Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Int J Mol Sci ; 25(11)2024 May 21.
Artículo en Inglés | MEDLINE | ID: mdl-38891762

RESUMEN

The testis-specific double sex and mab-3-related transcription factor 1 (DMRT1) has long been recognized as a crucial player in sex determination across vertebrates, and its essential role in gonadal development and the regulation of spermatogenesis is well established. Here, we report the cloning of the key spermatogenesis-related DMRT1 cDNA, named Tc-DMRT1, from the gonads of Tridacna crocea (T. crocea), with a molecular weight of 41.93 kDa and an isoelectric point of 7.83 (pI). Our hypothesis is that DMRT1 machinery governs spermatogenesis and regulates gonadogenesis. RNAi-mediated Tc-DMRT1 knockdown revealed its critical role in hindering spermatogenesis and reducing expression levels in boring giant clams. A histological analysis showed structural changes, with normal sperm cell counts in the control group (ds-EGFP) but significantly lower concentrations of sperm cells in the experimental group (ds-DMRT1). DMRT1 transcripts during embryogenesis exhibited a significantly high expression pattern (p < 0.05) during the early zygote stage, and whole-embryo in-situ hybridization confirmed its expression pattern throughout embryogenesis. A qRT-PCR analysis of various reproductive stages revealed an abundant expression of Tc-DMRT1 in the gonads during the male reproductive stage. In-situ hybridization showed tissue-specific expression of DMRT1, with a positive signal detected in male-stage gonadal tissues comprising sperm cells, while no signal was detected in other stages. Our study findings provide an initial understanding of the DMRT1 molecular machinery controlling spermatogenesis and its specificity in male-stage gonads of the key bivalve species, Tridacna crocea, and suggest that DMRT1 predominantly functions as a key regulator of spermatogenesis in giant clams.


Asunto(s)
Bivalvos , Espermatogénesis , Testículo , Factores de Transcripción , Animales , Espermatogénesis/genética , Factores de Transcripción/metabolismo , Factores de Transcripción/genética , Masculino , Testículo/metabolismo , Testículo/crecimiento & desarrollo , Bivalvos/genética , Bivalvos/metabolismo , Bivalvos/crecimiento & desarrollo , Regulación del Desarrollo de la Expresión Génica , Gónadas/metabolismo , Gónadas/crecimiento & desarrollo , Organismos Hermafroditas/genética , Organismos Hermafroditas/metabolismo , Clonación Molecular , Filogenia , Secuencia de Aminoácidos
2.
Sci Data ; 11(1): 186, 2024 Feb 10.
Artículo en Inglés | MEDLINE | ID: mdl-38341475

RESUMEN

Tridacna crocea is an ecologically important marine bivalve inhabiting tropical coral reef waters. High quality and available genomic resources will help us understand the population structure and genetic diversity of giant clams. This study reports a high-quality chromosome-scale T. crocea genome sequence of 1.30 Gb, with a scaffold N50 and contig N50 of 56.38 Mb and 1.29 Mb, respectively, which was assembled by combining PacBio long reads and Hi-C sequencing data. Repetitive sequences cover 71.60% of the total length, and a total of 25,440 protein-coding genes were annotated. A total of 1,963 non-coding RNA (ncRNA) were determined in the T. crocea genome, including 62 micro RNA (miRNA), 58 small nuclear RNA (snRNA), 83 ribosomal RNA (rRNA), and 1,760 transfer RNA (tRNA). Phylogenetic analysis revealed that giant clams diverged from oyster about 505.7 Mya during the evolution of bivalves. The genome assembly presented here provides valuable genomic resources to enhance our understanding of the genetic diversity and population structure of giant clams.


Asunto(s)
Bivalvos , Cromosomas , Animales , Bivalvos/genética , Genómica , Anotación de Secuencia Molecular , Filogenia
3.
Gene ; 911: 148338, 2024 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-38438056

RESUMEN

DAX1 (dosage-sensitive sex reversal, adrenal hypoplasia congenital critical region on X chromosome gene 1), a key sex determinant in various species, plays a vital role in gonad differentiation and development and controls spermatogenesis. However, the identity and function of DAX1 are still unclear in bivalves. In the present study, we identified a DAX1 (designed as Tc-DAX1) gene from the boring giant clam Tridacna crocea, a tropical marine bivalve. The full length of Tc-DAX1 was 1877 bp, encoding 462 amino acids, with a Molecular weight of 51.81 kDa and a theoretical Isoelectric point of 5.87 (pI). Multiple sequence alignments and phylogenetic analysis indicated a putative ligand binding domain (LBD) conserved regions clustered with molluscans DAX1 homologs. The tissue distributions in different reproductive stages revealed a dimorphic pattern, with the highest expression trend in the male reproductive stage, indicating its role in spermatogenesis. The DAX1 expression data from embryonic stages shows its highest expression profile (P < 0.05) in the zygote stage, followed by decreasing trends in the larvae stages (P > 0.05). The localization of DAX1 transcripts has also been confirmed by whole mount in situ hybridization, showing high positive signals in the fertilized egg, 2, and 4-cell stage, and gastrula. Moreover, RNAi knockdown of the Tc-DAX1 transcripts shows a significantly lower expression profile in the ds-DAX1 group compared to the ds-EGFP group. Subsequent histological analysis of gonads revealed that spermatogenesis was affected in a ds-DAX1 group compared to the ds-EGFP group. All these results indicate that Tc-DAX1 is involved in the spermatogenesis and early embryonic development of T. crocea, providing valuable information for the breeding and aquaculture of giant clams.


Asunto(s)
Bivalvos , Gónadas , Masculino , Animales , Filogenia , Gónadas/metabolismo , Espermatogénesis/genética , Alineación de Secuencia , Bivalvos/genética , Receptor Nuclear Huérfano DAX-1/genética , Receptor Nuclear Huérfano DAX-1/metabolismo
4.
Clin Immunol Commun ; 2: 1-5, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-38620684

RESUMEN

SARS-CoV-2 causes Coronavirus Disease 2019 (COVID-19), an infectious condition that can present none or one or more of these symptoms: fever, cough, headache, sore throat, loss of taste and smell, aches, fatigue and musculoskeletal pain. For the prevention of COVID-19, there are vaccines available including those developed by Pfizer, Moderna, Sinovac, Janssen, and AstraZeneca. Recent evidence has shown that some COVID-19-vaccinated individuals can occasionally develop as a potential side effect Guillain-Barre syndrome (GBS), a severe neurological autoimmune condition in which the immune response against the peripheral nerve system (PNS) can result in significant morbidity. GBS had been linked previously to several viral or bacterial infections, and the finding of GBS after vaccination with certain COVID-19, while rare, should alert medical practitioners for an early diagnosis and targeted treatment. Here we review five cases of GBS that developed in different countries after COVID-19 vaccination.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA