Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 420
Filtrar
Más filtros

Bases de datos
Tipo del documento
Intervalo de año de publicación
1.
Nature ; 606(7913): 298-304, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35614215

RESUMEN

Confining particles to distances below their de Broglie wavelength discretizes their motional state. This fundamental effect is observed in many physical systems, ranging from electrons confined in atoms or quantum dots1,2 to ultracold atoms trapped in optical tweezers3,4. In solid-state photonics, a long-standing goal has been to achieve fully tunable quantum confinement of optically active electron-hole pairs, known as excitons. To confine excitons, existing approaches mainly rely on material modulation5, which suffers from poor control over the energy and position of trapping potentials. This has severely impeded the engineering of large-scale quantum photonic systems. Here we demonstrate electrically controlled quantum confinement of neutral excitons in 2D semiconductors. By combining gate-defined in-plane electric fields with inherent interactions between excitons and free charges in a lateral p-i-n junction, we achieve exciton confinement below 10 nm. Quantization of excitonic motion manifests in the measured optical response as a ladder of discrete voltage-dependent states below the continuum. Furthermore, we observe that our confining potentials lead to a strong modification of the relative wave function of excitons. Our technique provides an experimental route towards creating scalable arrays of identical single-photon sources and has wide-ranging implications for realizing strongly correlated photonic phases6,7 and on-chip optical quantum information processors8,9.

2.
Nature ; 582(7813): 506-510, 2020 06.
Artículo en Inglés | MEDLINE | ID: mdl-32581384

RESUMEN

Gratings1 and holograms2 use patterned surfaces to tailor optical signals by diffraction. Despite their long history, variants with remarkable functionalities continue to be developed3,4. Further advances could exploit Fourier optics5, which specifies the surface pattern that generates a desired diffracted output through its Fourier transform. To shape the optical wavefront, the ideal surface profile should contain a precise sum of sinusoidal waves, each with a well defined amplitude, spatial frequency and phase. However, because fabrication techniques typically yield profiles with at most a few depth levels, complex 'wavy' surfaces cannot be obtained, limiting the straightforward mathematical design and implementation of sophisticated diffractive optics. Here we present a simple yet powerful approach to eliminate this design-fabrication mismatch by demonstrating optical surfaces that contain an arbitrary number of specified sinusoids. We combine thermal scanning-probe lithography6-8 and templating9 to create periodic and aperiodic surface patterns with continuous depth control and sub-wavelength spatial resolution. Multicomponent linear gratings allow precise manipulation of electromagnetic signals through Fourier-spectrum engineering10. Consequently, we overcome a previous limitation in photonics by creating an ultrathin grating that simultaneously couples red, green and blue light at the same angle of incidence. More broadly, we analytically design and accurately replicate intricate two-dimensional moiré patterns11,12, quasicrystals13,14 and holograms15,16, demonstrating a variety of previously unattainable diffractive surfaces. This approach may find application in optical devices (biosensors17, lasers18,19, metasurfaces4 and modulators20) and emerging areas in photonics (topological structures21, transformation optics22 and valleytronics23).

3.
Nature ; 584(7821): 387-392, 2020 08.
Artículo en Inglés | MEDLINE | ID: mdl-32814885

RESUMEN

Owing to their ultralow thermal conductivity and open pore structure1-3, silica aerogels are widely used in thermal insulation4,5, catalysis6, physics7,8, environmental remediation6,9, optical devices10 and hypervelocity particle capture11. Thermal insulation is by far the largest market for silica aerogels, which are ideal materials when space is limited. One drawback of silica aerogels is their brittleness. Fibre reinforcement and binders can be used to overcome this for large-volume applications in building and industrial insulation5,12, but their poor machinability, combined with the difficulty of precisely casting small objects, limits the miniaturization potential of silica aerogels. Additive manufacturing provides an alternative route to miniaturization, but was "considered not feasible for silica aerogel"13. Here we present a direct ink writing protocol to create miniaturized silica aerogel objects from a slurry of silica aerogel powder in a dilute silica nanoparticle suspension (sol). The inks exhibit shear-thinning behaviour, owing to the high volume fraction of gel particles. As a result, they flow easily through the nozzle during printing, but their viscosity increases rapidly after printing, ensuring that the printed objects retain their shape. After printing, the silica sol is gelled in an ammonia atmosphere to enable subsequent processing into aerogels. The printed aerogel objects are pure silica and retain the high specific surface area (751 square metres per gram) and ultralow thermal conductivity (15.9 milliwatts per metre per kelvin) typical of silica aerogels. Furthermore, we demonstrate the ease with which functional nanoparticles can be incorporated. The printed silica aerogel objects can be used for thermal management, as miniaturized gas pumps and to degrade volatile organic compounds, illustrating the potential of our protocol.

4.
Brain ; 2024 May 06.
Artículo en Inglés | MEDLINE | ID: mdl-38709856

RESUMEN

Cerebral small vessel disease (SVD) is known to contribute to cognitive impairment, apathy, and gait dysfunction. Although associations between cognitive impairment and either apathy or gait dysfunction have been shown in SVD, the inter-relations among these three clinical features and their potential common neural basis remains unexplored. The dopaminergic meso-cortical and meso-limbic pathways have been known as the important brain circuits for both cognitive control, emotion regulation and motor function. Here, we investigated the potential inter-relations between cognitive impairment, apathy, and gait dysfunction, with a specific focus on determining whether these clinical features are associated with damage to the meso-cortical and meso-limbic pathways in SVD. In this cross-sectional study, we included 213 participants with SVD in whom MRI scans and comprehensive neurobehavioral assessments were administered. These assessments comprised of six clinical measures: processing speed, executive function, memory, apathy (based on the Apathy Evaluation Scale), and gait function (based on the time and steps in Timed Up and Go test). We reconstructed five tracts connecting ventral tegmental area (VTA) and the dorsolateral prefrontal cortex (dlPFC), ventral lateral PFC (vlPFC), medial orbitofrontal cortex (mOFC), anterior cingulate cortex (ACC) and nucleus accumbens (NAc) within meso-cortical and meso-limbic pathways using diffusion weighted imaging. The damage along the five tracts was quantified using the free water (FW) and FW-corrected mean diffusivity (MD-t) indices. Furthermore, we explored the inter-correlations among the six clinical measures and identified their common components using principal component analysis (PCA). Linear regression analyses showed that higher FW values of tracts within meso-cortical pathways were related to these clinical measures in cognition, apathy, and gait (all P-corrected values < 0.05). PCA showed strong inter-associations among these clinical measures and identified a common component wherein all six clinical measures loaded on. Higher FW values of tracts within meso-cortical pathways were related to the PCA-derived common component (all P-corrected values < 0.05). Moreover, FW values of VTA-ACC tract showed the strongest contribution to the PCA-derived common component over all other neuroimaging features. In conclusion, our study showed that the three clinical features (cognitive impairment, apathy, and gait dysfunction) of SVD are strongly inter-related and that the damage in meso-cortical pathway could be the common neural basis underlying the three features in SVD. These findings advance our understanding of the mechanisms behind these clinical features of SVD and have the potential to inform novel management and intervention strategies for SVD.

5.
Ann Neurol ; 93(6): 1130-1141, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-36762437

RESUMEN

OBJECTIVE: Cerebral small vessel disease (SVD) is associated with motor impairments and parkinsonian signs cross-sectionally, however, there are little longitudinal data on whether SVD increases risk of incident parkinsonism itself. We investigated the relation between baseline SVD severity as well as SVD progression, and incident parkinsonism over a follow-up of 14 years. METHODS: This study included 503 participants with SVD, and without parkinsonism at baseline, from the RUN DMC prospective cohort study. Baseline inclusion was performed in 2006 and follow-up took place in 2011, 2015, and 2020, including magnetic resonance imaging (MRI) and motor assessments. Parkinsonism was diagnosed according to the UK Brain Bank criteria, and stratified into vascular parkinsonism (VaP) and idiopathic Parkinson's disease (IPD). Linear mixed-effect models were constructed to estimate individual rate changes of MRI-characteristics. RESULTS: Follow-up for incident parkinsonism was near-complete (99%). In total, 51 (10.2%) participants developed parkinsonism (33 VaP, 17 IPD, and 1 progressive supranuclear palsy). Patients with incident VaP had higher SVD burden compared with patients with IPD. Higher baseline white matter hyperintensities (hazard ratio [HR] = 1.46 per 1-SD increase, 95% confidence interval [CI] = 1.21-1.78), peak width of skeletonized mean diffusivity (HR = 1.66 per 1-SD increase, 95% CI = 1.34-2.05), and presence of lacunes (HR = 1.84, 95% CI = 0.99-3.42) were associated with increased risk of all-cause parkinsonism. Incident lacunes were associated with incident VaP (HR = 4.64, 95% CI = 1.32-16.32). INTERPRETATION: Both baseline SVD severity and SVD progression are independently associated with long-term parkinsonism. Our findings indicate a causal role of SVD in parkinsonism. Future studies are needed to examine the underlying pathophysiology of this relation. ANN NEUROL 2023;93:1130-1141.


Asunto(s)
Enfermedades de los Pequeños Vasos Cerebrales , Enfermedad de Parkinson , Trastornos Parkinsonianos , Humanos , Estudios Prospectivos , Trastornos Parkinsonianos/diagnóstico por imagen , Trastornos Parkinsonianos/epidemiología , Trastornos Parkinsonianos/patología , Enfermedades de los Pequeños Vasos Cerebrales/diagnóstico por imagen , Enfermedades de los Pequeños Vasos Cerebrales/epidemiología , Encéfalo/patología , Enfermedad de Parkinson/patología , Imagen por Resonancia Magnética/métodos , Progresión de la Enfermedad
6.
Epilepsia ; 65(1): 177-189, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37973611

RESUMEN

OBJECTIVE: Postictal symptoms may result from cerebral hypoperfusion, which is possibly a consequence of seizure-induced vasoconstriction. Longer seizures have previously been shown to cause more severe postictal hypoperfusion in rats and epilepsy patients. We studied cerebral perfusion after generalized seizures elicited by electroconvulsive therapy (ECT) and its relation to seizure duration. METHODS: Patients with a major depressive episode who underwent ECT were included. During treatment, 21-channel continuous electroencephalogram (EEG) was recorded. Arterial spin labeling magnetic resonance imaging scans were acquired before the ECT course (baseline) and approximately 1 h after an ECT-induced seizure (postictal) to quantify global and regional gray matter cerebral blood flow (CBF). Seizure duration was assessed from the period of epileptiform discharges on the EEG. Healthy controls were scanned twice to assess test-retest variability. We performed hypothesis-driven Bayesian analyses to study the relation between global and regional perfusion changes and seizure duration. RESULTS: Twenty-four patients and 27 healthy controls were included. Changes in postictal global and regional CBF were correlated with seizure duration. In patients with longer seizure durations, global decrease in CBF reached values up to 28 mL/100 g/min. Regional reductions in CBF were most prominent in the inferior frontal gyrus, cingulate gyrus, and insula (up to 35 mL/100 g/min). In patients with shorter seizures, global and regional perfusion increased (up to 20 mL/100 g/min). These perfusion changes were larger than changes observed in healthy controls, with a maximum median global CBF increase of 12 mL/100 g/min and a maximum median global CBF decrease of 20 mL/100 g/min. SIGNIFICANCE: Seizure duration is a key factor determining postictal perfusion changes. In future studies, seizure duration needs to be considered as a confounding factor due to its opposite effect on postictal perfusion.


Asunto(s)
Trastorno Depresivo Mayor , Terapia Electroconvulsiva , Humanos , Animales , Ratas , Terapia Electroconvulsiva/efectos adversos , Terapia Electroconvulsiva/métodos , Trastorno Depresivo Mayor/diagnóstico por imagen , Trastorno Depresivo Mayor/terapia , Teorema de Bayes , Convulsiones/etiología , Perfusión , Circulación Cerebrovascular , Electroencefalografía
7.
Brain ; 146(11): 4659-4673, 2023 11 02.
Artículo en Inglés | MEDLINE | ID: mdl-37366338

RESUMEN

The link between white matter hyperintensities (WMH) and cortical thinning is thought to be an important pathway by which WMH contributes to cognitive deficits in cerebral small vessel disease (SVD). However, the mechanism behind this association and the underlying tissue composition abnormalities are unclear. The objective of this study is to determine the association between WMH and cortical thickness, and the in vivo tissue composition abnormalities in the WMH-connected cortical regions. In this cross-sectional study, we included 213 participants with SVD who underwent standardized protocol including multimodal neuroimaging scans and cognitive assessment (i.e. processing speed, executive function and memory). We identified the cortex connected to WMH using probabilistic tractography starting from the WMH and defined the WMH-connected regions at three connectivity levels (low, medium and high connectivity level). We calculated the cortical thickness, myelin and iron of the cortex based on T1-weighted, quantitative R1, R2* and susceptibility maps. We used diffusion-weighted imaging to estimate the mean diffusivity of the connecting white matter tracts. We found that cortical thickness, R1, R2* and susceptibility values in the WMH-connected regions were significantly lower than in the WMH-unconnected regions (all Pcorrected < 0.001). Linear regression analyses showed that higher mean diffusivity of the connecting white matter tracts were related to lower thickness (ß = -0.30, Pcorrected < 0.001), lower R1 (ß = -0.26, Pcorrected = 0.001), lower R2* (ß = -0.32, Pcorrected < 0.001) and lower susceptibility values (ß = -0.39, Pcorrected < 0.001) of WMH-connected cortical regions at high connectivity level. In addition, lower scores on processing speed were significantly related to lower cortical thickness (ß = 0.20, Pcorrected = 0.030), lower R1 values (ß = 0.20, Pcorrected = 0.006), lower R2* values (ß = 0.29, Pcorrected = 0.006) and lower susceptibility values (ß = 0.19, Pcorrected = 0.024) of the WMH-connected regions at high connectivity level, independent of WMH volumes and the cortical measures of WMH-unconnected regions. Together, our study demonstrated that the microstructural integrity of white matter tracts passing through WMH is related to the regional cortical abnormalities as measured by thickness, R1, R2* and susceptibility values in the connected cortical regions. These findings are indicative of cortical thinning, demyelination and iron loss in the cortex, which is most likely through the disruption of the connecting white matter tracts and may contribute to processing speed impairment in SVD, a key clinical feature of SVD. These findings may have implications for finding intervention targets for the treatment of cognitive impairment in SVD by preventing secondary degeneration.


Asunto(s)
Enfermedades de los Pequeños Vasos Cerebrales , Trastornos del Conocimiento , Enfermedades Desmielinizantes , Sustancia Blanca , Humanos , Adelgazamiento de la Corteza Cerebral , Estudios Transversales , Sustancia Blanca/diagnóstico por imagen , Enfermedades de los Pequeños Vasos Cerebrales/complicaciones , Enfermedades de los Pequeños Vasos Cerebrales/diagnóstico por imagen , Enfermedades de los Pequeños Vasos Cerebrales/psicología , Enfermedades Desmielinizantes/diagnóstico por imagen , Imagen por Resonancia Magnética/métodos
8.
Nature ; 553(7687): 189-193, 2018 01 10.
Artículo en Inglés | MEDLINE | ID: mdl-29323292

RESUMEN

Nanostructured semiconductors emit light from electronic states known as excitons. For organic materials, Hund's rules state that the lowest-energy exciton is a poorly emitting triplet state. For inorganic semiconductors, similar rules predict an analogue of this triplet state known as the 'dark exciton'. Because dark excitons release photons slowly, hindering emission from inorganic nanostructures, materials that disobey these rules have been sought. However, despite considerable experimental and theoretical efforts, no inorganic semiconductors have been identified in which the lowest exciton is bright. Here we show that the lowest exciton in caesium lead halide perovskites (CsPbX3, with X = Cl, Br or I) involves a highly emissive triplet state. We first use an effective-mass model and group theory to demonstrate the possibility of such a state existing, which can occur when the strong spin-orbit coupling in the conduction band of a perovskite is combined with the Rashba effect. We then apply our model to CsPbX3 nanocrystals, and measure size- and composition-dependent fluorescence at the single-nanocrystal level. The bright triplet character of the lowest exciton explains the anomalous photon-emission rates of these materials, which emit about 20 and 1,000 times faster than any other semiconductor nanocrystal at room and cryogenic temperatures, respectively. The existence of this bright triplet exciton is further confirmed by analysis of the fine structure in low-temperature fluorescence spectra. For semiconductor nanocrystals, which are already used in lighting, lasers and displays, these excitons could lead to materials with brighter emission. More generally, our results provide criteria for identifying other semiconductors that exhibit bright excitons, with potential implications for optoelectronic devices.

9.
Cereb Cortex ; 33(5): 1537-1549, 2023 02 20.
Artículo en Inglés | MEDLINE | ID: mdl-35512361

RESUMEN

Laminar functional magnetic resonance imaging (fMRI) holds the potential to study connectivity at the laminar level in humans. Here we analyze simultaneously recorded electroencephalography (EEG) and high-resolution fMRI data to investigate how EEG power modulations, induced by a task with an attentional component, relate to changes in fMRI laminar connectivity between and within brain regions in visual cortex. Our results indicate that our task-induced decrease in beta power relates to an increase in deep-to-deep layer coupling between regions and to an increase in deep/middle-to-superficial layer connectivity within brain regions. The attention-related alpha power decrease predominantly relates to reduced connectivity between deep and superficial layers within brain regions, since, unlike beta power, alpha power was found to be positively correlated to connectivity. We observed no strong relation between laminar connectivity and gamma band oscillations. These results indicate that especially beta band, and to a lesser extent, alpha band oscillations relate to laminar-specific fMRI connectivity. The differential effects for alpha and beta bands indicate that they relate to different feedback-related neural processes that are differentially expressed in intra-region laminar fMRI-based connectivity.


Asunto(s)
Imagen por Resonancia Magnética , Corteza Visual , Humanos , Imagen por Resonancia Magnética/métodos , Electroencefalografía/métodos , Encéfalo , Atención , Mapeo Encefálico/métodos
10.
J Chem Phys ; 160(15)2024 Apr 21.
Artículo en Inglés | MEDLINE | ID: mdl-38634492

RESUMEN

Magic-sized nanocrystals (MSNCs) grow via jumps between very specific sizes. This discrete growth is a possible avenue toward monodisperse nanomaterials that are completely identical in size and shape. In spite of this potential, MSNCs have seen limited study and application due to their poor optical properties. Specifically, MSNCs are limited in their range of emission wavelengths and commonly exhibit poor photoluminescence quantum yields (PLQYs). Here, we report silver doping of CdSe MSNCs as a strategy to improve the optical properties of MSNCs. Silver doping leads to controllable shifts in emission wavelength and significant increases in MSNC PLQYs. These results suggest that doped MSNCs are interesting candidates for displays or luminescent solar concentrators. Finally, we demonstrate that the doping process does not affect the magic size of our MSNCs, allowing further photophysical study of this class of nanomaterial.

11.
Stroke ; 54(5): 1367-1376, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-36912138

RESUMEN

BACKGROUND: Structural network damage is a potentially important mechanism by which cerebral small vessel disease (SVD) can cause cognitive impairment. As a central hub of the structural network, the role of thalamus in SVD-related cognitive impairments remains unclear. We aimed to determine the associations between the structural alterations of thalamic subregions and cognitive impairments in SVD. METHODS: In this cross-sectional study, 205 SVD participants without thalamic lacunes from the third follow-up (2020) of the prospective RUN DMC study (Radboud University Nijmegen Diffusion Tensor and Magnetic Resonance Cohort), which was initiated in 2006, Nijmegen, were included. Cognitive functions included processing speed, executive function, and memory. Probabilistic tractography was performed from thalamus to 6 cortical regions, followed by connectivity-based thalamic segmentation to assess each thalamic subregion volume and connectivity (measured by mean diffusivity [MD] of the connecting white matter tracts) with the cortex. Least absolute shrinkage and selection operator regression analysis was conducted to identify the volumes or connectivity of the total thalamus and 6 thalamic subregions that have the strongest association with cognitive performance. Linear regression and mediation analyses were performed to test the association of least absolute shrinkage and selection operator-selected thalamic subregion volume or MD with cognitive performance, while adjusting for age and education. RESULTS: We found that higher MD of the thalamic-motor tract was associated with worse processing speed (ß=-0.27; P<0.001), higher MD of the thalamic-frontal tract was associated with worse executive function (ß=-0.24; P=0.001), and memory (ß=-0.28; P<0.001), respectively. The mediation analysis showed that MD of thalamocortical tracts mediated the association between corresponding thalamic subregion volumes and the cognitive performances in 3 domains. CONCLUSIONS: Our results suggest that the structural alterations of thalamus are linked to cognitive impairment in SVD, largely depending on the damage pattern of the white matter tracts connecting specific thalamic subregions and cortical regions.


Asunto(s)
Enfermedades de los Pequeños Vasos Cerebrales , Disfunción Cognitiva , Sustancia Blanca , Humanos , Imagen de Difusión Tensora/métodos , Estudios Prospectivos , Estudios Transversales , Imagen por Resonancia Magnética , Tálamo/patología , Enfermedades de los Pequeños Vasos Cerebrales/complicaciones
12.
Hum Brain Mapp ; 44(6): 2509-2522, 2023 04 15.
Artículo en Inglés | MEDLINE | ID: mdl-36763562

RESUMEN

BOLD fMRI is widely applied in human neuroscience but is limited in its spatial specificity due to a cortical-depth-dependent venous bias. This reduces its localization specificity with respect to neuronal responses, a disadvantage for neuroscientific research. Here, we modified a submillimeter BOLD protocol to selectively reduce venous and tissue signal and increase cerebral blood volume weighting through a pulsed saturation scheme (dubbed Arterial Blood Contrast) at 7 T. Adding Arterial Blood Contrast on top of the existing BOLD contrast modulated the intracortical contrast. Isolating the Arterial Blood Contrast showed a response free of pial-surface bias. The results suggest that Arterial Blood Contrast can modulate the typical fMRI spatial specificity, with important applications in in-vivo neuroscience.


Asunto(s)
Protocolos de Quimioterapia Combinada Antineoplásica , Imagen por Resonancia Magnética , Humanos , Imagen por Resonancia Magnética/métodos , Mapeo Encefálico/métodos
13.
Hum Brain Mapp ; 44(1): 82-93, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36196782

RESUMEN

A multiband (MB) echo-planar imaging (EPI) sequence is compared to a multiband multiecho (MBME) EPI protocol to investigate differences in sensitivity for task functional magnetic resonance imaging (fMRI) at 3 T. Multiecho sampling improves sensitivity in areas where single-echo-EPI suffers from dropouts. However, It requires in-plane acceleration to reduce the echo train length, limiting the slice acceleration factor and the temporal and spatial resolution Data were acquired for both protocols in two sessions 24 h apart using an adapted color-word interference Stroop task. Besides protocol comparison statistically, we performed test-retest reliability across sessions for different protocols and denoising methods. We evaluated the sensitivity of two different echo-combination strategies for MBME-EPI. We examined the performance of three different data denoising approaches: "Standard," "AROMA," and "FIX" for MB and MBME, and assessed whether a specific method is preferable. We consider using an appropriate autoregressive model order within the general linear model framework to correct TR differences between the protocols. The comparison between protocols and denoising methods showed at group level significantly higher mean z-scores and the number of active voxels for MBME in the motor, subcortical and medial frontal cortices. When comparing different echo combinations, our results suggest that a contrast-to-noise ratio weighted echo combination improves sensitivity in MBME compared to simple echo-summation. This study indicates that MBME can be a preferred protocol in task fMRI at spatial resolution (≥2 mm), primarily in medial prefrontal and subcortical areas.


Asunto(s)
Imagen Eco-Planar , Imagen por Resonancia Magnética , Humanos , Imagen Eco-Planar/métodos , Imagen por Resonancia Magnética/métodos , Encéfalo/diagnóstico por imagen , Reproducibilidad de los Resultados , Procesamiento de Imagen Asistido por Computador/métodos , Mapeo Encefálico/métodos
14.
Opt Express ; 31(3): 4851-4861, 2023 Jan 30.
Artículo en Inglés | MEDLINE | ID: mdl-36785442

RESUMEN

We report an experimental and theoretical study of light emission by a patterned ensemble of colloidal quantum dots (cQDs). This system modifies drastically the emission spectrum and polarization as compared to a planar layer of cQDs. It exhibits bright, directional and polarized emission including a degree of circular polarization in some directions. We introduce a model of light emission based on a local Kirchhoff law which reproduces accurately all the features of the experiment. The model provides a figure of merit to assess quantitatively the emitted power. This work paves the way to the systematic design of efficient ultrathin light emitting metasurfaces with controlled polarization, spectrum and directivity.

15.
J Neurol Neurosurg Psychiatry ; 94(2): 144, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36270793

RESUMEN

BACKGROUND: Small hyperintense lesions are found on diffusion-weighted imaging (DWI) in patients with sporadic small vessel disease (SVD). Their exact role in SVD progression remains unclear due to their asymptomatic and transient nature. The main objective is to investigate the role of DWI+lesions in the radiological progression of SVD and their relationship with clinical outcomes. METHODS: Participants with SVD were included from the Radboud University Nijmegen Diffusion tensor MRI Cohort. DWI+lesions were assessed on four time points over 14 years. Outcome measures included neuroimaging markers of SVD, cognitive performance and clinical outcomes, including stroke, all-cause dementia and all-cause mortality. Linear mixed-effect models and Cox regression models were used to examine the outcome measures in participants with a DWI+lesion (DWI+) and those without a DWI+lesion (DWI-). RESULTS: DWI+lesions were present in 45 out of 503 (8.9%) participants (mean age: 66.7 years (SD=8.3)). Participants with DWI+lesions and at least one follow-up (n=33) had higher white matter hyperintensity progression rates (ß=0.36, 95% CI=0.05 to 0.68, p=0.023), more incident lacunes (incidence rate ratio=2.88, 95% CI=1.80 to 4.67, p<0.001) and greater cognitive decline (ß=-0.03, 95% CI=-0.05 to -0.01, p=0.006) during a median follow-up of 13.2 (IQR: 8.8-13.8) years compared with DWI- participants. No differences were found in risk of all-cause mortality, stroke or dementia. CONCLUSION: Presence of a DWI+lesion in patients with SVD is associated with greater radiological progression of SVD and cognitive decline compared with patients without DWI+lesions.


Asunto(s)
Enfermedades de los Pequeños Vasos Cerebrales , Demencia , Accidente Cerebrovascular , Humanos , Anciano , Estudios de Seguimiento , Enfermedades de los Pequeños Vasos Cerebrales/complicaciones , Imagen de Difusión por Resonancia Magnética/métodos , Accidente Cerebrovascular/complicaciones , Demencia/diagnóstico por imagen , Demencia/complicaciones , Imagen por Resonancia Magnética
16.
J Am Acad Dermatol ; 88(6): 1326-1337.e2, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-37268392

RESUMEN

BACKGROUND: The diagnosis and treatment of medication-associated alopecia often challenges patients and physicians. While numerous studies on the topic exist, limited information on the strength and magnitude of these studies exists. OBJECTIVES: We investigated the most commonly prescribed medications with high levels of evidence to support associations with alopecia. METHODS: A list of most commonly prescribed medications was compiled using the "Top 100 Prescriptions, Sales" (Intercontinental Marketing Services) and "Top 200 Names Searched" (RxList.com). PubMed, Embase, and Web of Science were searched for "generic drug name" AND "alopecia" and "generic drug name" AND "hair loss." Two reviewers independently reviewed articles for drug, study type and level of evidence, and number of alopecia cases. RESULTS: A total of 192 unique drugs were investigated, with 110 yielding positive search results. Of these, 13 were associated with alopecia in studies with strong levels of evidence (adalimumab, infliximab, budesonide, interferon ß-1α, tacrolimus, enoxaparin, zoster vaccine, lamotrigine, docetaxel, capecitabine, erlotinib, imatinib, and bortezomib). LIMITATIONS: Only full-length articles available in the English language were included. The methodology used relied on lists of drugs based on their sales rather than number of prescriptions, which likely overrepresented expensive drugs. CONCLUSIONS: Few studies with high levels of evidence have been conducted on the topic of medication-associated alopecia. The mechanisms of hair loss must be further identified to provide effective management.


Asunto(s)
Alopecia , Medicamentos Genéricos , Humanos , Alopecia/inducido químicamente , Alopecia/tratamiento farmacológico , Interferón beta , Lamotrigina , Proyectos de Investigación
17.
MAGMA ; 36(2): 211-225, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-37036574

RESUMEN

OBJECTIVE: We outline our vision for a 14 Tesla MR system. This comprises a novel whole-body magnet design utilizing high temperature superconductor; a console and associated electronic equipment; an optimized radiofrequency coil setup for proton measurement in the brain, which also has a local shim capability; and a high-performance gradient set. RESEARCH FIELDS: The 14 Tesla system can be considered a 'mesocope': a device capable of measuring on biologically relevant scales. In neuroscience the increased spatial resolution will anatomically resolve all layers of the cortex, cerebellum, subcortical structures, and inner nuclei. Spectroscopic imaging will simultaneously measure excitatory and inhibitory activity, characterizing the excitation/inhibition balance of neural circuits. In medical research (including brain disorders) we will visualize fine-grained patterns of structural abnormalities and relate these changes to functional and molecular changes. The significantly increased spectral resolution will make it possible to detect (dynamic changes in) individual metabolites associated with pathological pathways including molecular interactions and dynamic disease processes. CONCLUSIONS: The 14 Tesla system will offer new perspectives in neuroscience and fundamental research. We anticipate that this initiative will usher in a new era of ultra-high-field MR.


Asunto(s)
Encéfalo , Imagen por Resonancia Magnética , Imagen por Resonancia Magnética/métodos , Encéfalo/diagnóstico por imagen , Cabeza , Imagen de Difusión por Resonancia Magnética , Ondas de Radio
18.
Stroke ; 53(12): 3688-3695, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36189679

RESUMEN

BACKGROUND: The underlying mechanisms of incident lacunes regarding their spatial distribution remain largely unknown. We investigated the spatial distribution pattern and MRI predictors of incident lacunes in relation to white matter hyperintensity (WMH) over 14 years follow-up in sporadic small vessel disease. METHODS: Five hundred three participants from the ongoing prospective single-center Radboud University Nijmegen Diffusion Tensor and Magnetic resonance Cohort (RUN DMC) were recruited with baseline assessment in 2006 and follow ups in 2011, 2015, and 2020. Three hundred eighty-two participants who underwent at least 2 available brain MRI scans were included. Incident lacunes were systematically identified, and the spatial relationship between incident lacunes located in subcortical white matter and WMH were determined using a visual rating scale. Adjusted multiple logistic regression and linear mixed-effect regression models were used to assess the association between baseline small vessel disease markers, WMH progression, and incident lacunes. Participants with atrial fibrillation were excluded in multivariable analysis. RESULTS: Eighty incident lacunes were identified in 43 patients (mean age 66.5±8.2 years, 37.2% women) during a mean follow-up time of 11.2±3.3 years (incidence rate 10.0/1000 person-year). Sixty percent of incident lacunes were in the white matter, of which 48.9% showed no contact with preexisting WMH. Baseline WMH volume (odds ratio=2.5 [95% CI, 1.6-4.2]) predicted incident lacunes after adjustment for age, sex, and vascular risk factors. WMH progression was associated with incident lacunes independent of age, sex, baseline WMH volume, and vascular risk factors (odds ratio, 3.2 [95% CI, 1.5-6.9]). Baseline WMH volume and progression rate were higher in participants with incident lacunes in contact with preexisting WMH. No difference in vascular risk factors was observed regarding location or relation with preexisting WMH. CONCLUSIONS: The 2 different distribution patterns of lacunes regarding their relation to WMH may suggest distinct underlying mechanisms, one of which may be more closely linked to a similar pathophysiology as that of WMH. The longitudinal relation between WMH and lacunes further supports plausible shared mechanisms between the 2 key markers.


Asunto(s)
Enfermedades de los Pequeños Vasos Cerebrales , Leucoaraiosis , Sustancia Blanca , Humanos , Femenino , Persona de Mediana Edad , Anciano , Masculino , Estudios de Seguimiento , Sustancia Blanca/diagnóstico por imagen , Sustancia Blanca/patología , Enfermedades de los Pequeños Vasos Cerebrales/diagnóstico por imagen , Enfermedades de los Pequeños Vasos Cerebrales/epidemiología , Enfermedades de los Pequeños Vasos Cerebrales/complicaciones , Estudios Prospectivos , Leucoaraiosis/diagnóstico por imagen , Leucoaraiosis/epidemiología , Imagen por Resonancia Magnética
19.
Stroke ; 53(9): 2789-2798, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35506383

RESUMEN

BACKGROUND: The aim of this study is to investigate the temporal dynamics of small vessel disease (SVD) and the effect of vascular risk factors and baseline SVD burden on progression of SVD with 4 neuroimaging assessments over 14 years in patients with SVD. METHODS: Five hundred three patients with sporadic SVD (50-85 years) from the ongoing prospective cohort study (RUN DMC [Radboud University Nijmegen Diffusion Tensor and Magnetic Resonance Cohort]) underwent baseline assessment in 2006 and follow-up in 2011, 2015, and 2020. Vascular risk factors and magnetic resonance imaging markers of SVD were evaluated. Linear mixed-effects model and negative binomial regression model were used to examine the determinants of temporal dynamics of SVD markers. RESULTS: A total of 382 SVD patients (mean [SD] 64.1 [8.4]; 219 men and 163 women) who underwent at least 2 serial brain magnetic resonance imaging scans were included, with mean (SD) follow-up of 11.15 (3.32) years. We found a highly variable temporal course of SVD. Mean (SD) WMH progression rate was 0.6 (0.74) mL/y (range, 0.02-4.73 mL/y) and 13.6% of patients had incident lacunes (1.03%/y) over the 14-year follow-up. About 4% showed net WMH regression over 14 years, whereas 38 out of 361 (10.5%), 5 out of 296 (2%), and 61 out of 231 (26%) patients showed WMH regression for the intervals 2006 to 2011, 2011 to 2015, and 2015 to 2020, respectively. Of these, 29 (76%), 5 (100%), and 57 (93%) showed overall progression across the 14-year follow-up, and the net overall WMH change between first and last scan considering all participants was a net average WMH progression over the 14-year period. Older age was a strong predictor for faster WMH progression and incident lacunes. Patients with mild baseline WMH rarely progressed to severe WMH. In addition, both baseline burden of SVD lesions and vascular risk factors independently and synergistically predicted WMH progression, whereas only baseline SVD burden predicted incident lacunes over the 14-year follow-up. CONCLUSIONS: SVD shows pronounced progression over time, but mild WMH rarely progresses to clinically severe WMH. WMH regression is noteworthy during some magnetic resonance imaging intervals, although it could be overall compensated by progression over the long follow-up.


Asunto(s)
Enfermedades de los Pequeños Vasos Cerebrales , Sustancia Blanca , Enfermedades de los Pequeños Vasos Cerebrales/diagnóstico por imagen , Enfermedades de los Pequeños Vasos Cerebrales/epidemiología , Enfermedades de los Pequeños Vasos Cerebrales/patología , Progresión de la Enfermedad , Femenino , Estudios de Seguimiento , Humanos , Imagen por Resonancia Magnética/métodos , Masculino , Neuroimagen , Estudios Prospectivos , Sustancia Blanca/patología
20.
Acc Chem Res ; 54(7): 1545-1554, 2021 Apr 06.
Artículo en Inglés | MEDLINE | ID: mdl-33660971

RESUMEN

ConspectusSemiconductor nanocrystals (NCs) fluoresce with a color that strongly depends on their size and shape. Thus, to obtain homogeneous optical properties, researchers have strived to synthesize particles that are uniform. However, because NCs typically grow through continuous, incremental addition of material, slight differences in the growth process between individual crystallites yield statistical distributions in size and shape, leading to inhomogeneities in their optical characteristics. Much work has focused on improving synthetic protocols to control these distributions and enhance performance. Interestingly, during these efforts, several syntheses were discovered that exhibit a different type of growth process. The NCs jump from one discrete size to the next. Through purification methods, one of these sizes can then be isolated, providing a different approach to uniform NCs. Unfortunately, the fundamental mechanism behind such discrete growth and how it differs from the conventional continuous process have remained poorly understood.Discrete growth has been observed in two major classes of NCs: semiconductor nanoplatelets (NPLs) and magic-sized clusters (MSCs). NPLs are quasi-two-dimensional crystallites that exhibit a precise thickness of only a few atomic layers but much larger lateral dimensions. During growth, NPLs slowly appear with an increasing number of monolayers. By halting this process at a specific time, NPLs with a desired thickness can then be isolated (e.g., four monolayers). Because the optical properties are primarily governed by this thickness, which is uniform, NPLs exhibit improved optical properties such as narrower fluorescence line widths.While NPLs have highly anisotropic shapes and show discrete growth only in one dimension (thickness), MSCs are isotropic particles. The name "magic" arose because a specific set of NC sizes appear during synthesis. They have been believed to represent special atomic arrangements that possess enhanced structural stability. Historically, they were very small, hence molecular-scale "clusters." Isolation of one of the MSC sizes can then, in principle, provide a uniform sample of NCs. More recently, MSC growth has been extended to larger sizes, beyond what is commonly considered to be the "cluster" regime, challenging the conventional explanation for these materials.This Account summarizes recent work by our group to understand the mechanism that governs discrete growth in semiconductor NCs. We begin by describing the synthesis of NPLs. Next, we discuss the mechanism behind the highly anisotropic shape of NPLs. We build on this by examining the ripening process in NPLs. We show that NPLs slowly appear with increasing thickness, counterintuitively through lateral growth. Then, we turn to the synthesis of MSCs, in particular focusing on their growth mechanism. Our findings indicate a strong connection between NPLs and MSCs. Finally, we review several remaining challenges for the growth of NPLs and MSCs and give a brief outlook on the future of discrete growth. By understanding the underlying process, we believe that it can be exploited more broadly, potentially moving us toward more uniform nanomaterials.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA