Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
1.
Ecol Appl ; 32(2): e2523, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-34921463

RESUMEN

Recent foodborne illness outbreaks have heightened pressures on growers to deter wildlife from farms, jeopardizing conservation efforts. However, it remains unclear which species, particularly birds, pose the greatest risk to food safety. Using >11,000 pathogen tests and 1565 bird surveys covering 139 bird species from across the western United States, we examined the importance of 11 traits in mediating wild bird risk to food safety. We tested whether traits associated with pathogen exposure (e.g., habitat associations, movement, and foraging strategy) and pace-of-life (clutch size and generation length) mediated foodborne pathogen prevalence and proclivities to enter farm fields and defecate on crops. Campylobacter spp. were the most prevalent enteric pathogen (8.0%), while Salmonella and Shiga-toxin producing Escherichia coli (STEC) were rare (0.46% and 0.22% prevalence, respectively). We found that several traits related to pathogen exposure predicted pathogen prevalence. Specifically, Campylobacter and STEC-associated virulence genes were more often detected in species associated with cattle feedlots and bird feeders, respectively. Campylobacter was also more prevalent in species that consumed plants and had longer generation lengths. We found that species associated with feedlots were more likely to enter fields and defecate on crops. Our results indicated that canopy-foraging insectivores were less likely to deposit foodborne pathogens on crops, suggesting growers may be able to promote pest-eating birds and birds of conservation concern (e.g., via nest boxes) without necessarily compromising food safety. As such, promoting insectivorous birds may represent a win-win-win for bird conservation, crop production, and food safety. Collectively, our results suggest that separating crop production from livestock farming may be the best way to lower food safety risks from birds. More broadly, our trait-based framework suggests a path forward for co-managing wildlife conservation and food safety risks in farmlands by providing a strategy for holistically evaluating the food safety risks of wild animals, including under-studied species.


Asunto(s)
Animales Salvajes , Escherichia coli Shiga-Toxigénica , Animales , Aves , Bovinos , Granjas , Salmonella , Estados Unidos
2.
Ecol Lett ; 24(2): 269-278, 2021 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-33201560

RESUMEN

Single-trait eco-evolutionary models of arms races between consumers and their resource species often show inhibition rather than promotion of community diversification. In contrast, modelling arms races involving multiple traits, we found that arms races can promote diversification when trade-off costs among traits make simultaneous investment in multiple traits either more beneficial or more costly. Coevolution between resource and consumer species generates an adaptive landscape for each, with the configuration giving predictable suites of consumer and resource species. Nonetheless, the adaptive landscape contains multiple alternative stable states, and which stable community is reached depends on small stochastic differences occurring along evolutionary pathways. Our results may solve a puzzling conflict between eco-evolutionary theory that predicts community diversification via consumer-resource interactions will be rare, and empirical research that has uncovered real cases. Furthermore, our results suggest that these real cases might be just a subset of alternative stable communities.


Asunto(s)
Cadena Alimentaria , Modelos Biológicos , Animales , Evolución Biológica , Estado Nutricional , Fenotipo , Conducta Predatoria
3.
Ecol Appl ; 30(2): e02031, 2020 03.
Artículo en Inglés | MEDLINE | ID: mdl-31674710

RESUMEN

Agricultural intensification is a leading threat to bird conservation. Highly diversified farming systems that integrate livestock and crop production might promote a diversity of habitats useful to native birds foraging across otherwise-simplified landscapes. At the same time, these features might be attractive to nonnative birds linked to a broad range of disservices to both crop and livestock production. We evaluated the influence of crop-livestock integration on wild bird richness and density along a north-south transect spanning the U.S. West Coast. We surveyed birds on 52 farms that grew primarily mixed vegetables and fruits alone or integrated livestock into production. Crop-livestock systems harbored higher native bird density and richness relative to crop-only farms, a benefit more pronounced on farms embedded in nonnatural landscapes. Crop-livestock systems bolstered native insectivores linked to the suppression of agricultural pest insects but did not bolster native granivores that may be more likely to damage crops. Crop-livestock systems also significantly increased the density of nonnative birds, primarily European Starlings (Sturnus vulgaris) and House Sparrows (Passer domesticus) that may compete with native birds for resources. Models supported a small, positive correlation between nonnative density and overall native bird density as well as between nonnative density and native granivore density. Relative to crop-only farms, on average, crop-livestock systems exhibited 1.5 times higher patch richness, 2.4 times higher density of farm structures, 7.3 times smaller field sizes, 2.4 times greater integration of woody crops, and 5.3 times greater integration of pasture/hay habitat on farm. Wild birds may have responded to this habitat diversity and/or associated food resources. Individual farm factors had significantly lower predictive power than farming system alone (change in C statistic information criterion (ΔCIC) = 80.2), suggesting crop-livestock systems may impact wild birds through a suite of factors that change with system conversion. Collectively, our findings suggest that farms that integrate livestock and crop production can attract robust native bird communities, especially within landscapes devoted to intensified food production. However, additional work is needed to demonstrate persistent farm bird communities through time, ecophysiological benefits to birds foraging on these farms, and net effects of both native and nonnative wild birds in agroecosystems.


Asunto(s)
Agricultura , Ganado , Animales , Aves , Productos Agrícolas , Granjas
4.
Ecol Lett ; 22(12): 2103-2110, 2019 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-31621156

RESUMEN

Bees are ecosystem service providers that are globally threatened by losses of plant diversity. However, effects of multi-species floral displays on bees in agro-ecosystems with variable landscape context remain poorly understood, hindering pollinator conservation tactics. We addressed this knowledge gap through a novel application of the modified Price equation to evaluate responses of bees to diverse floral communities on 36 farms in Washington, USA, over 3 years. We found that floral richness, not floral identity, was the best predictor of floral visits by bees. However, the benefits of regionally rare floral species (i.e. plants found at relatively few sites) were only fully realised when farms were embedded in diverse landscapes. Our analysis used the modified Price equation to demonstrate that plant diversity, rather than specific plant species, promotes pollinator visitation, and that diverse landscapes promote the response of pollinators to regionally rare plant species.


Asunto(s)
Ecosistema , Polinización , Animales , Abejas , Flores
5.
J Environ Manage ; 252: 109430, 2019 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-31600682

RESUMEN

In Australia, and other parts of the world, tower infrastructure in electricity transmission networks are nearing the end of their asset life. In changing economic, political and regulatory environments Transmission Network Service Providers are implementing new approaches to asset management and reinvestment, such as refurbishment to extend the life of existing assets, instead of replacement. As part of these refurbishment efforts, abrasive blasting and recoating is being employed to remove corrosion and extend the life of steel electricity transmission towers. New controls and procedures have been developed to manage the most likely impacts associated with the abrasive blasting of transmission towers. However, little or no data have been available on the environmental impacts of abrasive blasting or the effectiveness of management procedures currently being used to mitigate potential adverse environmental impacts.We conducted an integrated study on the impacts of abrasive blasting, which brought together on-site research; modelling; and controlled laboratory trials. The study was undertaken during a transmission tower refurbishment project within the World Heritage listed Wet Tropics Region in Queensland, Australia. Measured metal deposition around towers due to blasting, was primarily as large particles (>PM10) at 12-30 m from the tower. Soil concentrations of metals were highest under towers, with a small number of samples showing elevated zinc at 12-30 m. The presence of spent abrasive media and dust on the geofabric material used under the towers and up to 15 m from the tower base, as part of control measures used to contain the abrasive products, indicates that deposition also occurs between 0 and 12 m from the tower.The potential impacts of the abrasive blasting technique on plants and invertebrates appear to be low. Five species of tropical rainforest tree seedlings exposed to abrasive blasting dust at worst-case levels had no negative impact on physiological performance or plant health. This research will assist Transmission Network Service Providers and other operators of corroded linear infrastructure to plan and implement mitigating management actions and procedures during abrasive blasting projects and assist regulators and the community to better understand the impacts of the practice.


Asunto(s)
Exposición Profesional , Australia , Polvo , Metales , Queensland
6.
Proc Biol Sci ; 285(1871)2018 01 31.
Artículo en Inglés | MEDLINE | ID: mdl-29367390

RESUMEN

At local scales, native species can resist invasion by feeding on and competing with would-be invasive species. However, this relationship tends to break down or reverse at larger scales. Here, we consider the role of native species as indirect facilitators of invasion and their potential role in this diversity-driven 'invasion paradox'. We coin the term 'native turncoats' to describe native facilitators of non-native species and identify eight ways they may indirectly facilitate species invasion. Some are commonly documented, while others, such as indirect interactions within competitive communities, are largely undocumented in an invasion context. Therefore, we use models to evaluate the likelihood that these competitive interactions influence invasions. We find that native turncoat effects increase with the number of resources and native species. Furthermore, our findings suggest the existence, abundance and effectiveness of native turncoats in a community could greatly influence invasion success at large scales.


Asunto(s)
Ecosistema , Especies Introducidas , Invertebrados/fisiología , Fenómenos Fisiológicos de las Plantas , Vertebrados/fisiología , Animales , Biodiversidad , Modelos Biológicos
7.
Microb Ecol ; 76(2): 482-491, 2018 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-29380027

RESUMEN

Parasites often modify host foraging behavior, for example, by spurring changes to nutrient intake ratios or triggering self-medication. The gut parasite, Nosema ceranae, increases energy needs of the European or Western honey bee (Apis mellifera), but little is known about how infection affects foraging behavior. We used a combination of experiments and observations of caged and free-flying individual bees and hives to determine how N. ceranae affects honey bee foraging behavior. In an experiment with caged bees, we found that infected bees with access to a high-quality pollen were more likely to survive than infected bees with access to a lower quality pollen or no pollen. Non-infected bees showed no difference in survival with pollen quality. We then tested free-flying bees in an arena of artificial flowers and found that pollen foraging bees chose pollen commensurate with their infection status; twice as many infected bees selected the higher quality pollen than the lower quality pollen, while healthy bees showed no preference between pollen types. However, healthy and infected bees visited sucrose and pollen flowers in the same proportions. Among hive-level observations, we found no significant correlations between N. ceranae infection intensity in the hive and the proportion of bees returning with pollen. Our results indicate that N. ceranae-infected bees benefit from increased pollen quality and will selectively forage for higher quality while foraging for pollen, but infection status does not lead to increased pollen foraging at either the individual or hive levels.


Asunto(s)
Abejas/microbiología , Conducta Animal/fisiología , Nosema/fisiología , Polen , Alimentación Animal , Animales , Interacciones Microbiota-Huesped/fisiología , Nosema/patogenicidad , Tasa de Supervivencia
8.
Proc Biol Sci ; 284(1863)2017 Sep 27.
Artículo en Inglés | MEDLINE | ID: mdl-28931737

RESUMEN

Animals embedded between trophic levels must simultaneously balance pressures to deter predators and acquire resources. Venomous animals may use venom toxins to mediate both pressures, and thus changes in this balance may alter the composition of venoms. Basic theory suggests that greater exposure to a predator should induce a larger proportion of defensive venom components relative to offensive venom components, while increases in arms races with prey will elicit the reverse. Alternatively, reducing the need for venom expenditure for food acquisition, for example because of an increase in scavenging, may reduce the production of offensive venom components. Here, we investigated changes in scorpion venom composition using a mesocosm experiment where we manipulated scorpions' exposure to a surrogate vertebrate predator and live and dead prey. After six weeks, scorpions exposed to surrogate predators exhibited significantly different venom chemistry compared with naive scorpions. This change included a relative increase in some compounds toxic to vertebrate cells and a relative decrease in some compounds effective against their invertebrate prey. Our findings provide, to our knowledge, the first evidence for adaptive plasticity in venom composition. These changes in venom composition may increase the stability of food webs involving venomous animals.


Asunto(s)
Dieta/veterinaria , Conducta Predatoria , Venenos de Escorpión/química , Escorpiones , Adaptación Fisiológica , Animales , Conducta Alimentaria , Fenotipo
9.
Ecol Appl ; 27(3): 887-899, 2017 04.
Artículo en Inglés | MEDLINE | ID: mdl-28019052

RESUMEN

The unique benefits of wild pollinators to the productivity of agricultural crops have become increasingly recognized in recent decades. However, declines in populations of wild pollinator species, largely driven by the conversion of natural habitat to agricultural land and broad-spectrum pesticide use often lead reductions in the provision of pollination services and crop production. With growing evidence that targeted pollinator conservation improves crop yield and/or quality, particularly for pollination specialist crops, efforts are increasing to substitute agriculturally intensive practices with those that alleviate some of the negative impacts of agriculture on pollinators and the pollination services they provide, in part through the provision of suitable pollinator habitat. Further, similarities between the responses of some pollinators and predators to habitat management suggest that efforts to conserve pollinators may also encourage predator densities. We evaluated the effects of one habitat management practice, the addition of cacao fruit husks to a monoculture cacao farm, on the provision of pollination services and the densities of two groups of entomophagous predators. We also evaluated the impacts of cacao fruit husk addition on pollen limitation, by crossing this habitat manipulation with pollen supplementation treatments. The addition of cacao fruit husks increased the number of fruits per tree and along with hand pollination treatments, increased final yields indicating a promotion of the pollination ecosystem service provided by the specialist pollinators, midges. We also found that cacao fruit husk addition increased the densities of two predator groups, spiders and skinks. Further, the conservation of these predators did not inhibit pollination through pollinator capture or deterrence. The findings show that, with moderate habitat management, both pollinator and predator conservation can be compatible goals within a highly specialized plant-pollinator system. The effectiveness of this habitat manipulation may be attributable to the increased availability of alternative habitat and food resources for both pollinators and predators. The results exemplify a win-win relationship between agricultural production and biological conservation, whereby agricultural practices to support vital pollinators and pollination services can increase production as well as support species conservation.


Asunto(s)
Agricultura/métodos , Cacao/crecimiento & desarrollo , Conservación de los Recursos Naturales/métodos , Control Biológico de Vectores , Polinización , Animales , Hormigas/fisiología , Frutas/crecimiento & desarrollo , Lagartos , Densidad de Población , Queensland , Arañas
10.
Ecology ; 97(8): 2003-2011, 2016 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-27859212

RESUMEN

Cannibalism is a widespread behavior, and evidence is abundant for transmission from infected victims to susceptible cannibals in many parasite-host systems. Current theory suggests that cannibalism generally impedes disease spread, because each victim is usually consumed by a single cannibal. Thus, cannibalism merely transfers pathogens from one individual to another without spreading infections to additional hosts. This assumes that cannibalism is the only mode of transmission and that the host population is homogenous. However, host developmental stages are a key determinant of both cannibal-victim and host-pathogen interactions. We suggest that multiple modes of pathogen transmission can interact through host stage structure. We show theoretically that cannibalism can enhance disease spread by consistently transferring infections from low quality to high quality hosts that are more infectious via horizontal transmission. We review empirical evidence for the generality of key conditions required for this process, and analyze the implications for the evolution of transmission through cannibalism. More generally, our theory promotes the consideration of multiple transmission pathways when studying parasite-host systems, and advances a useful intuition for assessing whether or not such pathways may be mutually augmentative.


Asunto(s)
Canibalismo , Transmisión Vertical de Enfermedad Infecciosa/estadística & datos numéricos , Parásitos , Animales
11.
PLoS Biol ; 11(10): e1001685, 2013 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-24167443

RESUMEN

BACKGROUND: Recent studies suggest that environmental changes may tip the balance between interacting species, leading to the extinction of one or more species. While it is recognized that evolution will play a role in determining how environmental changes directly affect species, the interactions among species force us to consider the coevolutionary responses of species to environmental changes. METHODOLOGY/PRINCIPLE FINDINGS: We use simple models of competition, predation, and mutualism to organize and synthesize the ways coevolution modifies species interactions when climatic changes favor one species over another. In cases where species have conflicting interests (i.e., selection for increased interspecific interaction strength on one species is detrimental to the other), we show that coevolution reduces the effects of climate change, leading to smaller changes in abundances and reduced chances of extinction. Conversely, when species have nonconflicting interests (i.e., selection for increased interspecific interaction strength on one species benefits the other), coevolution increases the effects of climate change. CONCLUSIONS/SIGNIFICANCE: Coevolution sets up feedback loops that either dampen or amplify the effect of environmental change on species abundances depending on whether coevolution has conflicting or nonconflicting effects on species interactions. Thus, gaining a better understanding of the coevolutionary processes between interacting species is critical for understanding how communities respond to a changing climate. We suggest experimental methods to determine which types of coevolution (conflicting or nonconflicting) drive species interactions, which should lead to better understanding of the effects of coevolution on species adaptation. Conducting these experiments across environmental gradients will test our predictions of the effects of environmental change and coevolution on ecological communities.


Asunto(s)
Evolución Biológica , Cambio Climático , Animales , Conducta Competitiva , Modelos Biológicos , Conducta Predatoria , Especificidad de la Especie , Simbiosis
12.
Nature ; 466(7302): 109-12, 2010 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-20596021

RESUMEN

Human activity can degrade ecosystem function by reducing species number (richness) and by skewing the relative abundance of species (evenness). Conservation efforts often focus on restoring or maintaining species number, reflecting the well-known impacts of richness on many ecological processes. In contrast, the ecological effects of disrupted evenness have received far less attention, and developing strategies for restoring evenness remains a conceptual challenge. In farmlands, agricultural pest-management practices often lead to altered food web structure and communities dominated by a few common species, which together contribute to pest outbreaks. Here we show that organic farming methods mitigate this ecological damage by promoting evenness among natural enemies. In field enclosures, very even communities of predator and pathogen biological control agents, typical of organic farms, exerted the strongest pest control and yielded the largest plants. In contrast, pest densities were high and plant biomass was low when enemy evenness was disrupted, as is typical under conventional management. Our results were independent of the numerically dominant predator or pathogen species, and so resulted from evenness itself. Moreover, evenness effects among natural enemy groups were independent and complementary. Our results strengthen the argument that rejuvenation of ecosystem function requires restoration of species evenness, rather than just richness. Organic farming potentially offers a means of returning functional evenness to ecosystems.


Asunto(s)
Agricultura/métodos , Biodiversidad , Insectos/fisiología , Control Biológico de Vectores/métodos , Solanum tuberosum/crecimiento & desarrollo , Animales , Biomasa , Escarabajos/patogenicidad , Escarabajos/fisiología , Ecología/métodos , Cadena Alimentaria , Insectos/patogenicidad , Conducta Predatoria/fisiología , Solanum tuberosum/microbiología , Washingtón
13.
Sci Rep ; 14(1): 5410, 2024 03 25.
Artículo en Inglés | MEDLINE | ID: mdl-38528007

RESUMEN

Honey bees and other pollinators are critical for food production and nutritional security but face multiple survival challenges. The effect of climate change on honey bee colony losses is only recently being explored. While correlations between higher winter temperatures and greater colony losses have been noted, the impacts of warmer autumn and winter temperatures on colony population dynamics and age structure as an underlying cause of reduced colony survival have not been examined. Focusing on the Pacific Northwest US, our objectives were to (a) quantify the effect of warmer autumns and winters on honey bee foraging activity, the age structure of the overwintering cluster, and spring colony losses, and (b) evaluate indoor cold storage as a management strategy to mitigate the negative impacts of climate change. We perform simulations using the VARROAPOP population dynamics model driven by future climate projections to address these objectives. Results indicate that expanding geographic areas will have warmer autumns and winters extending honey bee flight times. Our simulations support the hypothesis that late-season flight alters the overwintering colony age structure, skews the population towards older bees, and leads to greater risks of colony failure in the spring. Management intervention by moving colonies to cold storage facilities for overwintering has the potential to reduce honey bee colony losses. However, critical gaps remain in how to optimize winter management strategies to improve the survival of overwintering colonies in different locations and conditions. It is imperative that we bridge the gaps to sustain honey bees and the beekeeping industry and ensure food and nutritional security.


Asunto(s)
Apicultura , Polinización , Abejas , Animales , Estaciones del Año , Apicultura/métodos , Alimentos , Noroeste de Estados Unidos
14.
Insects ; 14(12)2023 Nov 24.
Artículo en Inglés | MEDLINE | ID: mdl-38132580

RESUMEN

The European earwig Forficula auricularia (L.) (Dermaptera: Forficulidae) is an omnivorous insect that is considered a minor pest of stone fruit and a key predator of pests in pome fruit orchards. In many pome fruit orchards, earwigs are absent or in low abundance due to broad-spectrum spray programs and the slow recolonization rate of earwigs. Orchards in transition to organic or "selective" conventional programs often struggle to achieve effective levels of biological control, and thus, may benefit from inoculating earwigs to expedite their re-establishment. In a two-year study, we evaluated the potential for mass trapping earwigs from stone fruit using rolled cardboard traps to reduce fruit damage and provide earwigs for augmentation in pome fruit. We also tested whether a single mass release or five releases (on alternating weeks) of the same total number of earwigs in apples and pears reduced pests relative to plots where no releases occurred. Mass trapping did not decrease earwig abundance or substantially reduce fruit damage in stone fruit orchards. However, trapping was an efficient method for providing earwigs for augmentation. Earwig abundances were only increased in orchards where earwigs were previously low or absent; however, multiple orchards with varying prior levels of earwigs exhibited reductions in key pests (woolly apple aphid and pear psylla). For some other pests evaluated, plots with mass releases of earwigs had a slight trend in overall lower pest density when compared with control plots. A strategy for moving earwigs out of stone fruit orchards and into pome fruit orchards could be an effective method for augmenting orchard predator populations.

15.
Environ Entomol ; 52(2): 243-253, 2023 04 18.
Artículo en Inglés | MEDLINE | ID: mdl-36869841

RESUMEN

Insects often harbor bacterial endosymbionts that provide them with nutritional benefit or with protection against natural enemies, plant defenses, insecticides, and abiotic stresses. Certain endosymbionts may also alter acquisition and transmission of plant pathogens by insect vectors. We identified bacterial endosymbionts from four leafhopper vectors (Hemiptera: Cicadellidae) of 'Candidatus Phytoplasma' species by direct sequencing 16S rDNA and confirmed endosymbiont presence and identity by species-specific conventional PCR. We examined three vectors of Ca. Phytoplasma pruni, causal agent of cherry X-disease [Colladonus geminatus (Van Duzee), Colladonus montanus reductus (Van Duzee), Euscelidius variegatus (Kirschbaum)] - and a vector of Ca. Phytoplasma trifolii, the causal agent of potato purple top disease [Circulifer tenellus (Baker)]. Direct sequencing of 16S identified the two obligate endosymbionts of leafhoppers, 'Ca. Sulcia' and 'Ca. Nasuia', which are known to produce essential amino acids lacking in the leafhoppers' phloem sap diet. About 57% of C. geminatus also harbored endosymbiotic Rickettsia. We identified 'Ca. Yamatotoia cicadellidicola' in Euscelidius variegatus, providing just the second host record for this endosymbiont. Circulifer tenellus harbored the facultative endosymbiont Wolbachia, although the average infection rate was only 13% and all males were Wolbachia-uninfected. A significantly greater percentage of Wolbachia-infected Ci. tenellus adults than uninfected adults carried Ca. P. trifolii, suggesting that Wolbachia may increase this insect's ability to tolerate or acquire this pathogen. Results of our study provide a foundation for continued work on interactions between leafhoppers, bacterial endosymbionts, and phytoplasma.


Asunto(s)
Hemípteros , Phytoplasma , Masculino , Animales , Hemípteros/genética , Phytoplasma/genética , Bacterias/genética , Reacción en Cadena de la Polimerasa , Insectos Vectores/microbiología , Enfermedades de las Plantas/microbiología
16.
Ecology ; 93(9): 2001-7, 2012 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-23094371

RESUMEN

Healthy ecosystems include many species (high richness) with similar abundances (high evenness). Thus, both aspects of biodiversity are worthy of conservation. Simultaneously conserving richness and evenness might be difficult, however, if, for example, the restoration of previously absent species to low densities brings a cost in reduced evenness. Using meta-analysis, we searched for benefits to biodiversity following adoption of two common land-management schemes: the implementation of organic practices by farmers and of controlled burning by natural-land managers. We used rarefaction to eliminate sampling bias in all of our estimates of richness and evenness. Both conservation practices significantly increased evenness and overall abundance across taxonomic classifications (arthropods, birds, non-bird vertebrates, plants, soil organisms). Evenness and richness varied independently, leading to no richness-evenness correlation and no significant overall change in richness. Demonstrating the importance of rarefaction, analyses of raw data that did not receive rarefaction indicated misleadingly strong benefits of organic agriculture and burning for richness while underestimating true gains in evenness. Both organic farming and burning favored species that were not numerically dominant, re-balancing communities as uncommon species gained individuals. Our results support the assertion that richness and evenness capture separate facets of biodiversity, each needing individual attention during conservation.


Asunto(s)
Agricultura/métodos , Conservación de los Recursos Naturales/métodos , Ecosistema , Incendios , Animales , Plantas , Dinámica Poblacional
17.
Ecology ; 93(9): 1994-2000, 2012 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-23094370

RESUMEN

Greater resource use by diverse communities might result from species occupying complementary niches. Demonstrating niche complementarity among species is challenging, however, due to the difficulty in relating differences between species in particular traits to their use of complementary resources. Here, we overcame this obstacle by exploiting plastic foraging behavior in a community of predatory insects common on Brassica oleracea plants in Washington, USA. These predators complemented one another by partitioning foraging space, with some species foraging primarily along leaf edges and others at leaf centers. We hypothesized that emergent biodiversity effects would occur when predators partitioned foraging space on leaves, but not when spatial complementarity was dampened. Indeed, on intact leaves, edge- and center-foraging predators combined to kill more prey than any single predator species could by itself. These emergent diversity effects, however, disappeared on plants damaged by the caterpillar Plutella xylostella. Caterpillar chew-holes brought edge habitats to the center of leaves, so that all predator species could attack aphids anywhere on plants. With spatial niche differences diminished, there were no benefits of predator diversity; the most voracious single predator species killed the most aphids. Thus, caterpillar herbivory determined whether multi-predator-species effects reflected complementarity or species' individual impacts. Our study provides direct evidence for a causative relationship between niche differentiation and increased resource consumption by diverse communities, as revealed by ecological engineers that homogenize the foraging environment.


Asunto(s)
Biodiversidad , Insectos/fisiología , Animales , Brassica , Larva/fisiología , Hojas de la Planta , Dinámica Poblacional , Conducta Predatoria
18.
Ecology ; 93(2): 411-20, 2012 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-22624322

RESUMEN

Resource consumption often increases with greater consumer biodiversity. This could result either from complementarity among consumers or the inclusion of particular key species, and it is often difficult to differentiate between these two mechanisms. We exploited a simple plant mutation (reduced production of surface waxes) to alter foraging within a community of aphid predators, and thus perhaps shift the nature of resulting predator diversity effects. We found that greater predator species richness dramatically increased prey suppression and plant biomass only on mutant, reduced-wax pea plants (Pisum sativum). On pea plants from a sister line with wild type, waxier plant surfaces, predator species richness did not influence predators' impacts on herbivores or plants. Thus, a change in plant surface structure acted to turn on, or off, the cascading effects of predator diversity. Greater predator richness encouraged higher densities of true predators but did not lead to greater reproduction by a parasitoid, Aphidius ervi; fecundity of each natural enemy species was similar for the two plant types. Behavioral observations indicated that although A. ervi was less likely to forage within species-rich predator communities, low-wax plants mitigated this interference by encouraging generally greater A. ervi foraging and thus high rates of aphid dislodgement (aphids dropped from plants to escape A. ervi, but not the other predators). Thus, only species-rich, low-wax plants simultaneously encouraged strong species-specific effects of A. ervi, and strong complementarity among the other predator species. In summary, our study provides evidence that diversity effects in predator assemblages are sensitive to habitat characteristics. Further, we show that a simple plant morphological trait, controlled by a single gene mutation, can dramatically alter the cascading effects of predator species richness on herbivores and plants.


Asunto(s)
Áfidos , Biodiversidad , Avispas , Animales , Interacciones Huésped-Parásitos , Mutación
19.
Environ Entomol ; 50(2): 433-443, 2021 04 23.
Artículo en Inglés | MEDLINE | ID: mdl-33377151

RESUMEN

Slow and consistent nutrient release by organic fertilizers can improve plant nutrient balance and defenses, leading to herbivore avoidance of organically managed crops in favor of conventional crops with weaker defenses. We propose that this relative attraction to conventional plants, coupled with the use of genetically modified, insecticidal crops (Bt), has created an unintentional attract-and-kill system. We sought to determine whether Bt and non-Bt corn Zea mays L. plants grown in soil collected from five paired organic and conventional fields differed in attractiveness to European corn borer [Ostrinia nubilalis (Hübner)] moths, by conducting ovipositional choice and flight tunnel assays. We then examined the mechanisms driving the observed differences in attraction by comparing soil nutrient profiles, soil microbial activity, plant nutrition, and plant volatile profiles. Finally, we assessed whether European corn borer abundance near corn fields differed based on soil management. European corn borer preferred plants grown in conventional soil but did not discriminate between Bt and non-Bt corn. Organic management and more alkaline soil were associated with an increased soil magnesium:potassium ratio, which increased plant magnesium, and were linked to reduced European corn borer oviposition. There was an inconsistent trend for higher European corn borer moth activity near conventional fields. Our results extend the mineral balance hypothesis describing conventional plant preference by showing that it can also improve attraction to plants with genetically inserted toxins. Unintentional attract (to conventional) and (Bt) kill is a plausible scenario for pest declines in response to Bt corn adoption, but this effect may be obscured by variation in other management practices and landscape characteristics.


Asunto(s)
Bacillus thuringiensis , Mariposas Nocturnas , Animales , Bacillus thuringiensis/genética , Proteínas Bacterianas/genética , Endotoxinas , Femenino , Proteínas Hemolisinas , Nutrientes , Control Biológico de Vectores , Plantas Modificadas Genéticamente , Suelo , Zea mays/genética
20.
Ecol Lett ; 13(3): 338-48, 2010 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-20455919

RESUMEN

More diverse communities of consumers typically use more resources, which often is attributed to resource partitioning. However, experimentally demonstrating this role of resource partitioning in diverse communities has been difficult. We used an experimental response-surface design, varying intra- and interspecific consumer densities, to compare patterns of resource exploitation between simple and diverse communities of aphid predators. With increasing density, each single consumer species rapidly plateaued in its ability to extract more resources. This suggests intraspecific competition for a subset of the resource pool, a hallmark of resource partitioning. In contrast, more diverse-predator communities achieved greater overall resource depletion. By statistically fitting mechanistic models to the data, we demonstrated that resource partitioning rather than facilitation provides the better explanation for the observed differences in resource use between simple and diverse communities. This model-fitting approach also allowed us to quantify overlap in resource use by different consumer species.


Asunto(s)
Áfidos/fisiología , Conducta Competitiva , Cadena Alimentaria , Animales , Ecosistema , Femenino , Masculino , Modelos Biológicos , Crecimiento Demográfico
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA