiento farmacológico , Inhibidores de Proteínas Quinasas/química , Animales , Antineoplásicos/química , Sitios de Unión , Química Farmacéutica/métodos , Simulación por Computador , Cristalografía por Rayos X , Desoxicitidina/análogos & derivados , Diseño de Fármacos , Femenino , Humanos , Concentración 50 Inhibidora , Ratones , Ratones Endogámicos C57BL , Microsomas/metabolismo , Fosforilación , Tomografía de Emisión de Positrones , Estereoisomerismo , Tiazoles/química
10.
J Exp Med ; 211(3): 473-86, 2014 Mar 10.
Artículo en Inglés | MEDLINE | ID: mdl-24567448

RESUMEN

Pharmacological targeting of metabolic processes in cancer must overcome redundancy in biosynthetic pathways. Deoxycytidine (dC) triphosphate (dCTP) can be produced both by the de novo pathway (DNP) and by the nucleoside salvage pathway (NSP). However, the role of the NSP in dCTP production and DNA synthesis in cancer cells is currently not well understood. We show that acute lymphoblastic leukemia (ALL) cells avoid lethal replication stress after thymidine (dT)-induced inhibition of DNP dCTP synthesis by switching to NSP-mediated dCTP production. The metabolic switch in dCTP production triggered by DNP inhibition is accompanied by NSP up-regulation and can be prevented using DI-39, a new high-affinity small-molecule inhibitor of the NSP rate-limiting enzyme dC kinase (dCK). Positron emission tomography (PET) imaging was useful for following both the duration and degree of dCK inhibition by DI-39 treatment in vivo, thus providing a companion pharmacodynamic biomarker. Pharmacological co-targeting of the DNP with dT and the NSP with DI-39 was efficacious against ALL models in mice, without detectable host toxicity. These findings advance our understanding of nucleotide metabolism in leukemic cells, and identify dCTP biosynthesis as a potential new therapeutic target for metabolic interventions in ALL and possibly other hematological malignancies.


Asunto(s)
Vías Biosintéticas/fisiología , Desoxicitidina Quinasa/antagonistas & inhibidores , Nucleótidos de Desoxicitosina/biosíntesis , Erradicación de la Enfermedad/métodos , Leucemia-Linfoma Linfoblástico de Células Precursoras/tratamiento farmacológico , Leucemia-Linfoma Linfoblástico de Células Precursoras/metabolismo , Animales , Vías Biosintéticas/efectos de los fármacos , Nucleótidos de Desoxicitosina/metabolismo , Ratones , Tomografía de Emisión de Positrones , Timidina/farmacología
11.
Chem Biol ; 20(4): 533-40, 2013 Apr 18.
Artículo en Inglés | MEDLINE | ID: mdl-23601642

RESUMEN

Human asparaginase 3 (hASNase3), which belongs to the N-terminal nucleophile hydrolase superfamily, is synthesized as a single polypeptide that is devoid of asparaginase activity. Intramolecular autoproteolytic processing releases the amino group of Thr168, a moiety required for catalyzing asparagine hydrolysis. Recombinant hASNase3 purifies as the uncleaved, asparaginase-inactive form and undergoes self-cleavage to the active form at a very slow rate. Here, we show that the free amino acid glycine selectively acts to accelerate hASNase3 cleavage both in vitro and in human cells. Other small amino acids such as alanine, serine, or the substrate asparagine are not capable of promoting autoproteolysis. Crystal structures of hASNase3 in complex with glycine in the uncleaved and cleaved enzyme states reveal the mechanism of glycine-accelerated posttranslational processing and explain why no other amino acid can substitute for glycine.


Asunto(s)
Asparaginasa/metabolismo , Glicina/metabolismo , Asparaginasa/química , Asparaginasa/genética , Asparagina/metabolismo , Biocatálisis , Cristalografía por Rayos X , Células HEK293 , Humanos , Concentración de Iones de Hidrógeno , Hidrólisis , Simulación de Dinámica Molecular , Estructura Terciaria de Proteína , Proteínas Recombinantes/biosíntesis , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Especificidad por Sustrato
12.
J Med Chem ; 56(17): 6696-708, 2013 Sep 12.
Artículo en Inglés | MEDLINE | ID: mdl-23947754

RESUMEN

Combined inhibition of ribonucleotide reductase and deoxycytidine kinase (dCK) in multiple cancer cell lines depletes deoxycytidine triphosphate pools leading to DNA replication stress, cell cycle arrest, and apoptosis. Evidence implicating dCK in cancer cell proliferation and survival stimulated our interest in developing small molecule dCK inhibitors. Following a high throughput screen of a diverse chemical library, a structure-activity relationship study was carried out. Positron Emission Tomography (PET) using (18)F-L-1-(2'-deoxy-2'-FluoroArabinofuranosyl) Cytosine ((18)F-L-FAC), a dCK-specific substrate, was used to rapidly rank lead compounds based on their ability to inhibit dCK activity in vivo. Evaluation of a subset of the most potent compounds in cell culture (IC50 = ∼1-12 nM) using the (18)F-L-FAC PET pharmacodynamic assay identified compounds demonstrating superior in vivo efficacy.


Asunto(s)
Desoxicitidina Quinasa/antagonistas & inhibidores , Inhibidores Enzimáticos/farmacología , Tomografía de Emisión de Positrones/métodos , Línea Celular Tumoral , Cristalografía por Rayos X , Humanos , Concentración 50 Inhibidora , Cinética , Espectroscopía de Resonancia Magnética , Modelos Moleculares , Método de Montecarlo , Espectrometría de Masa por Ionización de Electrospray
13.
J Med Chem ; 53(15): 5782-91, 2010 Aug 12.
Artículo en Inglés | MEDLINE | ID: mdl-20684611

RESUMEN

We have previously shown that a 28-amino acid peptide derived from the BRC4 motif of BRCA2 tumor suppressor inhibits selectively human RAD51 recombinase (HsRad51). With the aim of designing better inhibitors for cancer treatment, we combined an in silico docking approach with in vitro biochemical testing to construct a highly efficient chimera peptide from eight existing human BRC motifs. We built a molecular model of all BRC motifs complexed with HsRad51 based on the crystal structure of the BRC4 motif-HsRad51 complex, computed the interaction energy of each residue in each BRC motif, and selected the best amino acid residue at each binding position. This analysis enabled us to propose four amino acid substitutions in the BRC4 motif. Three of these increased the inhibitory effect in vitro, and this effect was found to be additive. We thus obtained a peptide that is about 10 times more efficient in inhibiting HsRad51-ssDNA complex formation than the original peptide.


Asunto(s)
Antineoplásicos/química , Proteína BRCA2/química , Modelos Moleculares , Péptidos/química , Recombinasa Rad51/antagonistas & inhibidores , Secuencias de Aminoácidos , Secuencia de Aminoácidos , Sustitución de Aminoácidos , Antineoplásicos/síntesis química , Sitios de Unión , Calorimetría , ADN/química , Humanos , Datos de Secuencia Molecular , Péptidos/síntesis química , Recombinasa Rad51/química , Termodinámica
14.
Biochimie ; 92(12): 1832-8, 2010 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-20713120

RESUMEN

Human Rad51 (HsRad51), a key element of the homologous recombination repair pathway, is related to the resistance of cancer cells to chemo- and radio-therapies. This protein is thus a good target for the development of anti-cancer treatments. We have searched for new inhibitors directed against HsRad51 using the Systematic Evolution of Ligands by EXponential enrichment (SELEX) approach. We have selected three aptamers displaying strong effects on strand exchange activity. Analysis by circular dichroism shows that they are highly structured DNA molecules. Our results also show that they affect the first step of the strand exchange reaction by promoting the dissociation of DNA from the ATP/HsRad51/DNA complex. Moreover, these inhibitors bind only weakly to RecA, a prokaryotic ortholog of HsRad51. Both the specificity and the efficiency of their inhibition of recombinase activity offer an analytical tool based on molecular recognition and the prospect of developing new therapeutic agents.


Asunto(s)
Aptámeros de Nucleótidos/metabolismo , ADN/metabolismo , Recombinasa Rad51/metabolismo , Recombinación Genética , Adenosina Trifosfato/metabolismo , Aptámeros de Nucleótidos/química , Aptámeros de Nucleótidos/genética , Unión Competitiva , Dicroismo Circular , ADN/genética , Humanos , Cinética , Conformación de Ácido Nucleico , Oligonucleótidos/química , Oligonucleótidos/genética , Oligonucleótidos/metabolismo , Análisis de Componente Principal , Unión Proteica , Recombinasa Rad51/genética , Rec A Recombinasas/genética , Rec A Recombinasas/metabolismo , Técnica SELEX de Producción de Aptámeros , Espectrofotometría
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA