Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Philos Trans A Math Phys Eng Sci ; 380(2235): 20210256, 2022 Oct 31.
Artículo en Inglés | MEDLINE | ID: mdl-36088931

RESUMEN

Waves in the Marginal Ice Zone in the Okhotsk Sea are less studied compared to the Antarctic and Arctic. In February 2020, wave observations were conducted for the first time in the Okhotsk Sea, during the observational program by Patrol Vessel Soya. A wave buoy was deployed on the ice, and in situ wave observations were made by a ship-borne stereo imaging system and Inertial Measurement Unit. Sea ice was observed visually and by aerial photographs by drone, while satellite synthetic aperture radar provided basin-wide spatial distribution. On 12 February, a swell system propagating from east northeast was detected by both the stereo imaging system and the buoy-on-ice. The wave system attenuated from 0.34 m significant wave height to 0.25 m in about 90 km, while the wave period increased from 10 s to 15-17 s. This anomalous spectral downshifting was not reproduced by numerical hindcast and by applying conventional frequency-dependent exponential attenuation to the incoming frequency spectrum. The estimated rate of spectral downshifting, defined as a ratio of momentum and energy losses, was close to that of uni-directional wave evolution accompanied by breaking dissipation: this indicates that dissipation-driven nonlinear downshifting may be at work for waves propagating in ice. This article is part of the theme issue 'Theory, modelling and observations of marginal ice zone dynamics: multidisciplinary perspectives and outlooks'.

2.
Sci Data ; 10(1): 251, 2023 05 03.
Artículo en Inglés | MEDLINE | ID: mdl-37137931

RESUMEN

Variability in sea ice conditions, combined with strong couplings to the atmosphere and the ocean, lead to a broad range of complex sea ice dynamics. More in-situ measurements are needed to better identify the phenomena and mechanisms that govern sea ice growth, drift, and breakup. To this end, we have gathered a dataset of in-situ observations of sea ice drift and waves in ice. A total of 15 deployments were performed over a period of 5 years in both the Arctic and Antarctic, involving 72 instruments. These provide both GPS drift tracks, and measurements of waves in ice. The data can, in turn, be used for tuning sea ice drift models, investigating waves damping by sea ice, and helping calibrate other sea ice measurement techniques, such as satellite based observations.

3.
Sci Rep ; 10(1): 20830, 2020 Nov 27.
Artículo en Inglés | MEDLINE | ID: mdl-33247199

RESUMEN

Arctic sea ice is rapidly decreasing during the recent period of global warming. One of the significant factors of the Arctic sea ice loss is oceanic heat transport from lower latitudes. For months of sea ice formation, the variations in the sea surface temperature over the Pacific Arctic region were highly correlated with the Pacific Decadal Oscillation (PDO). However, the seasonal sea surface temperatures recorded their highest values in autumn 2018 when the PDO index was neutral. It is shown that the anomalous warm seawater was a rapid ocean response to the southerly winds associated with episodic atmospheric blocking over the Bering Sea in September 2018. This warm seawater was directly observed by the R/V Mirai Arctic Expedition in November 2018 to significantly delay the southward sea ice advance. If the atmospheric blocking forms during the PDO positive phase in the future, the annual maximum Arctic sea ice extent could be dramatically reduced.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA